A. Data Format

MATLAB can display output using many different formats. Here are the choices of format, as obtained by typing the command help format The default format is short.

Command	Description
format SHORT	Scaled fixed point format with 5 digits.
format LONG	Scaled fixed point format with 15 digits for double and 7 digits for single.
format SHORTE	Floating point format with 5 digits.
format LONGE	Floating point format with 15 digits for double and 7 digits for single.
format SHORTG	Best of fixed or floating point format with 5 digits.
format LONGG	Best of fixed or floating point format with 15 digits for double and 7 digits for single.
format SHORTENG	Engineering format that has at least 5 digits and a power that is a multiple of three
format LONGENG	Engineering format that has exactly 16 significant digits and a power that is a multiple of three.
format HEX	Hexadecimal format.
format +	The symbols +, - and blank are printed for positive, negative and zero elements. Imaginary parts are ignored.
format BANK	Fixed format for dollars and cents.
format RAT	Approximation by ratio of small integers. Numbers with a large numerator or large denominator are replaced by *.
format COMPACT	Suppresses extra line-feeds.
format LOOSE	Puts the extra line-feeds back in.

B. One-dimensional arrays (vectors)

The basic MATLAB data type is the array. Try these commands:

```
>> p1=[[\begin{array}{llllll}{3}&{5}&{7}&{11}\end{array}]
>> p2 = [2, 3, 5, 7, 11]
>> q1 = [2;3;5;7;11]
>> q2 = [2
3
5
7
11]
```

If you have a long array, it is not efficient to type the entries individually. Try the following commands to see other ways to generate arrays and work with array contents.

```
>> a =-1: 3:14
>> b = 10:-1:0
>>c = linspace(0, 1, 11)% Generates an array of 11 numbers evenly spaced between 0 and 1
>> d = c'% Turns a row vector into a column vector
>> c(3)% Gives the 3rd entry in vector c
>>c(end)% Gives the last entry in c. This is useful if you do not know the length of c.
>> c([lllll) % Gives the 1st, 3rd, and 5th entries in c
>> c(3) = -5% Sets the value of the 3rd entry in c to -5
```


C. Two-dimensional arrays (matrices)

Try these commands:
>> $\mathrm{A}=[1,2 ; 3,4 ; 5,6]$
>> $\mathrm{B}=\mathrm{A}^{\prime} \% \mathrm{~B}$ is the matrix whose rows are the columns of A
>> $\mathrm{A}(2,1) \%$ Gives the entry in the 2nd row and 1st column of A

D. Special matrices

Try these commands:

$$
\begin{aligned}
& \gg \mathrm{C}=\operatorname{zeros}(2,3) \\
& \gg \mathrm{D}=\operatorname{ones}(3,4) \\
& \gg \mathrm{E}=\operatorname{eye}(3)
\end{aligned}
$$

E. Combining and indexing arrays

Try these commands:

$$
\gg \mathrm{B}=\left[3^{*} \operatorname{ones}(3,3) \text { eye }(3)\right]
$$

$$
\gg \mathrm{C}=\left[3^{*} \text { ones }(3,3) ; \text { eye }(3)\right]
$$

$$
\gg \mathrm{D}=[\mathrm{C} \mathrm{C}]
$$

>> B(:, 4) \% Gives the entries in the 4th column of B

$$
\gg \mathrm{B}(:, 4: 5) \% \text { Gives the entries in the } 4 \text { th and } 5 \text { th columns of } \mathrm{B}
$$

$$
\text { >> B(2,:) \% Gives the entries in the 2nd row of } \mathrm{B}
$$

$$
\text { >> } \mathrm{B}(2: 3,2: 4) \% \text { Gives the entries in rows } 2 \text { and } 3 \text { between columns } 2 \text { and } 4 \text { of } B
$$

$$
\text { >> } \mathrm{B}([13],[24]) \% \text { Gives the entries in rows } 1 \text { and } 3 \text {, columns } 2 \text { and } 4 \text { of } \mathrm{B}
$$

F. Deleting elements

>> $\mathrm{p} 1(3)=[] \%$ Deletes the 3rd element of vector p 1
>> $\mathrm{B}(:, 6)=[] \%$ Deletes the 6th column of matrix B
$\gg \mathrm{B}(1: 2,:)=[] \%$ Deletes the 1st and 2nd rows of matrix B

G. Useful functions

>> length(p 1)
>> size(B)
>> $\mathrm{C}=$ reshape $(\mathrm{B}, 2,9) \%$ Creates a matrix with 2 rows and 9 columns using the elements of B
>> $\mathrm{D}=\operatorname{diag}(\mathrm{p} 1) \%$ Creates a diagonal matrix with elements of p 1 on the diagonal
$\gg v=\operatorname{diag}(A) \%$ Creates a vector from the diagonal elements of A

H. Strings

MATLAB can handle characters (letters, numerals, special characters, spaces) as well as numerical data. Try these commands:
>> a = 'Today is Monday.'
>> length(a)
>> $\mathrm{a}(7)$

1. Create a column vector with the following elements:
$\frac{32}{3.2^{2}}, \sin ^{2}\left(35^{\circ}\right), 6.1, \ln \left(29^{2}\right), 0.00552, \ln ^{2}(29)$, and 133
2. Create a row vector with 9 equally spaced elements in which the first element is 81 and the last element is 12 . Do not type in all 9 elements. Use the linspace command.
3. Create a vector named vecA that has 14 elements of which the first is 49 , the increment is -3 , and the last element is 10 . Then, using the colon symbol, create a new vector named vecB that has 8 elements. The first 4 elements are the first 4 elements of vecA, and the last 4 are the last 4 elements of vecA.
4. Create the following matrix B.

$$
\left[\begin{array}{cccccc}
18 & 17 & 16 & 15 & 14 & 13 \\
12 & 11 & 10 & 9 & 8 & 7 \\
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right]
$$

Use the matrix B to
(a) Create a six-element column vector named va that contains the elements of the second and fifth columns of B.
(b) Create a seven-element column vector named vb that contains elements 3 through 6 of the third row of B and the elements of the second column of B.
(c) Create a nine-element column vector named vc that contains the elements of the second, fourth, and sixth columns of B.
5. Use the zeros, ones, and eye commands to create the following arrays.
(a) $\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0\end{array}\right]$

