A. Vectors

A vector is a quantity that has both magnitude and direction, like velocity. The location of a vector is irrelevant; all that matters are magnitude and direction. You can visualize a vector as an arrow, with the length of the arrow representing the magnitude of the vector and the direction of the arrow representing the direction of the vector.

A vector is usually denoted by a bold-face lower-case letter (e.g. v) or by a lower-case letter with an arrow above it (e.g. \vec{v}). The magnitude (or norm) of a vector \vec{v} is usually denoted either $\|\vec{v}\|$ or $|\vec{v}|$.
If you think of a vector as an arrow with its tail at the origin of a coordinate system, you can describe the vector analytically by specifying the location of the head of the vector. For example, $\vec{v}=<1,2>$ is the vector in the $x y$ plane that starts at the origin and ends at the point $(1,2)$. A vector can have 2,3 , or more components. The magnitude of a vector is the distance from the tail to the head of the vector. For example, $\|<1,2>\|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$ by the distance formula.
MATLAB syntax: >> norm([12])

Vector Operations

1. Scalar Multiplication.

If k is a real number (a scalar), then $k \vec{v}$ is the vector with magnitude $|k|\|\vec{v}\|$ and direction the same direction as \vec{v} if $k>0$ and the opposite direction of \vec{v} if $k<0$.
Analytical definition: $k<v_{1}, v_{2}, v_{3}>=<k v_{1}, k v_{2}, k v_{3}>$.
For example, $-2\langle 1,2,3\rangle=<-2,-4,-6\rangle$
MATLAB syntax: >> $-2 *\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
2. Vector Addition.

Geometric definition of $\vec{v}+\vec{w}$: Place the tail of \vec{w} at the head of \vec{v}. The vector from the tail of \vec{v} to the head of \vec{w} is $\vec{v}+\vec{w}$. See the figure below.

Analytical definition of vector addition:
$<v_{1}, v_{2}, v_{3}>+<w_{1}, w_{2}, w_{3}>=<v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}>$.
For example, $\langle 1,2,3\rangle+\langle 4,5,6\rangle=<5,7,9\rangle$

3. Dot Product (or Inner Product).

The dot product of two vectors of the same length is a scalar.
Geometric definition: $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos (\theta)$, where θ is the angle between \vec{v} and \vec{w} when the vectors have their tails at the same point.
Analytical definition: $\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}$.
For example, $\langle 1,2,3\rangle \cdot\langle 4,5,6\rangle=(1)(4)+(2)(5)+(3)(6)=32$.
MATLAB syntax: >> dot([1 2 3], [4 5 6 $]$)
4. Cross Product.

The cross product of two 3 -component vectors \vec{v} and \vec{w} is a vector with magnitude $\|\vec{v}\|\|\vec{w}\| \sin (\theta)$ and direction perpendicular to both \vec{v} and \vec{w} per the right-hand rule.
Analytical definition:
$<v_{1}, v_{2}, v_{3}>\times<w_{1}, w_{2}, w_{3}>=<v_{2} w_{3}-w_{2} v_{3}, v_{3} w_{1}-w_{3} v_{1}, v_{1} w_{2}-w_{1} v_{2}>$.
For example, $\langle 1,0,3\rangle \times<0,2,-1\rangle=<0(-1)-2(3), 3(0)-(-1)(1), 1(2)-(-1)(0)\rangle$
$=<-6,1,2>$.

B. Matrices

A matrix is a rectangular array of numbers. (The plural of matrix is matrices.)
An $m \times n$ matrix is a matrix with m rows and n columns. Here is an example of a 2×3 matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

If A is a matrix, then $A_{i j}$ denotes the element in row i and column j of matrix A. For example, if A is the matrix defined above, then $A_{21}=4$.
MATLAB syntax: >> A = [1 2 3; 4 5 6]

Matrix Operations

1. Scalar Multiplication.

If A is an $m \times n$ matrix and k is a scalar, then $k A$ is the $m \times n$ matrix whose entries are k times the entries of A.
For example,

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \Rightarrow 2 A=\left[\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]
$$

MATLAB syntax: >> $2 *$ A
2. Matrix Addition.

If A and B are $m \times n$ matrices, then $A+B$ is the $m \times n$ matrix with $(A+B)_{i j}=A_{i j}+B_{i j}$. For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 4 \\
-6 & 8
\end{array}\right] \Rightarrow A+B=\left[\begin{array}{cc}
-1 & 6 \\
-3 & 12
\end{array}\right]
$$

MATLAB syntax: >> A+B
3. Matrix Multiplication.

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then $A B$ is the $m \times p$ whose $i j$ entry equals the dot product of row i of A and column j of B. Note that for the product $A B$ to be defined, the number of columns of A must equal the number of rows of B.
For example,
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}-2 & 4 \\ -6 & 8\end{array}\right] \Rightarrow A B=\left[\begin{array}{ll}1(-2)+2(-6) & 1(4)+2(8) \\ 3(-2)+4(-6) & 3(4)+4(8)\end{array}\right]=\left[\begin{array}{ll}-14 & 20 \\ -30 & 44\end{array}\right]$
MATLAB syntax: >> A*B
Note that even if A and B are both $n \times n$ matrices, in general $A B \neq B A$.
For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
-2 & 4 \\
-6 & 8
\end{array}\right] \Rightarrow A B=\left[\begin{array}{cc}
-14 & 20 \\
-30 & 44
\end{array}\right] \text { but } B A=\left[\begin{array}{cc}
10 & 12 \\
18 & 20
\end{array}\right]
$$

The identity matrix I_{n} is the $n \times n$ matrix with 1 along the diagonal and 0 everywhere else. For example,

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

MATLAB syntax: >> eye (3)
If A is an $m \times n$ matrix, then $I_{m} A=A$ and $A I_{n}=A$.
4. Inverse of a Matrix.

For most $n \times n$ matrices A there exists an inverse matrix A^{-1} with the property that $A A^{-1}=A^{-1} A=I_{n}$.
For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right]
$$

(You should check this by calculating $A A^{-1}$ and $A^{-1} A$.)
MATLAB syntax: >> inv(A)
5. Determinant of an $n \times n$ matrix.

The determinant of an $n \times n$ matrix A is a scalar, $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$.
If $\operatorname{det}(A) \neq 0$, then A^{-1} exists and A is said to be nonsingular.
If $\operatorname{det}(A)=0$, then A^{-1} does not exist and A is said to be singular.

$$
\begin{gathered}
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-g e c-h f a-i d b
\end{gathered}
$$

MATLAB syntax: >> det(A)
6. Row-echelon form of a matrix (for those of you who have studied linear algebra).

The command
>>rref(A)
generates the reduced row echelon form of matrix A.

C. Systems of Linear Equations

Systems of linear equations can be expressed as matrix equations. For example, the system $x_{1}+2 x_{2}=4,3 x_{1}+4 x_{2}=10$ can be written as the matrix equation $A x=b$ where
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $b=\left[\begin{array}{c}4 \\ 10\end{array}\right]$.
You can solve this system using the following MATLAB commands.

```
>> A = [1, 2; 3, 4];
>> b = [4; 10];
>> x = A\b %Note: This is the backslash key (above the Enter key), not /
```

If the system $A x=b$ is overdetermined (more equations than unknowns), then $\mathrm{A} \backslash \mathrm{b}$ is a leastsquares solution of the system, i.e., a vector x that minimizes $\|A x-b\|$. If the system $A x=b$ is underdetermined (more unknowns than equations), then $\mathrm{A} \backslash \mathrm{b}$ produces a solution of the system, if there are any, or a least-squares solution if the system has no solution.

D. Operations on Arrays

The symbol $*$ denotes matrix multiplication. If you want to multiply corresponding elements of arrays with the same dimensions, use .*
For example, $\gg\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] *\left[\begin{array}{ll}4 & 5\end{array}\right]$ produces an error message in MATLAB, but $\gg\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] . *\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$

Similarly, you can perform element-by-element division or exponentiation using ./ and . -
For example, $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] .{ }^{\wedge} 2$ produces the array $\left[\begin{array}{lll}1 & 4 & 9\end{array}\right]$
You can apply built-in MATLAB functions to arrays, just as you can to single numbers. For example, sqrt ([lll $\left.\left.\begin{array}{ll}1 & 4\end{array}\right]\right)$ produces the array $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

E. MATLAB Array Functions

Here are some useful MATLAB functions for working with arrays.

MATLAB Command	Description
$\max (\mathrm{A})$	Largest element of A, if A is a vector Row vector containing largest element in each column, if A is a matrix
$\min (\mathrm{A})$	Same as max(A) but gives minimum instead
$\operatorname{sum}(\mathrm{A})$	Sum of the elements of A if A is a vector
$\operatorname{mean}(\mathrm{A})$	Average of the elements of A if A is a vector

1. The unit vector \vec{u}_{n} in the direction of vector \vec{u} is given by $\left(\frac{1}{|\vec{u}|}\right) \vec{u}$. Find the unit vector in the direction of $\vec{u}=<-8,-14,25>$ using one MATLAB command.
2. Define the vector $v=[2,4,6,8,10]$. Then use v to create the following vectors:
(a) $a=\left[\begin{array}{lllll}\frac{1}{2} & \frac{1}{4} & \frac{1}{6} & \frac{1}{8} & \frac{1}{10}\end{array}\right]$
(b) $b=\left[\begin{array}{llll}\frac{1}{2^{2}} & \frac{1}{4^{2}} & \frac{1}{6^{2}} & \frac{1}{8^{2}} \\ 10^{2}\end{array}\right]$
(c) $c=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$
(d) $d=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$
3. Define the vectors $\vec{u}=\langle-2,6,5\rangle, \vec{v}=<5,-1,3>$, and $\vec{w}=<4,7,-2\rangle$. Use MATLAB's built-in functions cross and dot to verify the vector identity $\vec{u} \times(\vec{v} \times \vec{w})=(\vec{u} \cdot \vec{w}) \vec{v}-(\vec{u} \cdot \vec{v}) \vec{w}$.
4. Solve the following system of linear equations.

$$
\left\{\begin{aligned}
x+2 y-3 z & =-5 \\
2 x-y-z & =0 \\
-x-y+z & =1
\end{aligned}\right.
$$

5. (a) Generate the row array $\mathrm{v}=[1,4,9,16,25,36,49,64,81,100]$. (Can you do this without typing in all 10 elements?)
(b) Use a MATLAB function to find the average value of the entries of v.
(c) Use a MATLAB function to find the sum of the entries of v .

Partial Answers to Practice Problems

1. $\langle-0.26892,-0.4706,0.84037>$
2.
3. Both sides of the equation should equal $<124,-17,70>$
4. $x=1, y=0, z=2$
$\begin{array}{ll}\text { 5. b) } 38.5 & \text { c) } 385\end{array}$
