MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra

A. Vectors

A *vector* is a quantity that has both magnitude and direction, like velocity. The location of a vector is irrelevant; all that matters are magnitude and direction. You can visualize a vector as an arrow, with the length of the arrow representing the magnitude of the vector and the direction of the arrow representing the direction.

A vector is usually denoted by a bold-face lower-case letter (e.g. \mathbf{v}) or by a lower-case letter with an arrow above it (e.g. \vec{v}). The magnitude (or norm) of a vector \vec{v} is usually denoted either $\|\vec{v}\|$ or $|\vec{v}|$.

If you think of a vector as an arrow with its tail at the origin of a coordinate system, you can describe the vector analytically by specifying the location of the head of the vector. For example, $\vec{v} = < 1, 2 >$ is the vector in the xy plane that starts at the origin and ends at the point (1, 2). A vector can have 2, 3, or more components. The magnitude of a vector is the distance from the tail to the head of the vector. For example, $|| < 1, 2 > || = \sqrt{1^2 + 2^2} = \sqrt{5}$ by the distance formula.

MATLAB syntax: >> norm([1 2])

Vector Operations

1. Scalar Multiplication.

If k is a real number (a *scalar*), then $k\vec{v}$ is the vector with magnitude $|k| \|\vec{v}\|$ and direction the same direction as \vec{v} if k > 0 and the opposite direction of \vec{v} if k < 0. Analytical definition: $k < v_1, v_2, v_3 > = < kv_1, kv_2, kv_3 >$. For example, -2 < 1, 2, 3 > = < -2, -4, -6 >MATLAB syntax: >> $-2*[1 \ 2 \ 3]$

2. Vector Addition.

Geometric definition of $\vec{v} + \vec{w}$: Place the tail of \vec{w} at the head of \vec{v} . The vector from the tail of \vec{v} to the head of \vec{w} is $\vec{v} + \vec{w}$. See the figure below.

Analytical definition of vector addition: $\langle v_1, v_2, v_3 \rangle + \langle w_1, w_2, w_3 \rangle = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$. For example, $\langle 1, 2, 3 \rangle + \langle 4, 5, 6 \rangle = \langle 5, 7, 9 \rangle$ MATLAB syntax: >> [1 2 3] + [4 5 6] 3. Dot Product (or Inner Product).

The dot product of two vectors of the same length is a *scalar*. Geometric definition: $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$, where θ is the angle between \vec{v} and \vec{w} when the vectors have their tails at the same point. Analytical definition: $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$. For example, $< 1, 2, 3 > \dots < 4, 5, 6 >= (1)(4) + (2)(5) + (3)(6) = 32$. MATLAB syntax: >> dot([1 2 3], [4 5 6])

4. Cross Product.

The cross product of two 3-component vectors \vec{v} and \vec{w} is a vector with magnitude $\|\vec{v}\| \|\vec{w}\| \sin(\theta)$ and direction perpendicular to both \vec{v} and \vec{w} per the right-hand rule.

Analytical definition:

 $< v_1, v_2, v_3 > \times < w_1, w_2, w_3 > = < v_2w_3 - w_2v_3, v_3w_1 - w_3v_1, v_1w_2 - w_1v_2 >.$ For example, $< 1, 0, 3 > \times < 0, 2, -1 > = < 0(-1) - 2(3), 3(0) - (-1)(1), 1(2) - (-1)(0) > = < -6, 1, 2 >.$ MATLAB syntax: >> cross([1 0 3], [0 2 -1])

B. Matrices

A matrix is a rectangular array of numbers. (The plural of matrix is matrices.)

An $m \times n$ matrix is a matrix with m rows and n columns. Here is an example of a 2×3 matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$$

If A is a matrix, then A_{ij} denotes the element in row i and column j of matrix A. For example, if A is the matrix defined above, then $A_{21} = 4$.

MATLAB syntax: >> A = [1 2 3; 4 5 6]

Matrix Operations

1. Scalar Multiplication.

If A is an $m \times n$ matrix and k is a scalar, then kA is the $m \times n$ matrix whose entries are k times the entries of A.

For example,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

MATLAB syntax: >> 2*A

2. Matrix Addition.

If A and B are $m \times n$ matrices, then A + B is the $m \times n$ matrix with $(A + B)_{ij} = A_{ij} + B_{ij}$. For example,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 4 \\ -6 & 8 \end{bmatrix} \Rightarrow A + B = \begin{bmatrix} -1 & 6 \\ -3 & 12 \end{bmatrix}$$

MATLAB syntax: >> A+B

3. Matrix Multiplication.

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then AB is the $m \times p$ whose ij entry equals the dot product of row i of A and column j of B. Note that for the product AB to be defined, the number of columns of A must equal the number of rows of B. For example,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 4 \\ -6 & 8 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} 1(-2) + 2(-6) & 1(4) + 2(8) \\ 3(-2) + 4(-6) & 3(4) + 4(8) \end{bmatrix} = \begin{bmatrix} -14 & 20 \\ -30 & 44 \end{bmatrix}$$

MATLAB syntax: >> A*B

Note that even if A and B are both $n \times n$ matrices, in general $AB \neq BA$. For example,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 4 \\ -6 & 8 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} -14 & 20 \\ -30 & 44 \end{bmatrix} \text{ but } BA = \begin{bmatrix} 10 & 12 \\ 18 & 20 \end{bmatrix}$$

The *identity matrix* I_n is the $n \times n$ matrix with 1 along the diagonal and 0 everywhere else. For example,

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

MATLAB syntax: >> eye(3)

If A is an $m \times n$ matrix, then $I_m A = A$ and $AI_n = A$.

4. Inverse of a Matrix.

For most $n \times n$ matrices A there exists an *inverse matrix* A^{-1} with the property that $AA^{-1} = A^{-1}A = I_n$.

For example,

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$

(You should check this by calculating AA^{-1} and $A^{-1}A$.)

MATLAB syntax: >> inv(A)

5. Determinant of an $n \times n$ matrix.

The determinant of an $n \times n$ matrix A is a scalar, denoted det(A) or |A|. If det $(A) \neq 0$, then A^{-1} exists and A is said to be *nonsingular*. If det(A) = 0, then A^{-1} does not exist and A is said to be *singular*.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - idb$$

MATLAB syntax: >> det(A)

6. Row-echelon form of a matrix (for those of you who have studied linear algebra). The command

>>rref(A)

generates the reduced row echelon form of matrix A.

C. Systems of Linear Equations

Systems of linear equations can be expressed as matrix equations. For example, the system $x_1 + 2x_2 = 4$, $3x_1 + 4x_2 = 10$ can be written as the matrix equation Ax = b where

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 10 \end{bmatrix}.$$

You can solve this system using the following MATLAB commands.

>> A = [1, 2; 3, 4];
>> b = [4; 10];
>> x = A\b %Note: This is the backslash key (above the Enter key), not /

If the system Ax = b is overdetermined (more equations than unknowns), then A\b is a least-squares solution of the system, i.e., a vector x that minimizes ||Ax - b||. If the system Ax = b is underdetermined (more unknowns than equations), then A\b produces a solution of the system, if there are any, or a least-squares solution if the system has no solution.

D. Operations on Arrays

The symbol \ast denotes matrix multiplication. If you want to multiply corresponding elements of arrays with the same dimensions, use $.\ast$

For example, >>[1 2 3]*[4 5 6] produces an error message in MATLAB, but >>[1 2 3].*[4 5 6] produces the array [4 10 18].

Similarly, you can perform element-by-element division or exponentiation using ./ and .^

For example, [1 2 3].² produces the array [1 4 9]

You can apply built-in MATLAB functions to arrays, just as you can to single numbers. For example, sqrt([1 4 9]) produces the array [1 2 3]

E. MATLAB Array Functions

Here are some useful MATLAB functions for working with arrays.

MATLAB Command	Description
$\max(A)$	Largest element of A, if A is a vector
	Row vector containing largest element in each column, if A is a matrix
$\min(A)$	Same as $\max(A)$ but gives minimum instead
$\operatorname{sum}(A)$	Sum of the elements of A if A is a vector
mean(A)	Average of the elements of A if A is a vector

Practice Problems

- 1. The unit vector \vec{u}_n in the direction of vector \vec{u} is given by $\left(\frac{1}{|\vec{u}|}\right)\vec{u}$. Find the unit vector in the direction of $\vec{u} = \langle -8, -14, 25 \rangle$ using one MATLAB command.
- 2. Define the vector v = [2, 4, 6, 8, 10]. Then use v to create the following vectors: (a) $a = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{6} & \frac{1}{8} & \frac{1}{10} \end{bmatrix}$ (b) $b = \begin{bmatrix} \frac{1}{2^2} & \frac{1}{4^2} & \frac{1}{6^2} & \frac{1}{8^2} & \frac{1}{10^2} \end{bmatrix}$ (c) $c = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$ (d) $d = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$
- 3. Define the vectors $\vec{u} = \langle -2, 6, 5 \rangle$, $\vec{v} = \langle 5, -1, 3 \rangle$, and $\vec{w} = \langle 4, 7, -2 \rangle$. Use MATLAB's built-in functions **cross** and **dot** to verify the vector identity $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} (\vec{u} \cdot \vec{v}) \vec{w}$.
- 4. Solve the following system of linear equations.

$$\begin{cases} x + 2y - 3z = -5\\ 2x - y - z = 0\\ -x - y + z = 1 \end{cases}$$

- 5. (a) Generate the row array v = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]. (Can you do this without typing in all 10 elements?)
 - (b) Use a MATLAB function to find the average value of the entries of v.
 - (c) Use a MATLAB function to find the sum of the entries of v.

Partial Answers to Practice Problems

- 1. < -0.26892, -0.4706, 0.84037 >
- 2.
- 3. Both sides of the equation should equal <124, -17, 70>
- 4. x = 1, y = 0, z = 2
- 5. b) 38.5 c) 385