
MATH.2720 Introduction to Programming with MATLAB

Fourier Series Basics

A function f that is periodic on the interval [−π, π] can be represented by the Fourier series

f(t) =
a0

2
+

∞∑

j=1

[aj cos(jt) + bj sin(jt)]

In practice, the infinite series is approximated by a partial sum:

f(t) ≈
a0

2
+

m∑

j=1

[aj cos(jt) + bj sin(jt)]

To calculate the n = 2m + 1 coefficients a0, a1, . . . , am and b1, b2, . . . , bm we need n values of f .

These are usually taken to be values of f at equally spaced t values such as

t1 = 0, t2 =
2π

n
, t3 =

4π

n
, . . . , tn =

2(n − 1)π

n
.

Let xk = f(tk), k = 1, 2, 3, . . . , n and let x denote the array x = [x1, x2, x3, . . . , xn].

The MATLAB command z = fft(x) will generate an array z containing n complex numbers. The
arrays of coefficients aj and bj can be recovered from the array z as follows:

a = real(2*z(1:m+1)/length(z))

b = -imag(2*z(2:m+1)/length(z))

Here are three examples. You can download the script files containing these commands from the
course web page.

Example 1.
n = input(’Enter number of data points: ’);

t = (2*pi/n)*(0:(n-1));

x = 1 + cos(t) + 2*sin(2*t); %Create a simple signal.

z = fft(x); %fft is the fast Fourier transform algorithm

%Note that if n is odd z(n) is the complex conjugate of z(2),

%z(n-1) is the complex conjugate of z(3), etc.

m = (n-1)/2;

a = real(2*z(1:m+1)/n); %Recover frequency content of signal.

b = -imag(2*z(2:m+1)/n);

Example 2.
n = input(’Enter number of data points: ’);

t = (2*pi/n)*(0:(n-1));

x = cos(t) + 2*sin(2*t) - sin(3*t); %Create a simple signal

x = x + 0.1*(-1+2*rand(1,length(x))); %Add random noise to the signal.

z = fft(x);

m = (n-1)/2;

a = real(z(1:m+1)); %Recover frequency content of signal.

b = -imag(z(2:m+1));



Example 3.

load handel; %Load an audio signal built into MATLAB

%Array y contains the data. Fs equals the number of samples per second,

%usually 8192.

n = length(y);

plot((1:n)/Fs,y)

xlabel(’Time (s)’)

ylabel(’Amplitude’)

sound(y) %Play the audio signal

z = fft(y);

m=(n-1)/2;

z_half = z(1:m+1);

figure

plot(Fs*(0:m)/n,abs(z_half))

xlabel(’Frequency (Hz)’)

ylabel(’Amplitude’)

f_cutoff = 2500; %Hz

z_half(round(n*f_cutoff/Fs):end) = 0; %This zeros out the coefficients of terms corresponding

%to frequencies of f_cutoff Hz or more.

figure

plot(Fs*(0:m)/n,abs(z_half))

xlabel(’Frequency (Hz)’)

ylabel(’Amplitude’)

pause

z2 = [z_half; conj(z_half(end:-1:2))]; %Reconstruct the full fft

y2=ifft(z2); %ifft is the inverse fft algorithm

sound(y2) %Play the filtered audio signal

Practice Problem

Issue the command load train

Play this audio signal. Filter our frequencies above 2000 Hz and play the filtered signal.


