MATH. 2720 Introduction to Programming with MATLAB Exam \# 2 Spring 2019

Due April 8. Please email your files to stephen_pennell@uml.edu
This is an exam, so the work you submit must be your own. Do not discuss this exam with anyone other than me.

Problem 1. (20 points)

Write a script file that will graph the surface given by $z=\sqrt{16-x^{2}-2 y^{2}}$ for $-2 \leq x \leq 2,-1 \leq y \leq 1$.

Problem 2. (20 points)

Write a function file (not a script file) that takes a positive number x and a number $a>1$ as input and produces the value of $\log _{a}(x)$ as output. Your code should check whether x is positive and whether a is greater than 1. If not, the function should produce the MATLAB value NaN as output. (This stands for Not a Number.) No output should be displayed within your function file.
Hint: $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$.

Problem 3. (20 points)

Write a function file (not a script file) that takes a nonnegative integer N as input and produces two outputs: the number $S=\sum_{n=1}^{N} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{N^{2}}$ and the number $D=\left|S-\frac{\pi^{2}}{6}\right|$. No output should be displayed within your function file.

Problem 4. (20 points)

Write a script file (not a function file) that asks the user to enter his/her annual income (x) and then calculates the income tax owed (t) according to the following formula:

$$
t= \begin{cases}0 & \text { if } x \leq 20000 \\ 0.1(x-20000) & \text { if } 20000 \leq x \leq 50000 \\ 3000+0.2(x-50000) & \text { otherwise }\end{cases}
$$

For example, if $x=45000$ then $t=0.1(45000-20000)=0.1(25000)=2500$.

Problem 5. (20 points)

Write a script file (not a function file) that finds the degree 2 polynomial (the quadratic) that best fits the data points $(-2,1),(-1,0),(0,-1),(1,3),(2,5)$. In the same figure window, plot the data points using circles as markers ('o'), and plot the best-fit quadratic over the interval $[-2,2]$ using a solid blue line.

