92.445/545 Partial Differential Equations Spring 2013 Midterm Exam Solutions

Problem 1. (10 points)

Is the function given by $u(x, y) = x^2 + y^2$ a solution of the pde $yu_x - xu_y = 0$? Why or why not? $u(x, y) = x^2 + y^2 \Rightarrow u_x = 2x$ and $u_y = 2y$. Therefore, $yu_x - xu_y = y(2x) - x(2y) = 0$ so $u(x, y) = x^2 + y^2$ is a solution of the pde $yu_x - xu_y = 0$.

Problem 2. (30 points)

Solve the equation $\frac{1}{x}u_x - \frac{1}{y}u_y = 2u$ on x > 0, y > 0 with the initial condition $u(x, x) = x^2$.

The initial curve Γ is given by x = s, y = s. On Γ we have $u(s) = s^2$. The characteristic curves satisfy the conditions $\frac{dx}{dt} = \frac{1}{x}$ and $\frac{dy}{dt} = -\frac{1}{y}$. $\frac{dx}{dt} = \frac{1}{x} \Rightarrow x \, dx = dt \Rightarrow \frac{x^2}{2} = t + f(s)$. Because x = s on Γ (where t = 0), f(s) must equal $\frac{s^2}{2}$, so $\frac{x^2}{2} = t + \frac{s^2}{2}$. Similarly, $\frac{y^2}{2} = -t + \frac{s^2}{2}$. On characteristics, $\frac{du}{dt} = 2u$ from the given pde. $\frac{du}{dt} = 2u \Rightarrow \frac{du}{u} = 2 \, dt \Rightarrow \ln(u) = 2t + g(s) \Rightarrow u = e^{2t+g(s)} = e^{2t} \underbrace{e^{g(s)}}_{h(s)} \Rightarrow u = h(s)e^{2t}$. Because $u = s^2$ on Γ (where t = 0), h(s) must equal s^2 , so $u = s^2e^{2t}$. $\frac{x^2}{2} = t + \frac{s^2}{2}$ and $\frac{y^2}{2} = -t + \frac{s^2}{2} \Rightarrow \frac{x^2 + y^2}{2} = s^2$ and $\frac{x^2 - y^2}{2} = 2t$. Therefore, $u(x, y) = \left(\frac{x^2 + y^2}{2}\right)e^{(x^2 - y^2)/2}$.

Problem 3. (30 points) (Pinchover and Rubinstein problem 4.9)

Solve the following Cauchy problem for the nonhomogeneous wave equation.

$$u_{tt} - u_{xx} = 1$$
 on $-\infty < x < \infty, t > 0$
 $u(x, 0) = x^{2}$
 $u_{t}(x, 0) = 1$

From D'Alembert's Formula for the nonhomogeneous wave equation, we have

$$u(x,t) = \frac{1}{2} \left[f(x+ct) + f(x-ct) \right] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds + \frac{1}{2c} \int \int_{\Delta} F(\xi,\tau) \, d\xi \, d\tau$$

where Δ is the triangular region with vertices (x - ct, 0), (x + ct, 0) and (x, t). (See equation 4.17 on page 89 of the textbook.) In this problem, c = 1, $f(x) = x^2$, g(x) = 1, F(x, t) = 1, and Δ is the triangular region with vertices (x - t, 0), (x + t, 0) and (x, t). Therefore,

$$\begin{aligned} u(x,t) &= \frac{1}{2} \left[(x+t)^2 + (x-t)^2 \right] + \frac{1}{2} \int_{x-t}^{x+t} 1 \, ds + \frac{1}{2} \int_{\Delta} 1 \, d\xi \, d\tau \\ &= x^2 + t^2 + \frac{1}{2} \, s |_{x-t}^{x+t} + \frac{1}{2} \left(\text{area of } \Delta \right) \\ &= x^2 + t^2 + \frac{1}{2} \left[(x+t) - (x-t) \right] + \frac{1}{2} \left(\frac{1}{2} (2t)(t) \right) \end{aligned}$$

 \mathbf{so}

Problem 4. (15 points) Classify each of the following pde's as hyperbolic, elliptic, or parabolic.

Recall that the second order linear pde in 2 independent variables $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$ is hyperbolic if $b^2 - ac > 0$, parabolic if $b^2 - ac = 0$, and elliptic if $b^2 - ac < 0$. (See page 65 of the textbook.)

- (a) u_{xx} + 2u_{xy} + u_{yy} + u_x + u_y = 0 Here a = 1, 2b = 2, and c = 1, so b² - ac = 1² - 1(1) = 0. Therefore, this pde is parabolic in the entire xy plane.
 (b) u_{xx} + 2u_{xy} + 2u_{yy} + u_x + u_y = sin(xy) Here a = 1, 2b = 2, and c = 2, so b² - ac = 1² - 1(2) = -1 < 0. Therefore, this pde is elliptic in the entire xy plane.
 (c) 2u_{xx} - 4u_{xy} - 6u_{yy} + u_x = 0 Here a = 2, 2b = -4, and c = -6, so b² - ac = (-2)² - 2(-6) = 16 > 0. Therefore, this pde is hyperbolic in the entire xy plane.
- **Problem 5.** (15 points) Find the canonical form of the following hyperbolic pde. Be sure to show the change of coordinates that reduces the pde to canonical form.

$$u_{xx} + 6u_{xy} - 16u_{yy} = 0$$

As explained on page 67 of the textbook, the canonical variables ξ and η for a hyperbolic pde satisfy the equations $a\xi_x + (b + \sqrt{b^2 - ac})\xi_y = 0$ and $a\eta_x + (b - \sqrt{b^2 - ac})\eta_y = 0$. In this problem, these equations reduce to $\xi_x + 8\xi_y = 0$ and $\eta_x - 2\eta_y = 0$. Solving these equations by the method of characteristics, we find that $\xi = f(-8x + y)$ and $\eta = g(2x + y)$. For simplicity we take $\xi = -8x + y$ and $\eta = 2x + y$. We therefore have

$$\begin{aligned} u_x &= w_{\xi}\xi_x + w_{\eta}\eta_x = -8w_{\xi} + 2w_{\eta} \\ u_y &= w_{\xi}\xi_y + w_{\eta}\eta_y = w_{\xi} + w_{\eta} \\ u_{xx} &= -8\left[w_{\xi\xi}\xi_x + w_{\xi\eta}\eta_x\right] + 2\left[w_{\eta\xi}\xi_x + w_{\eta\eta}\eta_x\right] = 64w_{\xi\xi} - 32w_{\xi\eta} + 4w_{\eta\eta} \\ u_{xy} &= -8\left[w_{\xi\xi}\xi_y + w_{\xi\eta}\eta_y\right] + 2\left[w_{\eta\xi}\xi_y + w_{\eta\eta}\eta_y\right] = -8w_{\xi\xi} - 6w_{\xi\eta} + 2w_{\eta\eta} \\ u_{yy} &= w_{\xi\xi}\xi_y + w_{\xi\eta}\eta_y + w_{\eta\xi}\xi_y + w_{\eta\eta}\eta_y = w_{\xi\xi} + 2w_{\xi\eta} + w_{\eta\eta} \end{aligned}$$

Therefore, the given pde $u_{xx} + 6u_{xy} - 16u_{yy} = 0$ becomes $[64w_{\xi\xi} - 32w_{\xi\eta} + 4w_{\eta\eta}] + 6 [-8w_{\xi\xi} - 6w_{\xi\eta} + 2w_{\eta\eta}] - 16 [w_{\xi\xi} + 2w_{\xi\eta} + w_{\eta\eta}] = 0$, or $-100w_{\xi\eta} = 0$, or $w_{\xi\eta} = 0$

Extra Credit (10 points)

As mentioned in class, if u is a solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$ on $-\infty < x < \infty, t > 0$ for which $u \to 0, u_x \to 0$, and $u_t \to 0$ as $x \to \pm \infty$, then the energy $E = \int_{-\infty}^{\infty} \left(u_t^2 + c^2 u_x^2\right) dx$ is constant.

Can you find a corresponding conserved quantity \hat{E} for solutions of the equation $u_{tt} - c^2 u_{xx} - bu = 0$?

Try
$$\hat{E} = \int_{-\infty}^{\infty} \left(u_t^2 + c^2 u_x^2 + b u^2 \right) dx$$

FOR STUDENTS ENROLLED IN 92.545.

Problem 6. (20 points)

(a) (15 points) Solve the equation $uu_x + u_y = 1$ with the initial condition u(x, x) = 0. Hints: When finding the characteristic curves, solve for u before solving for x. When expressing t in terms of x and y, remember that t = 0 on the initial curve.

The initial curve Γ is given by x = s, y = s. On Γ we have u(s) = 0. The characteristic curves satisfy the conditions $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = 1$. On characteristics, $\frac{du}{dt} = 1$ from the given pde. $\frac{du}{dt} = 1 \Rightarrow u = t + f(s)$. Because u = 0 on Γ (where t = 0), f(s) must equal 0, so u = t. $\frac{dx}{dt} = u \Rightarrow \frac{dx}{dt} = t \Rightarrow dx = t \ dt \Rightarrow x = \frac{t^2}{2} + g(s)$. Because x = s on Γ (where t = 0), g(s) must equal s, so $x = \frac{t^2}{2} + s$. $\frac{dy}{dt} = 1 \Rightarrow y = t + h(s)$. Because y = s on Γ (where t = 0), h(s) must equal s, so y = t + s. $x = \frac{t^2}{2} + s$ and $y = t + s \Rightarrow x - y = \frac{t^2}{2} - t \Rightarrow t^2 - 2t + 2(y - x) = 0$ $\Rightarrow t = \frac{2 \pm \sqrt{4 - 8(y - x)}}{2} = 1 \pm \sqrt{1 - 2(y - x)}$. Because t = 0 on the initial curve y = x, we must choose $t = 1 - \sqrt{1 - 2(y - x)}$.

(b) (5 points) Find the domain of the solution u(x, y) you found in part a.

From the solution formula, we see that 1 - 2(y - x) must be nonnegative, so the domain is $\left\{ (x, y) \middle| y \le x + \frac{1}{2} \right\}$

Problem 7. (10 points)

On Homework Assignment # 3 you showed that if u is a solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$ on $-\infty < x < \infty, t > 0$ for which $u \to 0, u_x \to 0$, and $u_t \to 0$ as $x \to \pm \infty$, then the energy $E = \int_{-\infty}^{\infty} \left(u_t^2 + c^2 u_x^2\right) dx$ is constant.

Show that if u is a solution of the equation $u_{tt} - c^2 u_{xx} + a u_t = 0$ (a > 0) on $-\infty < x < \infty, t > 0$ for which $u \to 0, u_x \to 0$, and $u_t \to 0$ as $x \to \pm \infty$, then $\frac{dE}{dt} \le 0$.

Note: The term au_t in the pde is a *dissipative* term that causes energy loss.

$$\begin{aligned} \frac{dE}{dt} &= \frac{d}{dt} \int_{-\infty}^{\infty} \left(u_t^2 + c^2 u_x^2 \right) \, dx \\ &= \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left(u_t^2 + c^2 u_x^2 \right) \, dx \text{ using Leibniz's Rule} \\ &= \int_{-\infty}^{\infty} \left(2u_t u_{tt} + 2c^2 u_x u_{xt} \right) \, dx \\ &= 2 \int_{-\infty}^{\infty} \left[u_t \left(c^2 u_{xx} - au_t \right) + c^2 u_x u_{xt} \right] \, dx \text{ using the given pde} \\ &= 2c^2 \int_{-\infty}^{\infty} \frac{\partial}{\partial x} \left[u_t u_x \right] \, dx - 2a \int_{-\infty}^{\infty} u_t^2 \, dx \\ &= 2c^2 u_t u_x |_{x \to -\infty}^{x \to \infty} - 2a \int_{-\infty}^{\infty} u_t^2 \, dx \\ &= 0 - 2a \int_{-\infty}^{\infty} u_t^2 \, dx \text{ because } u_x \to 0 \text{ and } u_t \to 0 \text{ as } x \to \pm \infty \\ &= -2a \int_{-\infty}^{\infty} u_t^2 \, dx \end{aligned}$$

$$u_t^2 \ge 0 \Rightarrow \int_{-\infty}^{\infty} u_t^2 \ dx \ge 0$$
, and $a > 0$, so $\frac{dE}{dt} \le 0$.