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14-1

EXAMPLE 14-1

Inferences ADOUT variances

Is the variation among drained weights of tomatoes canned in the afternoon
the same as the variation among those canned in the morning? Is the variability
among plasma estrogen levels the same for monkeys with alcohol in their diets
as for monkeys with no alcohol in their diets? Does the variation in rupture
times for pieces of stainless steel depend on the level of stress applied to the
pieces? Does season affect the variability of earthworm populations in fields?

All of these questions are phrased in terms of variation. Questions about
variability are very important in quality control, engineering, and the sciences.
In Chapters 10—13 we concentrated on inferences about means (or medians).
Now we consider inferences about variances.

In Section 14-1 we consider parametric tests of hypotheses and confi-
dence intervals for a single variance. Then in Section 14-2 we discuss paramet-
ric comparisons of two variances, as well as confidence intervals for the ratio
of two variances. We cover parametric comparisons of several variances in
Section 14-3. Finally, in Section 14-4 we consider inferences about two or more
variances that do not require the assumption of Gaussian observations.

Parametric Inferences About a Variance

Suppose we have a random sample from a Gaussian distribution and we want
to make inferences about the variance o2 of that distribution. First we will look
at an example; then we will outline the significance level approach to a para-
metric test of hypotheses about a variance, and apply it to the example.

Machines at a factory fill cans with standard-grade tomatoes in puree (based
on an example in Duncan, 1974, page 569; from Grant and Leavenworth, 1972,
page 41). One responsibility of the quality control manager is to select cans
and check the drained weight of the contents. After many checks, the manager
has found that for cans filled in the morning, the average drained weight is
21.8 ounces, and the variance is 2.63 ounces?

The quality control manager selects a random sample of five cans filled
one afternoon. The drained weights (in ounces) are:

225 195 215 205 200

A plot of these observations is shown in Figure 14-1. We see that the sample
values have a fairly symmetrical distribution. The five sample drained weights
range from 19.5 ounces to 22.5 ounces.

The manager wants to test the null hypothesis that the variance of drained
weights for cans filled during that afternoon equals the morning variance,
2.63 ounces?. Let’s outline the analysis procedure.

The significance level approach to a parametric test of

hypotheses about a variance o*

1. The hypotheses are H,: ¢ = o% and H,: 0 # o}, where o is a specified
number.
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(continued)

R Lo L S R T P P T TP R T R

O ®] O Q @)

[ T I I | T I ! ]
19 20 21 22 23
Drained weight (ounces)

FIGURE 14-1 Drained weights (in ounces) of five cans of tomatoes canned in the
afternoon, Example 14-1

2. Let s* denote the sample variance and # the sample size. The test statistic is
(n—1)s?
a4

Test statistic =

3. Assume that we have a random sample from a Gaussian distribution with
variance o2 Then under the null hypothesis, the test statistic has the chi-
square distribution with # — 1 degrees of freedom. Very large or very small
values of the test statistic are inconsistent with the null hypothesis.

4. Select significance level a.

5. Let X denote a random variable having the chi-square distribution with
n — 1 degrees of freedom. Find ¢, and ¢, from Table E such that P(X < ¢,)
= a/2 and P(X = ¢,) = a/2. The acceptance region is the interval (c,, c,).
The rejection region includes the intervals [0, ¢, ] and [¢,, ).

6. The decision rule is:

If ¢, <test statistic < ¢, say the results are consistent with the null hypothe-
sis that the population variance equals 2.

If test statistic = ¢, or test statistic = c¢,, say the results are inconsistent with
the null hypothesis, suggesting that the population variance does not
equal a3.

7. Collect a sample that satisfies the assumptions in step 3. Calculate the test
statistic in step 2. Use the decision rule in step 6 to decide whether the

results are consistent with the null hypothesis. Draw conclusions based on
the experimental results.

Suppose that, instead of a two-sided alternative, we have the one-sided
alternative H,: o < ¢%. Then in step 5 we find the number ¢ from Table E
such that P(X = ¢) = a. Values of the test statistic greater than ¢ are consistent
with the null hypothesis; values less than or equal to ¢ are inconsistent with
the null hypothesis.

If we have the one-sided alternative H,: o > o3, then in step 5 we find
the number c¢ from Table E such that P(X = ¢) = . Values of the test statistic
less than ¢ are consistent with the null hypothesis; values greater than or equal
to ¢ are inconsistent with the null hypothesis.

Now we can test the hypotheses of interest in Example 14-1. If o2 denotes the
variance of drained weights among cans filled that afternoon, then we can state
the hypotheses as H,: 0> = 2.63 ounces? and H,: o2 # 2.63 ounces?.



EXAMPLE 14-1
(continued)

Assume that the five afternoon observations form a random sample from
a large production lot. Assume also that these drained weights follow a Gaus-
sian distribution. Figure 14-1 gives us no reason to doubt the Gaussian as-
sumption, although the sample size is very small. We have no way of checking
the other assumptions without more information.

Since the sample size is 5, the test statistic equals 45s%/2.63, where s? is the
sample variance for the five afternoon observations. If the assumptions hold,
then under the null hypothesis the test statistic has the chi-square distribution
with 4 degrees of freedom.

We will use significance level @ = .05. From Table E we see that if X has
the chi-square distribution with 4 degrees of freedom, then P(X = .484) = .025
and P(X = 11.14) = .025. Therefore, the acceptance region is (.484, 11.14),
the rejection region consists of [0, .484] and [11.14, ®), and the decision rule is:

If 484 < test statistic < 11.14, say the results are consistent with the null hy-
pothesis that the afternoon variance equals 2.63 ounces?®.

If test statistic = .484 or test statistic = 11.14, say the results are inconsistent
with the null hypothesis, suggesting that the afternoon variance does not
equal 2.63 ounces?.

The sample variance of the five observations is s? = 1.45 ounces? so the
test statistic equals 4 X 1.45/2.63, or 2.2. Since 2.2 is in the acceptance region,
the results are consistent with the null hypothesis. Based on this test of hy-
potheses, we have no reason to doubt that the variance for drained weights of
tomatoes canned that afternoon equals the morning variance (but, of course,
the test does not imply that the variance in the afternoon exactly equals the
morning variance of 2.63 ounces?).

Confidence Intervals for a Population Variance

Suppose we want to calculate a 100A% confidence interval for the population
variance o2 Let X denote a random variable having the chi-square distribu-
tion with # — 1 degrees of freedom. Find ¢, and ¢, such that P(X = ¢,)
= (1 — A)2and P(X = ¢,) = (1 — A)/2. Then our confidence interval for

o2 has the form
n — 152, n—1 g
Ch C

Let’s calculate a 95% confidence interval for the variance of drained weights
of tomatoes canned that afternoon in Example 14-1. We have » = 5 and
s2 = 1.45. Since A = .95, we have (1 — A)/2 = .025. Referring to Table E, we
see that ¢; = 484 and ¢, = 11.14, the same as we used for our test of hypothe-
ses with significance level .05. So a 95% confidence interval for the variance is

11.14 484

Note that our null hypothesis variance, 2.63 ounces? is in this confidence in-
terval, in agreement with our test of hypotheses.

(i X 1.45, i X 1.45) = (.52 ounces?, 11.98 ounces?)
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EXAMPLE 14-2

To get a confidence interval for the population standard deviation o,
we can take the square root of the upper and lower limits of the confidence
interval for the population variance o2 For instance, a 95% confidence in-
terval for the standard deviation of drained weights of tomatoes canned
that afternoon in Example 14-1 is (\/.52 ounce, V/11.98 ounces) or (.72 ounce,
3.46 ounces).

Our analysis gives us no reason to think that the afternoon variance is
different from the morning variance. However, as we have mentioned before,
there are other important practical considerations in this type of situation. Is
the amount of variation acceptable to the company, to consumers, and to the
government? If there are tolerance ranges of acceptable values for drained
weights, is the production process adequately meeting these tolerances? Gen-
erally, no single formal analysis procedure will address all of the questions
relevant to a particular experimental situation,

In Section 14-2, we discuss parametric comparisons of two variances.

Parametric Inferences About Two Variances

Suppose we have two independent random samples from Gaussian distribu-
tions. We want to test the null hypothesis that the two population variances are
equal. We will use the variance ratio test based on an F distribution.

The variance ratio test is a parametric test for equality of two variances.

We also want to calculate a confidence interval for the ratio of the two popu-
lation variances. Let’s begin with an example.

Researchers designed an experiment to study effects of regular alcohol con-
sumption ( Jerome Hojnacki, personal communication, 1986). The participants
in the study were 20 adult male squirrel monkeys, of similar age and good
health. The researchers randomly divided the monkeys into two equal sized
groups. Monkeys in the alcohol group consumed a steady diet of 12% ethyl
alcohol for approximately 3 months (ethyl alcohol constituted 12% of their
total calories each meal). Monkeys in the control group did not consume al-
cohol. At the end of the treatment period, the researchers measured plasma
estrogen (in nanograms/deciliter) for each monkey. The results are shown
below.

Sample Sample
Group Plasma estrogen level (ng/dL) mean  variance

Alcohol 3.17 252 259 425 327 492 546 3.61 1.33
2.83 4380 2.26

Control 6.57 581 563 575 454 535 416 5.21 556
5,12 4.69 4.52

A plot of the observations is shown in Figure 14-2.
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FIGURE 14-2 Plot of plasma estrogen levels in Example 14-2, The symbol A denotes a value for a monkey in the
alcohol group; C denotes a value for a monkey in the control group.

The plasma estrogen levels seem to be somewhat lower for the monkeys

in the alcohol group (see Exercise 11-5). Is the variation the same for the two
groups? Let’s outline the significance level approach for comparing the two
variances, and then apply it to this example.

The significance level approach to parametric tests of
bypotbeses about two variances
1. Let o and o denote the variances of the two populations sampled. We want

to test the hypotheses H,: 03 = o3and H,: % # o3.
YpP

. The test statistic equals the larger sample variance divided by the smaller

sample variance:

Larger sample variance

Test statistic = .
Smaller sample variance

. Assume that we have two independent random samples from Gaussian dis-

tributions. The first sample is of size #, and comes from a Gaussian distri-
bution with variance o?. The second sample is of size 7, and comes from a
Gaussian distribution with variance o3. Let s} denote the first sample vari-
ance and s? the second sample variance. Then under the null hypothesis,
the ratio s3/s has the F(s2, — 1, 1, — 1) distribution. The ratio s3/s has the
F(n, — 1, 1, — 1) distribution under the null hypothesis.

. Select significance level a.
. Suppose $; is the larger sample variance, so the test statistic is s3/s3. Let #

denote a random variable having the F(s, — 1, n, — 1) distribution. Find
the number ¢ from Table D such that P(F < ¢) = 1 — a/2. The acceptance
region is the interval [0, ¢); the rejection region is the interval [c, «).

. The decision rule is:

If test statistic < ¢, say the results are consistent with the null hypothesis
that the two population variances are equal.

If test statistic = c, say the results are inconsistent with the null hypothesis,
suggesting that the two population variances are not equal.

. Collect two samples that satisfy the assumptions in step 3. Calculate the test

statistic in step 2. Use the decision rule in step 6 to decide whether the two
population variances seem to be the same or different. Draw conclusions
based on the experimental results.



EXAMPLE 14-2
(continued)

EXAMPLE 14-2
(continued)

In Example 14-2, we want to test the null hypothesis that the variance of plasma
estrogen levels is the same for monkeys fed a steady diet of alcohol as for
monkeys not fed alcohol. The alternative hypothesis is that the variances are
different for the two groups. Since the alcohol group has the larger sample
variance, we let the alcohol group be group 1, and our test statistic is s3/s3.

We assume that we have independent random samples from Gaussian
distributions. From Figure 14-2, we see that the Gaussian assumption seems
reasonable for the control monkeys, but this is not so clear for the alcohol
monkeys. We cannot check the independence assumptions without more in-
formation about the experiment. What suggestions about experimental design
would you make to these researchers, in order to ensure independence and
valid inferences?

We will use significance level @ = .05. Let F denote a random variable
having the A(9, 9) distribution. Since P(F = 4.03) = .975, the acceptance re-
gion is [0, 4.03) and the rejection region is [4.03, «). The decision rule is:

If test statistic < 4.03, say the results are consistent with the null hypothesis
that the two variances are equal.

If test statistic = 4.03, say the results are inconsistent with the null hypothesis,
suggesting that the two variances are not equal.

The sample variance for the alcohol monkeys is $3 = 1.33. The sample
variance for the control monkeys is s3 = .556. Therefore, the test statistic
equals 1.33/.556, or 2.4, which is in the acceptance region. Using this test of
hypothesis, we have no reason to doubt that the variation in plasma estrogen
levels is similar for the alcohol and control monkeys.

Confidence Intervals for the Ratio of Two Population Variances

Suppose we would like to calculate a 1004% confidence interval for the ratio
ai/as of the two popuiation variances. Letting F, denote a random variable
having an F(n, — 1, n, — 1) distribution, find the number ¢, such that
P(F, = ¢;) = (1 + A)/2. Similarly, if F, denotes a random variable having the
F(n, — 1, m; — 1) distribution, find the number ¢, such that P(F, = ¢,)
= (1 + A)/2. A 100A% confidence interval for o2/c% has the form

1 82 st
2 o0
s} 8

Let’s calculate a 95% confidence interval for o¥c3 in Example 14-2. Here,
o7 denotes the variance of plasma estrogen values for monkeys consuming
alcohol and o3 denotes the variance for monkeys not consuming alcohol. Since
the sample size is 10 for each group, the numerator and denominator degrees
of freedom both equal 9. From Table D we see that ¢; = ¢, = 4.03. Qur 95%
confidence interval for /a3 is

1133 133
o 0 i ) pag 0
(4.03 e X .556) 38, 98)



EXAMPLE 14-3

Note that if the null hypothesis is true, then the ratio of the two population
variances is 1. This null hypothesis value is in the confidence interval, agreeing
with our test of hypotheses.

Does the ratio ¢%/a3 of the two population variances have units of mea-
surement associated with it? Should the confidence interval (.59, 9.6) for this
ratio in Example 14-2 show units? How would you find a confidence interval
for the ratio of the two population standard deviations /0, ?

The Minitab Appendix for Chapter 14 has an example based on Exercise
14-6, making inferences about the ratio of two variances when the sample sizes
are not equal.

Section 14-3 discusses a parametric procedure for comparing more than
tWO variances.

Parametric Inferences About More Than Two Variances

Suppose we have & independent random samples from Gaussian distributions,
where £ is greater than or equal to 3. When we test the null hypothesis that
the %k population variances are equal, we are testing for homogeneity of vari-
ances. If the null hypothesis of equal variances is true, we say the & population
variances are hormogeneous. If the alternative hypothesis of unequal variances
is true, we say the variances are beferogeneotis.

There are many parametric tests for equality of variances (see, for ex-
ample, Conover, Johnson, and Johnson, 1981). We will discuss the one most
commonly used—Bartlett’s test.

Bartlett’s test is a parametric procedure for testing equality of three or
more variances, based on the assumption of independent random samples
from Gaussian distributions.

First, we will look at an example.

An engineer subjected uniform pieces of stainless steel to different levels of
stress, recording the time to rupture for each piece. He tested six pieces of
steel at each of three stress levels. The results are shown below (part of an
experiment reported in Schmoyer, 1986; from Garofalo et al., 1961). Stress
levels were reported in pounds per square inch (psi).

Stress level
(psi) Rupture time (hours)
28.84 1,267 1,637 1,658 1,709 1,785 2,437
31.63 170 257 265 570 594 779
34.68 76 87 96 115 122 132

The experimental results are displayed in a scatterplot in Figure 14-3. We
see that the time to rupture decreases as stress increases. It also looks like the
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FIGURE 14-3 Scatterplot of rupture time vs. stress applied in Example 14-3

variation in rupture times decreases as stress increases. Let's see how to test
the null hypothesis that the three population variances are equal.

The significance level approach to Bartlett's test for
equality of several variances

1. Let o} through o} denote the % population variances. The hypotheses are:
Hy: ot=o0i="'"=o0}
H,: o3 through o are not all equal



EXAMPLE 14-3
(continued)

2. Let »; denote the sample size and s? the sample variance of sample 7. Let N
denote the total sample size, the sum of 7, through 7. Let s? denote the
pooled variance estimate (the residual mean square we discussed for one-
way analysis of variance in Chapter 12). The numerator of the test statistic is

k
Numerator = 2.3026 | (N — k) log s? — E (n, = 1) log s?
i=1

where log denotes logarithm base-10. The denominator of the test statistic is

k

Pt = 1 f = > . S
3(k—1) r=1ﬂ,-—l N-—Fk

Then the test statistic is

Numerator

Test statistic = ——————
Denominator

3. Assume that we have % independent random samples, one from each of &
Gaussian distributions. Then under the null hypothesis, the test statistic has
approximately the chi-square distribution with £ — 1 degrees of freedom.
Large values of the test statistic are inconsistent with the null hypothesis.

4. Select significance level a.

5. Find the number ¢ in Table E such that P(X = ¢) = 1 — «, where X has
the chi-square distribution with 2 — 1 degrees of freedom. The acceptance
region is [0, ¢); the rejection region is [¢, ).

6. The decision rule is:

If test statistic < ¢, say the results are consistent with the null hypothesis
that the 2 population variances are all equal.

If test statistic = ¢, say the results are inconsistent with the null hypothesis,
suggesting that the 2 population variances are not all equal.

7. Carry out an experiment that satisfies the assumptions in step 3. Calculate
the test statistic in step 2. Use the decision rule in step 6 to decide whether
the population variances seem to be the same or different. Draw conclu-
sions based on the experimental results.

In Example 14-3, we want to test the null hypothesis that the variance in rup-
ture times of uniform pieces of stainless steel is the same for all three stress
levels. The alternative hypothesis is that the three variances are not all equal.

Assume that the three samples represent independent random samples
from Gaussian distributions. From the plot in Figure 14-3, the Gaussian as-
sumption does not seem unreasonable because all three sample distributions
look fairly symmetric. As always, we cannot assess the independence assump-
tion without more information about the experiment. What suggestions would
you make regarding experimental design? How would you try to control extra-
neous sources of variation and ensure independence of observations? Should



Sample

Stress level size Sample variance

28.84 6 145,877.8

31.63 6 58,509.37

34.68 6 472.6667
k=3 N =18 N—-k=15 52 = 68,286.61
Numerator = 2.3026(15 log(68,286.61) — 5 log(145,877.8)

— 5 10g(58,509.37) — 5 log(472.6667)]

= 21.843
1 1 1 1 1
Denominator = 1 + ————( =+ = + = = —| = 1.
enominator 3G = 1)(5 5t 3 15) 089
1.
Test statistic = 21 088493 = 20.1 Degrees of freedom = 3 — 1 = 2

the engineer subject the first six pieces to the first stress level, then reset the
equipment and subject the second set of six pieces to the second stress level,
then reset the equipment again and subject the third set of pieces to the final
stress level? Or would you suggest a different procedure?

If our model assumptions hold, then under the null hypothesis, the test
statistic has approximately the chi-square distribution with 2 degrees of free-
dom. Using significance level & = .01, we find ¢ = 9.21 from Table E. The
acceptance region is [0, 9.21), the rejection region is [9.21, %), and the decision
rule is:

If test statistic < 9.21, say the results are consistent with the null hypothesis
that the variance in rupture times is the same for all three stress levels.

If test statistic = 9.21, say the results are inconsistent with the null hypothesis,
suggesting that the variation in rupture times is not the same for all three
stress levels,

The calculations we need are outlined in Table 14-1. We see that the test
statistic equals 20.1, which is in the rejection region. The results suggest that
the variation in rupture times is not the same for all three stress levels, agree-
ing with what we saw in Figure 14-3.

We can make multiple comparisons to decide which variances seem to
be different and which seem to be similar. We use the method of Section 14-2
to calculate confidence intervals for ratios of variances, then use the Bonfer-
roni method (Section 12-1) to get a bound on the overall confidence level for
these intervals.

The calculations for our multiple comparisons are outlined in Table
14-2. With three variances, there are three pairwise comparisons. We calculate
a 98% confidence interval for each variance ratio. Since each sample size is 6,
we use the value ¢ = 10.97 from the F(5, 5) distribution for all the intervals.
The overall confidence level for the three intervals is at least 94%.



TABLE 14-2 Multiple comparisons of variances
in Example 14-3. ¢%, o3, and o3 denote the variance in
rupture times at stress levels 28.84, 31.63, and 34.68 psi, respectively.

Ratio of

atiohoEs 98% confidence interval
S (e e < 35 - s
t;_i (10‘.97 % :;52'2276-:' 10.97 X %) — (28.13, 3,385.64)

Overall confidence level = 1 — (.02 + .02 + .02) = .94

If 1 is in the confidence interval for a variance ratio, it suggests that the
two variances are equal. If 1 is not in the interval, it suggests that the two
variances are not equal. From Table 14-2 we see that 1 is in the first confidence
interval and not in the other two intervals. These multiple comparisons suggest
that the variation in rupture times is similar for stress levels 28.84 and 31.63 psi,
while the variation at these two stress levels is much greater than the variation
at stress level 34.68 psi. These results agree with our visual evaluation of varia-
tion in the three sample distributions illustrated in Figure 14-3.

There is a problem with using the variance ratio test of Section 14-2 for
comparing two variances and Bartlett's test of this section for comparing more
than two: These procedures are ot robust to deviations from the Gaussian
assumption.

We say a procedure for testing hypotheses is robust if actual signifi-
cance levels are close to the level we select, even under deviations from
assumptions.

When using Bartlett's test and the variance ratio test, if the observations do not
exactly follow Gaussian distributions, then the level & we use may be far from
the actual significance level of the test. For comparison, ¢ tests and analysis of
variance for comparing means are quite robust to deviations from the Gaus-
sian assumption, and somewhat robust to small deviations from the equal-
variance assumption.

In Section 14-4, we discuss a procedure that does provide a robust test
for equality of two or more variances.

Robust Inferences About Two or More Variances

Suppose we have # independent random samples, one from each of & popu-
lations, and we want to test the null hypothesis that the variation in the &



EXAMPLE 14-4

populations is the same, We will discuss a modification of a test proposed by
Levene (1960). This modified procedure was recommended by Brown and
Forsythe (1974) and shown by Conover, Johnson, and Johnson (1981) to work
well in a variety of situations. -

Levene’s (modified) test is a modified version of a procedure proposed
by Levene to test for equality of two or more variances. This test is based
on the assumption of independent random samples. The test is robust to
deviations from Gaussian observations.

We will outline the p-value approach to Levene’s modified test and then apply
it to an example.

The p-value approach to Levene’s (modified) test for

equality of two or more variances

1. The null hypothesis states that the variance is the same in the k& populations.
The alternative hypothesis is that the variances are not the same in all
populations.

2. Let ¥, denote the jth observation in sample # Let m, denote the ith sample
median. Define new variables Z, = |¥; — m,|. Z, is the absolute value of
the difference between the observation Y, and the median m; of sample i.
To test our hypotheses, we go through the steps for one-way analysis of
variance on the transformed observations Z;,. The test statistic is

2
Test statistic = EE
where s here denotes the between-groups mean square and 2 the residual
mean square, based on the Zs.

3. We assume that we have & independent random samples, one from each of
% populations. Under the null hypothesis of equality of the % population
variances, the test statistic has approximately the F(k — 1, N — k) distri-
bution, where N denotes the total sample size.

4. Carry out an experiment that satisfies the assumptions in step 3. Calculate
the test statistic in step 2.

5. Find the p-value = P(F = ¢,), where ¢, denotes the observed value of the
test statistic and F denotes a random variable having the F(k — 1, N — k)
distribution.

6. If the p-value is large, say the results are consistent with the null hypothe-
sis that the variances are equal. If the p-value is small, say the results are
inconsistent with the null hypothesis, suggesting that the variances are not
all equal.

Let’s illustrate Levene’s modified test for equality of variances with an example,

Does the variation in earthworm populations depend on the time of year? To
address this question, researchers divided a field into ten square plots. They
watered these plots but did not treat them in any other way. (They added no
chemicals, for example.) At three times over a 6-month period, the researchers
selected equal sized subplots of the ten plots. (Each subplot was studied just



once.) They applied an irritant to the subplots that caused the earthworms to
rise to the surface. The researchers recorded total biomass/m? of the earth-
worms in each subplot. The results are shown below (part of a data set con-
tributed by R. P. Blackshaw and P. J. Diggle to a collection of problems in
Andrews and Herzberg, 1985, pages 301-306).

Biomass/m? (values ordered from smallest

Time to largest within the three times)
1 7.73 8.07 10.61 17.01 17.55 26.98 28.59
46.42 51.96 81.32
2 .76 1.82 4.06 4.71 473 493 5.20
12.45 37.29 39.57
3 16.40 17.61 19.34 21.19 24.49 26.63 3341

39.1:2 39.26 53.32

The observations are plotted in Figure 14-4. The average size of the earth-
worm populations seems to depend on the time of year. Does the variation
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FIGURE 14-4 Plot of the biomass/m? of earthworm populations in Example 14-4



TABLE 14-3 Transformed observations to be used
in one-way analysis of variance for Example 14-4

Absolute value of the difference between

Time the observation and the sample median
1 14.535 14.195 11.655 5.255 4.715 4.715 6.325
24155 29.695 59.055
2 4.07 3.01 T A2 .10 .10 37
7.62 3246 34.74
3 9.16 7.95 6.22 4.37 1.07 1.07 #.:55

13.56 1370  27.76

TABLE 14-4 Analysis of variance table for
one-way analysis of variance on the values in Table 14-3

Degrees
Source of Sum of of Mean
variation squares freedom  square Teststatistic p-value
Between groups 502 2 251 1.42 .26
Residual 4,778 27 177
Total 5,280 29

also depend on the time of year? We wish to test the null hypothesis that the
variance of biomass/m? of earthworm populations among equal sized subplots
of the field is the same at the three times; the alternative hypothesis is that the
three variances are not all the same. We assume that we have three indepen-
dent random samples, but we cannot judge the validity of this independence
assumption without more information about the experiment.

The median of the ten observations at the first time is 22.265, the median
at the second time is 4.83, and the median at the third time is 25.56. Table
14-3 shows, for each observation, the absolute value of the difference between
the observation and its sample median.

Table 14-4 gives the analysis of variance table resulting from one-way
analysis of variance on the values in Table 14-3.

The relatively large p-value of .26 is consistent with the null hypothesis.
[1f we had found differences, we could have used multiple comparisons (see
Section 12-2) on the transformed observations (Table 14-3) to decide which
variances seem to be similar and which different.] Looking at the plot of sample
values in Figure 14-4, we see that the variation at time 1 was somewhat larger
than the variation at the other two times. However, the conclusion that the
variation in earthworm populations appears to be similar for the three times
does not seem unreasonable.



Summary of Chapter 14

Parametric procedures for making inferences about one or more variances
depend on the assumption that the observations are Gaussian distributed.
None of these procedures is robust to deviations from the Gaussian assump-
tion. That is, if the observations are not really from Gaussian distributions, the
p-values for tests of hypotheses and confidence levels for interval estimates
may be very wrong (and therefore meaningless).

Levene’s modified procedure for testing equality of variances is robust to
deviations from the Gaussian assumption. This means that we can feel com-
fortable interpreting p-values even when the observations do not come from
Gaussian distributions.
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Exercises for Chapter 14

EXERCISE 14-1

EXERCISE 14-2

EXERCISE 14-3

In each exercise, plot the observations in any ways that seem helpful. Describe
the population(s) sampled, whether real or hypothetical. For each procedure,
state the assumptions that make the analysis valid. Do these assumptions seem
reasonable? What additional information would you like to have about the
experiment? Discuss the results of your analysis.

An engineer studied the time to rupture for pieces of stainless steel at two
levels of stress. He tested six uniform pieces of steel at each of the two stress
levels. (This is a separate phase of the experiment discussed in Example 14-3.)
The results are shown below (Schmoyer, 1986, from Garofalo et al, 1961).
Stress levels are in pounds per square inch (psi).

Stress level
(psi) Rupture time (hours)
41.69 6.6 9.6 11.2 12.3 19.7 204
45.71 19 39 43 4.6 5.7 9.0

a. Plot these observations.

b. Test the null hypothesis that the population variances for rupture times are
equal at the two stress levels. Do the assumptions for the analysis seem
reasonable?

c. Calculate a confidence interval for the ratio of the two population variances.

In Example 10-3, we looked at the average weight in grams of six pairs of twins
born to exercised Pygmy goats (Dhindsa, Metcalfe, and Hummels, 1978):

7455 1,1750 12900 13645 13975 1,660.0

a. Plot the observations.

b. Test the null hypothesis that the variance in average weights of such pairs
of twins is 10,000 grams?.

¢c. Calculate a 99% confidence interval for the variance in average weights of
pairs of twins born to Pygmy goats treated like those in this experiment.

In Example 10-4, we considered the height in inches of five bomb bases sam-
pled in a 15-minute interval (Duncan, 1974, page 43; Hollander and Proschan,
1984, page 42; from Kauffman, 1945):

826 829 .831 .836 .840

a. Plot the observations.
b. Test the null hypothesis that the variance for heights of bomb bases pro-
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EXERCISE 14-7

EXERCISE 14-8

EXERCISE 14-9
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In Exercise 11-8, we looked at specific airway resistance 30 minutes after ad-
ministration of a bronchodilating aerosol by patients using either hand admin-
istration or an automatic inhalation device (units not given) (Box, Hunter, and
Hunter, 1978, page 158; from a larger study reported by F. J. Mcllneath and
B. M. Cohen in J. Med., 1970, volume 1, page 229):

Hand: 17.00 22.80 21.60 20.40 11.20 14.00
52:25 7.50 12.20 18.85 6.05 4.05
Automatic: 11.60 11.60 13.65 17.22 8.25 6.20
41.50 6.96 8.40 9.00 5.18 3.00

a. Plot the observations.

b. Test the null hypothesis that the variance in specific airway resistance is the
same for the two methods of administration.

¢. Calculate 2 98% confidence interval for the ratio of the two variances.

In Exercise 11-7, we looked at sputum histamine levels (ug/g dry weight spu-
tum) for 9 allergic people and 13 nonallergic people, all smokers (Hollander
and Wolfe, 1973, page 74; a subset of data in Thomas and Simmons, 1969):

Allergics: 31.0 39.6 64.7 65.9 67.9 100.0
102.4 1,112.0 1,651.0
Nonallergics: 47 5.2 6.6 18.9 27.3 29.1
324 34.3 354 41.7 45,5 48.0
48.1

a. Plot the observations.

b. Test the null hypothesis that the variance in sputum histamine levels is the
same for allergic and nonallergic smokers.

¢. Calculate a 98% confidence interval for the ratio of the two variances.

d. Take the logarithm of each observation. Test the null hypothesis that the

variance of the logarithm of sputum histamine level is the same for allergic
and nonallergic smokers.

e. Calculate a 98% confidence interval for the ratio of the two variances of the
logarithm of sputum histamine level.

f. Discuss your findings.

In Exercise 11-6, we considered plasma testosterone levels (nanograms/deci-
liter) of monkeys on two different diets (Jerome Hojnacki, 1986, personal
communication ):
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EXERCISE 14-4

EXERCISE 14-5

EXERCISE 14-6

duced during that 15-minute interval was .0001 inch? [Recall that the speci-
fications were .830 = .01 inch and (.01 inch)? = .0001 inch?]

c. Calculate a 98% confidence interval for the variance of heights of bomb
bases produced during that 15-minute interval.

In Exercise 10-7, we considered determinations of serum iron concentrations
(mg/100 ml) using a new method (Hollander and Wolfe, 1973, pages 85-86;
a portion of the data in Jung and Parekh, 1970):

96 98 99 100 103 103 104 104 105 105
106 106 107 108 108 108 110 113 114 114

a. Plot the observations.

b. Test the null hypothesis that the variance in serum iron concentration de-
terminations using this method is 100 (ug/100 ml)2

c. Calculate a 95% confidence interval for the variance in serum iron concen-
tration determinations using this method.

In Exercise 10-1, we considered plasma citrate concentrations (umol/liter) be-
fore breakfast for ten volunteers (from a contribution by E. B. Jensen to a
collection of problems in Andrews and Herzberg, 1985, page 237; from Ander-
sen, Jensen, and Schou, 1981).

93 116 125 144 105 109 89 116 151 137
a. Plot the observations.

b. Test the null hypothesis that the variance of before-breakfast plasma citrate
concentrations is 1,500 (pwmol/liter)2

c. Calculate a 90% confidence interval for the variance of before-breakfast
plasma citrate concentrations.

In Exercise 11-12, we discussed change in pupil diameter (in millimeters)
for volunteers after two different treatments (Box, Hunter, and Hunter, 1978,
page 160; from H. W. Elliott, G. Navarro, and N. Nomof, J. Med., 1970, volume 1,
page 77).

Morphine: .08 .8 1.0 1.9 2.0 24
Nalbuphine: -3 .0 2 A4 8

a. Plot the observations.

b. Test the null hypothesis that the variance of change in pupil diameter is the
same after both treatments.

c. Calculate a 90% confidence interval for the ratio of the two variances.
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EXERCISE 14-10

EXERCISE 14-11

Alcohol: 313.99 152.06 145.64 128.86 262.16 251.29

505.55 94.79 157.49 171.81
Control: 632.92 308.56 1239.68 440.38 233.02 142.67
84.91 342.63 1005.66 735.61

a. Plot the observations.

b. Test the null hypothesis that the variance in plasma testosterone levels is
the same for monkeys on the two diets.

c. Calculate a 90% confidence interval for the ratio of the two variances.

d. Take the logarithm of each observation. Test the null hypothesis that the
variance of the logarithm of plasma testosterone level is the same for mon-
keys on the two diets.

e. Calculate a 90% confidence interval for the ratio of the two variances for
the logarithm of plasma testosterone level.

In Exercise 11-4, we looked at eight independent determinations (in °C) of
the melting point of hydroquinone by each of two analysts (Duncan, 1974,
pages 575—-576; from Wernimont, 1947, page 8):

Analyst 1: 174.0 173.5 173.0 173.5 171.5 172:5
173.5 173.5

Analyst 2: 173.0 173.0 172.0 173.0 171.0 172.0
171.0 172.0 ’

a. Plot the observations,

b. Test the null hypothesis that the variance of determinations is the same for
the two analysts.

c. Calculate a 95% confidence interval for the ratio of the variances for the
two analysts.

In Exercise 11-3, we considered the total score of five shots at a target by an
experienced shooter using a revolver. There were eight trials with each of two
types of ammunition (Snow, 1986):

.22 Magnum 42 43 46 47 46 47 39 47
.22 Long Rifle 41 43 41 41 40 40 45 47

a. Plot the observations.

b. Test the null hypothesis that the variance of total scores by this shooter is
the same for the two types of ammunition.
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EXERCISE 14-12

C.

Calculate a 95% confidence interval for the ratio of variances for the two
types of ammunition.

In Exercise 15-24, we discuss a study of the permeability of concrete (inches
per hour) with six different levels of asphalt content (Mendenhall and Sincich,
1988, page 495; from Woelfl et al., 1981):

3% asphalt: 1,189 840 1,020 980 6% asphalt: 707 927 1,067 822

4% asphalt: 1,440 1,227 1,022 1,293 7% asphalt: 853 900 733 585

5% asphalt: 1,227 1,180 980 1,210 8% asphalt: 395 270 310 208
a. Plot the observations.

EXERCISE 14-13

d.

. Use a parametric analysis to test for equality of variances of permeability at

each of the six asphalt contents.

. Use a nonparametric analysis to test for equality of variances of permeability

at each of the six asphalt contents.
Compare your answers to parts (b) and (c).

In Exercise 15-17, we consider times to failure (in hours) of samples of in-
sulation for electrical motors in accelerated life testing at four temperatures
(Nelson, 1986, pages 20—21):

190 °C: 7,228 7,228 7,228 8,448 9,167 9,167
9,167 9,167 10,511 10,511

220 °C: 1,764 2,436 2,436 2,436 2,436 2,436
3,108 3,108 3,108 3,108

240 °C: 1,175 1,175 1,521 1,569 1,617 1,665
1,665 1:713 1,761 1,953

260 °C: 600 744 744 744 912 1,328
1,320 1,464 1,608 1,896

a. Plot the observations.

Use a parametric analysis to test for equality of variances in failure times
at the four temperatures. Use the Bonferroni method to make multiple
comparisons.

Use a nonparametric analysis to test for equality of variances in failure times
at the four temperatures. Use the Bonferroni method to make multiple
comparisons.

. Compare your answers to parts (b) and (c).

Take the logarithm of each failure time. Use a parametric analysis to test
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EXERCISE 14-14

EXERCISE 14-15

for equality of variances of the logarithm of failure time at the four
temperatures.

f. Use a nonparametric analysis to test for equality of variances of the loga-
rithm of failure time at the four temperatures.

g. Compare your answers to parts (e) and (f).
h. Discuss your findings.

In Exercise 15-16, we discuss instrument response at five concentrations of
copper in solution for an experiment in atomic absorption spectroscopy (Car-
roll, Sacks, and Spiegelman, 1988):

Copper in
solution
(micrograms/ Instrument response in

milliliter) absorbance units
.0 045 047 051 .054
.050 .084 .087
.100 115 116
.200 .183 191
.500 .395 399

a. Plot the observations.

b. Use a parametric analysis to test for equality of variances of instrument
response across Copper concentrations.

c. Use a nonparametric analysis to test for equality of variances of instrument
response across Copper concentrations.

d. Compare your answers to parts (b) and (c).

In Exercise 12-6, we compared the working life (thousands of cycles until fail-
ure) of three types of stopwatch (Rice, 1988, page 432; from Natrella, 1963):

Type 1: 17 1.9 6.1 12.5 16.5 25.1 30.5 421
82.5

Type2: 136 198 252 462 462  61.1
Type3: 134 209 251 297 469

a. Plot the observations.

b. Use a parametric analysis to test for equality of variances of working life for
the three stopwatch types. Use the Bonferroni method to make multiple
comparisons.

c. Use a nonparametric analysis to test for equality of variances of working life
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for the three stopwatch types. Use the Bonferroni method to make multiple
comparisons.

d. Compare your results in parts (b) and (c).

In Exercise 12-2, we looked at the stimulation index of men treated with one
of three different regimens of a synthetic vaccine for malaria or with a saline
regimen (Patarroyo et al., 1988):

Saline control: 1.4
Regimen 1: 1.5

1.0 4.0 Regimen 2: 6.6 9.1
5.6 12.4 Regimen 3: 35.1 13.4 .8 3.3

EXERCISE 14-17

a. Plot the observations.

b. Use a parametric analysis to test for equality of variances of stimulation
index under the four regimens. Use the Bonferroni method to make mul-
tiple comparisons.

c. Use a nonparametric analysis to test for equality of variances of stimulation
index under the four regimens. Use the Bonferroni method to make mul-
tiple comparisons.

d. Compare your results in parts (b) and (c).

e. Take the logarithm of each observation. Use a parametric analysis to test for
equality of variances of the logarithm of stimulation index under the four
regimens.

f. Use a nonparametric analysis to test for equality of variances of the loga-
rithm of stimulation index under the four regimens.

g. Compare your results in parts (e) and (f).

In Exercise 13-5, we considered an experiment on iron retention in mice.
Researchers measured percentage of iron retained for mice under six sets of
conditions (from an example in Rice, 1988, pages 356-357):

Fe+, 10.2 millimolar:
Fes+, 1.2 millimolar:
Fes+, .3 millimolar:
Fez+, 10.2 millimolar:
Fez+, 1.2 millimolar:

Fe?+, .3 millimolar:

71 1.66 2.01 2.16 2.42 2.42 2.56 2.60 3.31
3.64 3.74 3.74 4.39 4.50 5.07 5.26 8.15 8.24

2.20 2.93 3.08 3.49 4.11 4.95 5.16 5.54 5.68
6.25 7:25 7.90 8.85 11.96 15.54 15.89 18.30 18.59

2.25 3.93 5.08 5.82 5.84 6.89 8.50 8.56 9.44

10.52 13.46 13.57 14.76 16.41 16.96 17.56 22.82 29.13

2.20 2.69 3.54 3.75 3.83 4.08 4.27 4.53 5.32
6.18 6.22 6.33 6.97 6.97 7.52 8.36 11.65 12.45

4.04 4.16 4.42 4.93 5.49 577 5.86 6.28 6.97
7.06 7.78 9.23 9.34 9.91 13.46 18.40 23.89 26.39

2.71 5.43 6.38 6.38 8.32 9.04 9.56 10.01 10.08

10.62 13.80 1599 17.90 18.25 19.32 19.87 21.60 22.25




EXERCISE 14-18

EXERCISE 14-19

a.

b.

£.

Plot the observations.

Use a parametric analysis to test for equality of variances of percentage of
iron retained under the six sets of conditions. Use the Bonferroni method
to make multiple comparisons of variances. -

Use a nonparametric analysis to test for equality of variances of percentage
of iron retained under the six sets of conditions. Compare with the para-
metric test in part (b).

. Take the logarithm of each observation. Use a parametric analysis to test for

equality of variances of the logarithm of percentage of iron retained under
the six sets of conditions.

Use a nonparametric analysis to test for equality of variances of the loga-
rithm of percentage of iron retained under the six sets of conditions. Com-
pare with the parametric test in part (d).

Discuss your findings.

In Exercise 13-2, we considered the effects of pH and temperature on optical
density (units not given) of a polymer latex (Gasper, 1988; with permission of

ICI Resins US):

pH9.0,85°C: 56.6 389
pH9.0,95°C: 39.0 32.5
pH9.3,85°C: 63.0 96.8
pH9.3,95°C: 33.0 333

Plot the observations.

Use a parametric analysis to test for equality of variances under the four
sets of conditions.

Use a nonparametric analysis to test for equality of variances under the four
sets of conditions.

d. Compare your answers to parts (b) and (¢).

g.
h.

. Take the reciprocal of each observation. Use a parametric analysis to test

for equality of variances of the reciprocal of optical density under the four
sets of conditions.

Use a nonparametric analysis to test for equality of variances of the recip-
rocal of optical density under the four sets of conditions.

Compare your answers to parts (e) and (f).
Discuss your findings.

In Exercise 13-1, we looked at the distances (in feet) a player hit a softball
under four sets of conditions (Shaughnessy, 1988):
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EXERCISE 14-21

Dudley Thunder, wood bat: 242 230 250 242
Dudley Thunder, aluminum bat: 270 282 265 277
Worth Red Dot, wood bat: 258 264 265 275
Worth Red Dot, aluminum bat: 290 318 302 310

a.

b.

C.

d.

Plot the observations.

Use a parametric analysis to test for equality of variances under the four
sets of conditions.

Use a nonparametric analysis to test for equality of variances under the four
sets of conditions.

Compare your answers to parts (b) and (c).

In Example 13-2, we considered flexural strength (in pounds per square inch)
of sheet castings of a polymer under four sets of conditions (Duncan, 1974,
page 685; from Gore, 1947):

20 minutes, 100°: 9,500 10,650 9,700 9,950 10,100

20 minutes, 120°: 11,300 11,750 11,600 11,650 11,700

60 minutes, 100°: 11,500 11,650 11,250 11,250 11,900

60 minutes, 120°: 10,900 11,500 11,850 11,700 11,650

a. Plot the observations.

b. Use a parametric analysis to test for equality of variances under the four
sets of conditions.

c. Use a nonparametric analysis to test for equality of variances under the four
sets of conditions.

d. Compare your results in parts (b) and (¢).

Consider the data on rupture times of pieces of stainless steel at different stress
levels, in Example 14-3.

a.

b.

C.

Take the logarithm of each rupture time. Use a parametric analysis to test
for equality of variances for the logarithm of rupture time at the three stress
levels.

Use a nonparametric analysis to test for equality of variances for the loga-
rithm of rupture times at the three stress levels. Compare with your results
in part (a).

Compare your results in part (a) with what we found in Example 14-3.
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EXERCISE 14-22  Consider the data on rupture times of pieces of stainless steel at different stress
levels, in Example 14-3.
a. Use a nonparametric analysis to test for equal variances of rupture times
at the three stress levels. Use the Bonferroni method to make multiple
comparisons.

g

Compare your results in part (a) with what we found in Example 14-3.



