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Minitab is a statistical package, a computer program that performs many statistical
procedures. The versions of Minitab now available for use on personal computers are
menu-driven and much easier to use than the main-frame version originally discussed in
this text. Those sections are not included in this online edition of the text. At this time,
the most recent version is Minitab 15, available at very reasonable prices for purchase or

rental from:

System Requirements
Processor:

Memory:

Disk Space:

Operating System:
Display:
Software:

www.e-academy.com/minitab

PC with a 1 GHz 32- or 64-bit processor
512 MB or more of available RAM
125 MB free space available

Microsoft Windows 2000, XP, or Vista.
A display capable of 1024 X 768 or higher resolution
Adobe Acrobat Reader 5.0 or higher for Meet Minitab
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We will now look at ways to study relationships between quantitative variables.
For instance: What is the relationship between height and weight in young
children? How does income vary with education? Does blood pressure depend
on age in adults? What is the relationship between advertising expenditures
and sales?

One possible relationship between two quantitative variables is linear: A
scatterplot of the two variables looks roughly like a straight line. The correla-
tion coefficient is a measure of the extent of /inear association between two
quantitative variables, as we see in Section 15-1. A parametric test of indepen-
dence of two quantitative variables is discussed in Section 15-2. In Section
15-3 we consider a correlation coefficient based on ranks, and discuss a non-
parametric test of independence of two quantitative variables.

We may want to model one quantitative variable as a straight-line func-
tion of another. The method of least squares allows us to fit a straight line to a

- set of points in a scatterplot. Finding such a straight line and testing hypotheses

about the model is called simple linear regression, discussed in Section 15-4.
The relationship between linear correlation and the least squares line found
in simple linear regression is the subject of Section 15-5. Also included are
examples of how to interpret the phrase regression toward the mean.

Section 15-6 provides a very brief introduction to multiple regression.
In multiple regression, we try to model a quantitative variable as a function of
other variables.

Let's begin with the linear correlation coefficient. We use the correlation
coefficient to measure linear association between two quantitative variables.

The Linear Correlation Coefficient

The linear correlation coefficient is a descriptive statistic. We use it to measure
linear association between two quantitative variables, as a tool in data analysis.
In this section we are concerned with the correlation coefficient only as a
descriptive statistic; we make no inferences based on it. Therefore, it is appro-
priate to return to the World Bank data set to provide examples.

Values of four World Bank indicators are shown in Table 15-1 for four
high-income, oil-exporting nations (World Bank, 1987). A scatterplot of birth
rate versus per capita gross national product is shown in Figure 15-1 for these
four countries; the points lie close to a straight line with negative slope. Figure
15-2 is a plot of life expectancy versus per capita gross national product. The
association between the variables in this graph is less strongly linear; the points
do not appear to lie as close to a straight line as the ones in Figure 15-1. Figure
15-3 shows a scatterplot of calorie supply versus per capita gross national prod-
uct; there is no linear relationship apparent in this graph.

We use the linear correlation coefficient to measure the extent of linear
association between two quantitative variables. Let's define the linear correla-
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TABLE 15-1 Values of 1985 per capita gross national product, 1985
birth rate per 1,000 population, 1985 life expectancy at birth, and 1985 daily
calorie supply per capita are listed for four high-income, oil-exporting nations.

Gross national Birth Life Calorie
Country product rate expectancy supply
Libya $7,170 45 60 3,612
Saudi Arabia $8,850 42 62 3,128
Kuwait $14,480 34 72 3,138
United Arab $19,270 30 70 3,625
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FIGURE 15-1 Scatterplot of birth rate versus per capita gross national product in
1985 for four high-income oil exporters
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FIGURE 15-2 Scatterplot of life expectancy versus per capita gross national product
in 1985 for four high-income oil exporters
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FIGURE 15-3 Scatterplot of daily calorie supply versus gross national product per
capita in 1985 for four high-income oil exporters

tion coefficient, then find its value for the three sets of points in Figures 15-1,
15-2, and 15-3.

Suppose we have # pairs of observations (X, ¥,), where 7 goes from 1 to
n. We use X; to denote the ith observation on a variable we call X. Similarly,
¥, denotes the #th observation on a variable we call ¥, We want to measure the
extent of linear association between the two variables X and ¥,

Standardize each value of the first variable by subtracting the sample
mean and dividing by the sample standard deviation for that variable. (The
mean of a standardized variable equals 0 and the standard deviation equals 1.
This is why we call such a variable standardized.) Now standardize each value
of the second variable. Then for each pair of observations, multiply the stan-
dardized values of the two variables. Add up these products, and then divide
by the number of pairs minus 1. The result is the linear correlation coeffictent:

Linear correlation coefficient
_ Sum of the products of the two standardized variables
Number of pairs — 1

Let X and SD, denote the sample mean and sample standard deviation,
respectively, for the X variable. Similarly, let ¥ and SD, denote the sample
mean and sample standard deviation for the ¥ variable. Then we can write the
formula for the linear correlation coefficient as

S (559050

Linear correlation coefficient =
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Another name for the linear correlation coefficient is Pearson’s correlation
coefficient. We often refer to it simply as the correlation coefficient, and denote
it by ». Alternative calculation formulas for the correlation coefficient are
shown below.

The correlation coefficient, also called the linear correlation coeffi-
cient or Pearson’s correlation coefficient, is a measure of linear as-
sociation between two quantitative variables. If we have » pairs of obser-
vations (X, ¥,), then we calculate the correlation coefficient » as

2 X, - N -7

(2 X, - X)z) (2 v, - 7)2)

> XY, — nXy
i=1

\/(2” - ) (S v - )

The linear correlation coefficient has no units, and takes values from —1
to 1. A correlation coefficient near 0 suggests there is little or no linear asso-
ciation between the two variables.

A linear correlation coefficient near 1 suggests a strong positive linear
association between the two variables. The correlation coefficient equals 1
when and only when all plotted points fall on a straight line with positive slope.
The correlation coefficient gives us no information on what this slope is.

A linear correlation coefficient near — 1 suggests a strong negative linear
association. The correlation coefficient equals —1 when and only when all the
points lie on a straight line with negative slope. Again, we cannot determine
the slope from the correlation coefficient.

Let’s find the correlation coefficient to measure linear association be-
tween birth rate and per capita gross national product for the four high-income
oil exporters. The calculations are outlined in Table 15-2.

The last two columns in Table 15-2 show the standardized values of gross
national product and birth rate. Because of round-off errors in the calculations,
the means of our standardized variables may not equal 0 exactly. Similarly,
because of rounding errors, these standardized variables may have standard
deviations not exactly equal to 1.

At the bottom of Table 15-2, we see that the linear correlation coefficient
equals —.99. This value indicates a strong negative linear association between
birth rate and per capita gross national product for these four countries. As
we saw in Figure 15-1, the four plotted points do lie very close to a line with
negative slope.

We saw a positive relationship between life expectancy and per capita
gross national product in Figure 15-2. The points are not as close to a straight
line as the points in Figure 15-1. (United Arab Emirates, with the highest per
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TABLE 15-2 Calculating the linear correlation coefficient to measure linear
association between per capita gross national product (GNP) and birth rate in 1985
for four high-income, oil-exporting nations

Standard-  Standard-

Country GNP Birth rate  ized GNP ized birth rate
Libya 7ZA70 45 —.95 1.04
Saudi Arabia 8,850 42 —.65 61
Kuwait 14,480 34 .37 —.54
United Arab Emirates 19,270 30 1.24 —-1.12
Mean 12,442.50 37.75 .0 .0
Standard deviation 5,521.82 6.95 1.0 1.0

Linear correlation coefficient
_ (—.95)(1.04) + (—=.65)(.61) + (.37)(—.54) + (1.24)(—1.12) _
4 -1

=99

capita gross national product, has a life expectancy 2 years shorter than that
of Kuwait.) The correlation coefficient equals .88, reflecting the strong positive
association between life expectancy and per capita gross national product
among these four high-income oil exporters. But .88 is smaller than .99, con-
sistent with our observations that the linear association between life expec-
tancy and per capita gross national product is less than that between birth rate
and per capita gross national product among these four countries.

We saw no linear association between daily calorie supply and gross na-
tional product per capita in Figure 15-3. The correlation coefficient for these
four points is .19. This relatively small value reflects the lack of linear associ-
ation we saw in the scatterplot for these two variables,

What exactly does the correlation coefficient measure? It mea-
sures the extent of clustering of plotted points about a straight line. A correla-
tion coefficient that is large in absolute value suggests strong linear association
between the two variables; the variation of points about a line is small relative
to the variation in the separate variables. A correlation coefficient near 0 sug-
gests little linear association between the two variables; the variation of points
about a line is close to the variation in the separate variables.

Let’s discuss these ideas in terms of the scatterplots in Figures 15-4 and
15-5. Figure 15-4 shows a scatterplot of life expectancy versus the logarithm
of per capita gross national product for 109 countries. The mean = 1 stan-
dard deviation for life expectancy is graphed near the left vertical axis. The
mean * 1 standard deviation for the logarithm of per capita gross national
product is graphed near the top horizontal axis.

A scatterplot of primary school enrollment versus the logarithm of per
capita gross national product is shown in Figure 15-5. The mean * 1 standard
deviation is graphed for each variable, as in Figure 15-4.
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FIGURE 15-4 Scatterplot of life expectancy versus the logarithm of per capita gross
national product in 1985 for 109 countries. The mean =+ 1 standard deviation for each
variable is graphed near the corresponding axis.

We see that there is tighter clustering about a line in Figure 15-4 than in
Figure 15-5. The variation about a line drawn through the points in Figure
15-4 is relatively small compared with the variation in the separate variables.
In contrast, the variation about a line drawn through the points in Figure 15-5
is close to the variation in the separate variables,

We think there is a stronger linear association illustrated in Figure 15-4
than in Figure 15-5. The correlation coefficients reflect the different impres-
sions we get from these two plots. The correlation coefficient for life expec-
tancy and the logarithm of per capita gross national product is .84. The corre-
lation coefficient for primary school enrollment and the logarithm of per
capita gross national product is .49.

Can the correlation coefficient be misleading? Yes, it can. We
should always plot two quantitative variables to get a visual feel for their rela-
tionship. Then we can use the correlation coefficient to supplement the plot.
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FIGURE 15-5 Scatterplot of number enrolled in primary school in 1984 as percent-
age of 6—11-year age group and the logarithm of per capita gross national product in
1985 for 104 countries. The mean + 1 standard deviation for each variable is graphed
near the corresponding axis.

Consider the scatterplot of life expectancy versus per capita gross na-
tional product in Figure 15-6. The correlation coefficient for the 109 plotted
points is .66. By itself, this correlation coefficient might suggest a linear asso-
ciation between these two variables. But we can see in Figure 15-6 a curved
relationship. A stronger linear relationship exists between life expectancy and
the logarithm of per capita gross national product (Figure 15-4, r = .84).

Sometimes a single point or a few points inflate the correlation coeffi-
cient (in absolute value) above what it would be if the point(s) were excluded.
Consider Figures 15-7 and 15-8, for example. On the vertical axis in each plot
is the difference between male and female primary school enrollments in
1985. Overall primary school enrollment is on the horizontal axis.

Figure 15-7 is based on the seven countries in the nonmember economic
category with nonmissing information on primary school enrollment. The cor-
relation coefficient for these seven points is .90, a large value. Notice that there
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FIGURE 15-6 Scatterplot of life expectancy versus per capita gross national product in 1985 for 109 countries

is a single point by itself in the upper right-hand corner of Figure 15-7. It
corresponds to Angola, with a primary school enrollment of 134% and a dif-
ference between male and female enrollments of 25%. We might call this point
an outlier:

An outlier is an observation that is far from the other observations.

If we disregard Angola, we get the plot in Figure 15-8. The correlation
coefficient for these remaining six points is .40. The large correlation coeffi-
cient (.90) for the points in Figure 15-7 results from the relative position of the
single point corresponding to Angola. We are unwise to attach much signifi-
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FIGURE 15-7 Scatterplot of the difference between male and female primary school enrollments and overall pri-
mary school enrollment in 1984 for seven countries in the nonmember economic category. Two nonmember coun-
tries are excluded because of missing values.

cance to a large correlation coefficient that results from the position of a
single point.

One point or a few points can also pull a correlation coefficient closer to
0 than it would be if the point(s) were excluded. Figure 15-9 shows a scatter-
plot of infant mortality rate and per capita gross national product in 1985 for
the 20 upper-middle-income countries with nonmissing values for both vari-
ables. The correlation coefficient is —.035, about as close to 0 as we might
expect to see.

Examining Figure 15-9, we see a general trend of decreasing infant mor-
tality rates with increasing per capita gross national product. There is a single
striking exception—the point in the upper right-hand corner. This exception
is Oman, with per capita gross national product of $6,730 and an infant mor-
tality rate of 109. Removing Oman, we get the plot in Figure 15-10. The corre-
lation coefficient for the remaining 19 points is —.47. This is more consistent
with our impression from the plot.
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FIGURE 15-8 This scatterplot is the same as the one in Figure 15-7 except that the outlying point in the upper
right-hand corner of Figure 15-7 has been excluded.

We can learn a lot in the process of finding out why an outlier is an
outlier. Oman has a relatively high per capita gross national product, but a
high infant mortality rate typical of the low-income countries. The high infant
mortality rate makes Oman different from the other upper-middle-income
countries. In fact, in the 1985 World Development Report, the World Bank clas-
sified Oman as a high-income oil exporter (World Bank, 1985). Recall from
Part I that the high-income oil exporters are similar to the low-income coun-
tries for some indicators. Therefore, in discussing the relationship between
infant mortality and gross national product for upper-middle-income coun-
tries, we might want to consider Oman as a special case.

We have to be careful with outliers. We should not exclude a case from
an analysis just because it is different from the others. By judicious exclusion
of cases, we may “see” characteristics in our data set that are not really there.
This is, of course, 770t the purpose of data analysis.

Let’s look now at how the difference between female and male life ex-
pectancy varies with overall life expectancy. A scatterplot of the difference be-
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FIGURE 15-9 Scatterplot of infant mortality rate and per capita gross national prod-
uct in 1985 for 20 upper-middle-income countries. The range of values for each vari-
able is indicated by the line on the corresponding axis.
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FIGURE 15-11 Scatterplot of the difference between female and male life expectan-
cies and overall life expectancy at birth in 1985 for 125 countries

tween female and male life expectancies and overall life expectancy is shown
in Figure 15-11 for 125 countries. There is a fairly strong increasing relation-
ship, with a correlation coefficient of .70.

A scatterplot of the difference between female and male life expectancies
and overall life expectancy is shown in Figure 15-12 for the 19 industrial mar-
ket countries. We no longer see an increasing linear relationship; the correla-
tion coefficient is —.05, very close to 0.

There is a suggestion of another type of relationship between the two
variables in Figure 15-12. We see that the differences between female and male
life expectancies are largest for countries with overall life expectancy of 76
years (for instance, United States life expectancy was 80 years for females, 72
years for males). The differences are smaller for overall life expectancies
shorter than 76 years, as well as for overall life expectancies longer than 76
years. This plot gives us a suggestion of a quadratic relationship. Such a rela-
tionship is not indicated at all by the correlation coefficient, which measures
only linear association. (Figure 15-12 might lead us to hope that as life expec-
tancies continue to lengthen, the gap in expected life span between females
and males will decrease. This is speculation, of course, because the data plotted
in Figure 15-12 are not sufficient for drawing any such conclusion.)

In this section we have discussed the correlation coefficient as a descrip-
tive statistic: a measure of linear association between two quantitative variables.
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FIGURE 15-12 Scatterplot of the difference between female and male life expectan-
cies and overall life expectancy in 1985 for 19 industrial market countries

When certain assumptions about the variables and the sampling process are
met, we can test the null hypothesis that the linear correlation coefficient for
two Variables is 0. (We used World Bank data in this section to illustrate the
correlation coefficient as a descriptive statistic measuring the extent of linear
association between two variables. We cannot test hypotheses using the World
Bank data set. We have information on the entire population of World Bank
countries, rather than on a randomly selected sample of a population.) In Sec-
tion 15-2, we discuss a parametric test that a linear correlation coefficient
equals 0. We can apply this test when our sample meets assumptions described
in that section.

A Parametric Test That a Linear Correlation
Coefficient Equals Zero

Suppose we have » independent pairs of observations (X, ¥;). We let X, de-
note the ith observation on a variable we call X. ¥; denotes the 7th observation
on a variable ¥, We want to test the null hypothesis that the linear correlation
coefficient between observations on X and Y is 0.

Let’s assume that X, through X,, represent a random sample from a Gaus-
sian distribution, and ¥, through ¥,, a random sample from another Gaussian
distribution. [We must also assume that the pairs (X,, ¥;) represent a random
sample from what we call a bivariate normal, or bivariate Gaussian, distribu-
tion. See, for example, Brownlee (1965, Chapter 12).] With these assumptions,
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If 6 < D < 64, say the results are consistent with the null hypothesis that
thickness and stiffness are independent in this fabric.

If D = 6 or D = 64, say the results are inconsistent with the null hypothesis,
suggesting that thickness and stiffness are not independent in this fabric.

From Table 15-3 we see that D = 8, which is in the acceptance region.
The p-value = 2P(D = 8) = .102. Based on this p-value, we might say the
results are borderline, especially since the sample size is small. Certainly Fig-
ure 15-15 suggests positive association between thickness and stiffness in this
flame-retardant fabric.

For the sake of illustration, suppose we try the large-sample test in Ex-
ample 15-2. We calculate the test statistic:

3
g — 6 - 6
Test statistic = = —172

6*(6 + 1)°(6 — 1)
36

Looking at Table B for the standard Gaussian distribution, we see our approxi-
mate p-value is .0854, somewhat smaller than the p-value of .102 we get with
the exact distribution of D under the null hypothesis.

In Section 15-4, we discuss the method of least squares for fitting a
straight line to a sample of pairs of observations. We also discuss parametric
hypothesis testing for the straight-line model.

Simple Linear Regression and the Method of Least Squares

In many situations we want not only to measure the extent of linear association
between two variables, but also to estimate the linear relationship between
them. We would like to model one variable as a straight-line function of an-
other, using the method of least squares.

Suppose we have 7 pairs of observations (X, ¥;) on two variables. We
plot the observations and a linear association seems reasonable. Imagine draw-
ing a straight line ¥ = b, + b, X through the cloud of plotted points. Here, b,
denotes the intercept and b, the slope of the line. We will use the method of
least squares to determine &, and b, .

For any given value X, of the first variable, we can use the straight-line
model to predict the associated ¥ value. Let ¥; denote this predicted or esti-
mated mean Y value. Then ¥, = b, + b,X,. The difference Y; — ¥, is a residual,
measuring how far the estimated mean ¥ value is from the actual ¥ value for
the ith observation.

A residual is the difference between a ¥ value and a predicted or esti-
mated mean ¥ value, when a variable ¥ is modeled as a function of one or
more other variables.
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EXAMPLE 15-3

Using the method of least squares, we find the values of b, and b, that minimize
the sum of the squared residual differences (¥; — AL

Suppose we have 7 pairs of observations (X, ¥;). Using the method of
least squares to fit a straight line ¥ = b, + 5,X, we find constants b, and
b, to minimize

2 (Y, — $)* = 2 (¥, — (b + b:.X)*

f=1
Provided our observations include at least two distinct values of the X

variable, we can find the least squares intercept b, and slope b,. We can
calculate these least squares values of b, and &, using the formulas

ZI (XJ - X)(Y: - Y)

b, = = — and b, =7 - bX
Z(X,—)?)z

Let’s illustrate the method of least squares with an example.

For each of ten streets with bike lanes, investigators measured the distance
between the center line and a cyclist in the bike lane. They used photography
to determine the distance between a cyclist and a passing car on those same
ten streets, recording all distances in feet, The results are shown below (De-
vore, 1982, pages 432—433; from “Effects of Bike Lanes on Driver and Bicyclist
Behavior,” ASCE Transportation Eng. J., 1977, pages 243—256).

Street
Center line to cyclist (feet)
Car to cyclist (feet)

1 2 3 4 5 6 7 8 9 10
12.8 12.9 12.9 13.6 145 14.6 15.1 17.5 195 208
5.5 6.2 6.3 7.0 7.8 8.3 7.1 10.0 108 11.0

A plot of the observations is shown in Figure 15-16. Based on a visual
inspection of this scatterplot, a linear relationship between the two variables
seems reasonable.

Let the X variable be the distance from the center line to the cyclist. Let
the Y variable be the distance from the car to the cyclist. We will use the
method of least squares to model Y as a straight-line function of X. The nec-

_essary calculations are outlined in Table 15-4.

We see from the bottom of Table 15-4 that the least squares line is
Y = —2.18 + .66X. The positive slope of .66 agrees with the positive associ-
ation between the two variables that we see in Figure 15-16. The intercept of
—2.18 has no physical meaning in this example: We cannot let the distance X
from the center line to a cyclist in the bike lane be 0 feet, because the distance
Y from the car to the cyclist cannot be —2.18 feet!

The least squares line for our example is plotted in Figure 15-17. The
vertical distances from the points (X,, ¥;) to the least squares line are indicated
by dashed lines. These distances are the values of the residuals ¥, — Y. The
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FIGURE 15-16 Scatterplot of the distance fr_é)m car to cyclist and the distance from center line to cyclist in Example

15-3

TABLE 15-4 Calculations for finding the least squares intercept b, and slope b, for Example 15-3

-

X; Y; Xi—X (w7 Yi=V(ga/-X0,-" X — X2
12.8 5.5 -2.62 -25 6.1% 6.550 6.8644
12.9 6.2 -2.52 -1.8 3.2 4.536 6.3504
12.9 6.3 -2.52 -17 28 4.284 6.3504
13.6 7.0 —-1.82 —-10 1.820 3.3124
14.5 7.8 -.92 —.2 w04 184 8464
14.6 8.3 =82 3 .94 — 246 6724
15.1 721 ~32 -9 £l 288 1024
17.5 10.0 2.08 20 4 4.160 4.3264
19.5 10.8 4.08 2.8 71.54 11.424 16.6464
20.8 11.0 5.38 3.0 9. 16.140 28.9444

X =15.42 V=8 < (47 Total: 49.14 74.416

_ 4914 » _ = o
b, = ¥R .66 b, = 8 — (.66)(15.42) = —2.18 9.
Least squares line: Y = —2.18 + .66X ,
#4 oy ~

RS}

M e R

9¢

R =¢"7 9%
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FIGURE 15-17 Scatterplot of distance from car to cyclist versus distance from center line to cyclist in Example 15-
3. Also shown is the least squares line.

least squares line is best in the sense of minimizing the sum of the squares of
these vertical distances, or residuals.

The slope b, in the equation ¥ = b, + b,X has units equal to the units
of the Y variable, divided by the units of the X variable. The slope represents
the change in the Y variable for each unit increase in the X variable.

The units of the intercept b, are the units of the Y variable. The intercept
has a physical interpretation only if there are values of the X variable very close
to 0 and if it is possible for the X variable to equal 0.

The method of least squares requires no assumptions. We need to make
assumptions about the observations only if we want to test hypotheses about
the straight-line model. Suppose we do want to test hypotheses about the
straight-line model. We use the term simple linear regression to refer to the
process of fitting a straight-line model by the method of least squares and
testing hypotheses about the model.

Simple linear regression refers to fitting a straight-line model by the
method of least squares and then assessing the model.
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EXAMPLE 15-3
(continued)

The classical assumptions for simple linear regression are these: Suppose
we have 7 pairs of observations (X, ¥,). We observe values of the X variable
with no error. ¥, through ¥, are independent random variables, ¥, coming from
a Gaussian distribution with mean equal to 8, + 8,X; and variance equal to o2,

The parameters (or unknown numbers) 8, and B: are the intercept and
slope, respectively, of the line describing the relationship between X and Y,
The variance o2 describes the random variation of the ¥ values about that line.

We want to estimate the intercept f3, and the slope 8,, as well as the
variance o We also want to test the null hypothesis that 8, = 0 and the null
hypothesis that 8, = 0

We estimate S, and 8, using the least squares estimates &, and b, given
previously. We estimate o2 with the residual mean square s

R .
Yi - ¥)=——— 3 &
n—z,;( ) n—Zg;'

§2 =

where ¢, = Y, — ¥, = ¥, — (b, + b,X,) is the ith residual, the difference
between the observed and estimated ¥ values.
To test the hypotheses Hy: 8, = 0 and H,: B8, # 0, we use the test statistic

Test statistic(1) =

Under the null hypothesis that 8, = 0, test statistic(1) has the ¢ distribution
with 72 — 2 degrees of freedom. Values of test statistic(1) far from 0 (in either
the positive or negative direction) are inconsistent with the null hypothesis
that the slope 8, equals 0. Note that when we ask whether the slope B, equals
0, we implicitly assume that the intercept 8, is in the model.

To test the hypotheses H,: 8, = 0 and H,: Bo # 0, we use the test statistic

b
Test statistic(0) = -
1 X2
Sl -+
n _
z (Xl - X)Z
i=1

Under the null hypothesis that Bo = 0, test statistic(0) has the ¢ distribution
with 7 — 2 degrees of freedom. Extreme values of test statistic(0), far from 0
in either the positive or negative direction, are inconsistent with the null hy-
pothesis that the intercept 8, equals 0. When we ask whether the intercept 3,
equals 0, we implicitly assume that the slope 8, is in the model.

Let’s illustrate these ideas by continuing with Example 15-3. Some calculations
we need are summarized in Table 15-5,

Before testing hypotheses, we should check our model assumptions. The
straight-line relationship between X (distance from center line to cyclist) and
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TABLE 15-5 Calculations for simple linear regression in Example 15-3

Y= -218 i
X ¥ +.66X e=Y-YV e=(Y-V
12.8 o] 6.27 =77 .5929
12.9 6.2 6.33 -.13 .0169
129 6.3 6.33 -.03 .0009
13.6 7.0 6.80 .20 .0400
14.5 7.8 7.39 41 .1681
14.6 8.3 7.46 .84 .7056
15.1 7.1 7.79 -.69 4761
125 10.0 9:37 .63 .3969
19:5 10.8 10.69 11 .0121
20.8 11.0 11.55 —25 .3025
Total: 2.7120
2.7120
sz = e 339 Degrees of freedom = 10 — 2 = 8
b @]
3 @]
5=
. @]
g 4 o
R °
0 —
% | @]
o O
_5 —
| €]
- O
20
| I I [ |
6 8 10 12
A
Y = Predicted distance from
car to cyclist (feet)

FIGURE 15-18 Scatterplot of residuals versus predicted Y values in Example 15-3



SECTION 15-4  Simple Linear Regression and the Method of Least Squares 239

¥ (distance from car to cyclist) seems reasonable from Figure 15-17. As another
check, we can look at a plot of residuals versus predicted ¥ values, as in Figure
15-18. If the straight-line model with constant variation holds, the residuals
should represent random variation or noise. A residual plot showing a pattern
that does not look like random variation or noise suggests that the straight-line
model may not be appropriate. We cannot see any particular pattern in Figure
15-18, so this residual plot gives us no reason to doubt the straight-line model.

We must assume that the X variable is measured without error; it seems
reasonable that the investigators could measure the distance from the center
line to the cyclist with minimal error. Figures 15-17 and 15-18 give us no basis
to doubt the assumption that each ¥, has the same variance o2

Also, we assume that the ¥;’s are independent; we cannot assess this in-
dependence assumption without more information on how the experiment
was conducted. What suggestions would you have for carrying out this experi-
ment, in order to ensure independence and reduce the effects of extraneous
sources of variation?

We must assume, in addition, that ¥; comes from a Gaussian distribution
with mean B8, + 8,X, and variance ¢ or, equivalently, that ¥; — (8, + 8,X,)
comes from a Gaussian distribution with mean 0 and variance o2 We use the
residual e, = ¥; — ¥, to estimate ¥; — (8, + f,X,). A dot plot of the residuals
is shown in Figure 15-19. From this figure, we see no reason to doubt the
Gaussian assumption.

Let’s test the null hypothesis that the slope 8, equals 0. Using calculations
outlined in Tables 15-4 and 15-5, we see that

- .66
Test statistic(1) = ——= = 9.8
339

74.416

Referring to Table C for the ¢ distribution with 8 degrees of freedom, we see
that our p-value is less than .01. The results are inconsistent with the null
hypothesis that the slope 8, equals 0.

Now let’s test the null hypothesis that the intercept B, equals 0. We
see that

—2.18
Test statistic(0) = = =21

1, (1542)°
\/‘339(10 * 74.416)

&0 g OO0 QO O o O
—

T T T T T T T ]

-5 0 D
Residuals (feet)

I———

FIGURE 15-19 Dot plot of the residuals in Example 15-3
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Again referring to Table C for the ¢ distribution with 8 degrees of freedom, we
see that our p-value is between .05 and .10, which is borderline. We will sup-
pose that B, is not 0, that we do need a nonzero intercept in our model.

We usually calculate a statistic called R? in simple linear regression. R? is
the square of the simple linear correlation coefficient r for the X and Y vari-
ables, so Rz = 2 R? is the proportion of the variation in the ¥ variable ex-
plained by the straight-line model.

In simple linear regression, the square of the linear correlation coefficient,
denoted R?, is the proportion of the variation in the response variable
accounted for, or explained, by the straight-line model.

In Example 15-3, the correlation coefficient r for the two variables is 96.
Therefore, B> = (.96)% = .92. We say about 92% of the variation in distances
between cars and cyclists is explained by the linear relationship between that
variable and the distance from center line to cyclist. This is a fairly large value
of R% From our analysis, including the scatterplot of the data values and the
residual plots, it seems that a straight-line model is very reasonable in Ex-
ample 15-3.

In Section 15-5, we discuss the relation between correlation and simple
linear regression.

Correlation and Simple Linear Regression

Suppose once again that we have # pairs of observations (X;, ¥;). The linear
correlation coefficient » measures the extent of linear association between the
X and Y variables. It measures how closely the plotted points cluster about a
line. We call this line the standard deviation line (Freedman, Pisani, and
Purves, 1978, page 122).

The standard deviation line is the line most of us would draw freehand
through a cloud of plotted points. It passes through the point (X, ¥) corre-
sponding to the sample means for the two variables. The slope of the standard
deviation line is

S,
SD,

_sn,
SD,

if the association is positive
Slope of standard deviation line =

if the association is negative

where SD, and SD, denote the sample standard deviations of the ¥ and X
variables, respectively.

Figure 15-20 shows a plot of the observations in Example 15-1. (Recall
that investigators used two methods to determine the amount of breast milk
ingested by each of 14 babies.) The standard deviation line is also shown. This
line goes through the point (X, ¥) = (1,616.4, 1,449.1). The slope of the stan-
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Deuterium dilution measurement

FIGURE 15-20 Plot of measurement of milk ingested using the test weighing method
versus measurement using the deuterium dilution technique. The standard deviation
line is also shown.

dard deviation line is positive because the association between the two vari-
ables is positive:

Slope of standard deviation line in Example 15-1: o .

SD, 353

How does the standard deviation liné compare with the least squares

line? We can show that another (equivalent) formula for the slope of the least
squares line is

66

Slope of the least squares line = b, = r :gy
The slope of the least squares line equals the absolute value of the linear
correlation coefficient 7 times the slope of the standard deviation line. Since
the absolute value of 7 is in the range from 0 to 1, we see that the least squares
line is less steep than the standard deviation line.

In Example 15-1, we found the linear correlation coefficientto be » = .77.
Therefore, the slope of the least squares line is

Slope of least squares line in Example 15-1 = (.77)(.66) = .51

The least squares line and the standard deviation line are both plotted in Fig-
ure 15-21. Note that both lines pass through the point (X, ¥). The least squares
line is indeed less steep than the standard deviation line. For a large value of
X (greater than X), the corresponding value of ¥ predicted by the least squares
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EXAMPLE 15-4
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FIGURE 15-21 Scatterplot of the observations in Example 15-1. The least squares
line and the standard deviation line are shown.

line is less than that predicted by the standard deviation line. For a small value
of X (less than X), the value of ¥ predicted by the least squares line is greater
than that predicted by the standard deviation line.

Let’s look at another example.

Foresters recorded two characteristics of 20 stands of pine trees (Myers, 1986,
page 68; from Burkhart et al., 1972). One characteristic was the number of
pine trees per acre; the other was the average diameter of pine trees 4.5 feet
above the ground (units not given). The values of the two variables are listed
in Example 15-5, in Section 15-6. Some descriptive statistics are shown in
Table 15-6.

A plot of the observations is given in Figure 15-22. We see that there is a
negative relationship between number of pine trees per acre and the average
diameter of the trees. The standard deviation line and the least squares line
are also shown in the figure, the standard deviation line steeper than the least
squares line. For a value of X (number of pine trees per acre) greater than X,
the corresponding value of ¥ (average diameter) predicted by the least squares
line is greater than that predicted by the standard deviation line. For a value of
X less than X, the value of Y predicted by the least squares line is less than that
predicted by the standard deviation line.

We use the least squares line to estimate the average value of the ¥ vari-
able corresponding to a particular value of the X variable. This estimated Y
value is generally less extreme than what we might expect by a freehand sketch
of a line through the plotted points, because our freehand sketches tend
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TABLE 15-6 Descriptive statistics for Example 15-4

X = Number of pine trees per acre Y = Average diameter 4.5 feet
above the ground
X =671.5 SD, = 136.9 Y = 6.265 SD, = .739 r= —.252
7
Slope of standard deviation line = il —.00540
136.9
Slope of least squares line = (—.252)(.00540) = —.00136

E 8.0 - O

O% Standard deviation line

o

>

g e

© 7.0 7

%; Least squares
i _

g 5]
T
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]
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o
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<

500 700 900
X = Number of pine trees per acre

“

FIGURE 15-22 Scatterplot of the observations in Example 15-4. The least squares
line and the standard deviation line are shown.

Y

to be closer to the standard deviation line. The geneticist Sir Francis Galton
(1822-1911) noticed this when he studied the sizes of seeds and their off-
spring and when he studied the heights of fathers and sons. Extremely tall
fathers, for instance, had sons who were shorter than they, on average; ex-
tremely short fathers had sons who were taller than they, on average. We could
turn this around and say extremely tall sons had fathers who were shorter than
they, on average; extremely short sons had fathers who were taller than they,
on average. Galton called this “regression towards mediocrity” or regression
toward the mean. The term is unfortunately ambiguous; all it means is that the
least squares line is less steep than the standard deviation line, as we have
noted. It is from Galton that we get the term regression, as in simple linear
regression. (For a discussion of regression toward the mean or the regression
fallacy, see Freedman, Pisani, and Purves, 1978, pages 158—162.)

A final comment on the relationship between correlation and simple lin-
ear regression: The test of the null hypothesis that the slope is 0 in simple
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linear regression (Section 15-4) is equivalent to the test that the linear corre-
lation coefficient is 0 (Section 15-2).

In Section 15-6, we present a very brief introduction to multiple
regression.

A Brief Introduction to Multiple Regression

Suppose we record values of variables X, through X, and Y for each of »
observations. We might denote the values for the ith observation by (Xy;, X,
..., Xu, ¥). We want to model the Y variable as a function of the variables X,
through X, say:

Y=bo+b1X;+"'+kak

We call this a linear model: the model is linear in the constants &,, &
through b,.

A linear model is 2 model that is linear in the parameters, the unknown
constants in the model.

We call the process of fitting and assessing such a model musitiple regression.

By multiple regression we mean the process of modeling a quantitative
variable as a function of several other variables, and assessing the model.
We consider only linear models.

Using such a model, we can estimate the value of the ¥ variable for any
set of values of X, through X,. We use the notation ¥; to denote the estimated,
or predicted, value of ¥ for the 4th observation:

}}i =by+ bX;, + -0 + kala'

We let e, = ¥, — ¥, denote the ith residual, the difference between Y and the
estimated or predicted value of ¥ for the ith observation.

Using the method of least squares we find the values of the constants b,
through &, that minimize the sum of the squared residuals:

&= =)= JX ~ by + biXy + -+ bX)?
i=1 i=1

7K}

i

1

We can find unique values of b,, b, through b, to minimize the sum of
squared residuals, as long as there are at least £ + 1 distinct sets of values
of X, through X,

We do not need to make any assumptions to fit a linear model using the
method of least squares. However, if we want to test hypotheses about the
model, we do need to make some assumptions.

The classical assumptions for multiple regression are these: The variables
X, through X, are measured without error. ¥; through Y, represent indepen-
dent observations from Gaussian distributions, ¥; from a Gaussian distribution
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EXAMPLE 15-5

with mean 8, + B,X,, + - * - + B.X,, and variance o2 We use the method of
least squares to find the least squares estimates b,, b, through b, of B,, 5,
through B, respectively.

If these assumptions are met, we can test the hypotheses Hy: B, = 0and
H,: B, # 0, where B, is one of the parameters in the model. When we ask
whether the parameter B, equals 0, we implicitly assume that the other pa-
rameters are in the model. The test statistic is

bj
SE(5,)

where b; is the least squares estimate of B; and SE(4;) is the standard error, or
estimated standard deviation, of &,. If the null hypothesis is true, test statistic( 7)
has the ¢ distribution with 7 — p degrees of freedom, where p is the number
of parameters (unknown B;'s) in the model. (We have p = k + 1in the model
above.)

The calculations for multiple linear regression are so extensive that we
use a computer to perform them.

Let’s consider an example.

Test statistic(f) =

Foresters studied 20 stands of pine trees. For each stand, they recorded the age
of the stand (units not given), the average height in feet of dominant trees, the
number of pine trees per acre, and the average diameter 4.5 feet above the
ground (units not given). The results are shown below (Myers, 1986, page 68;
from Burkhart et al., 1972).

Average
Stand Age Height Number  diameter
1 19 51:5 500 7.0
2 14 41.3 900 5.0
3 11 36.7 650 6.2
4 13 322 480 5.2
5 13 39.0 520 6.2
6 12 29.8 610 5.2
7 18 51.2 700 6.2
8 14 46.8 760 6.4
9 20 61.8 930 6.4
10 17 55.8 690 6.4
11 13 37.3 800 5.4
12 21 54.2 650 6.4
13 11 32.5 530 5.4
14 19 56.3 680 6.7
15 17 52:8 620 6.7
16 15 47.0 900 5.9
17 16 53.0 620 6.9
18 16 50.3 730 6.9
19 14 50.5 680 6.9

20 22 S7T 480 7.9
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The foresters wanted to model ¥ (average diameter) as a function of one or
more of the variables X, (age), X, (height), X5 (number), X, (age X number),
and X; (height/number).

Table 15-7 shows the linear correlation coefficient for each pair of the
six variables ¥, X, X,, X;, X4, and X;. We see that the largest correlation coef-
ficient (in absolute value) for average diameter ¥ with any other variable is the
correlation coefficient of .840 for ¥ and X5 = height/number.

We will go through the steps of a backward regression analysis for this
problem. We start with a model that includes all the variables that we think
might be important for estimating ¥. If any parameter (other than the intercept
B,) seems to be 0, we will drop from the model the one with the largest p-
value, Then we will fit a new model excluding the dropped parameter and its
corresponding variable. We continue dropping one variable at a time and re-
fitting until all the parameters (other than B,) appear to be different from 0.

First let’s consider the model

Expected value of ¥ = B, + B:iX; + B.Xa + B:X; + BiXs+ BsXs

Results of a multiple regression analysis using the Student Edition of Minitab
are shown in Table 15-8.

TABLE 15-7 The linear correlation
coefficient for each pair of variables in Example 15-5

Y X4 Xs

Average X, X, X, Age X Height/
diameter Age Height Number Number Number

Y 1.000

X, 675 1.000

Xz T3 .876 1.000

X —-.252 .016 229 1.000

% .244 678 755 732 1.000

Xs .840 735 .634 -.579 .056 1.000

TABLE 15-8 Results of the first multiple regression analysis for Example 15-5

Param- Parameter Standard Test
eter Variable estimate error statistic ~ p-value
B Age 0526 1683 31 759
B, Height .08246 .04035 2.04 .060
B Number 003224 002532 127 224
B Age X Number —.0002817 0002300 —-1.22 241
Bs Height/Number 16.03 27.89 57 575
B, Intercept 1233 1.619 .76 459

p = Number of parameters = 6 n = Sample size = 20

Degrees of freedom for tests of hypotheses = n — p = 14
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TABLE 15-9 Results of the second multiple regression analysis for Example 15-5

Param- Parameter Standard Test
eter Variable estimate error statistic  p-value
B: Height .07438 .03004 2.48 026
B Number .002795 002065 1.35 196
B Age X Number —.0002131 .00006746 -3.16 .006
Bs Height/Number 2293 16.53 1.39 .186
Bo Intercept 1.507 1.321 1.14 47,57

p = Number of parameters = 5 n = Sample size = 20

Degrees of freedom for tests of hypotheses = n — p=15

We see that the least squares estimated model is
Y = 123 + 0526X, + .0825X, + .00322X, — .000282X, + 16.0X,

where the parameter estimates are shown to three significant figures. The test
statistic for a parameter tests the null hypothesis that the parameter is 0, when
all the other parameters are in the model. The largest p-value, .759, is consis-
tent with the null hypothesis that 8, equals 0. That is, if all the other variables
are in the model, it looks like we do not need to include X 1 (age).

We drop X, and consider the model:

Expected value of ¥ = B, + B,X, + B3X; + BuX; + B:X;

Results of the multiple regression analysis are shown in Table 15-9.
The least squares estimated model is

¥ = 151 + .0744X, + .00280X, — .000213X, + 229X,

The largest p-value (ignoring the intercept) is .196, consistent with the null
hypothesis that 85 equals 0. That is, if the other parameters in Table 15-9 are
included in the model, it looks like we need not include X3 (number of pine
trees per acre).

We drop X; and consider the model

Expected value of ¥ = B, + B,X, + BX, + BsX;s

Results of the multiple regression analysis are given in Table 15-10.
The least squares estimated model is

¥ = 324 + 0974X, — .000169X, + 3.47X,

The largest p-value, .684, is consistent with the null hypothesis that B85 equals
0. If the other parameters in Table 15-10 are included in the model, it looks
like we do not need to include X, (heightnumber). We drop X5, even though
it had the highest linear correlation coefficient with ¥ in Table 15-7.

For our final analysis, we drop X; and consider the model

Expected value of Y = B, + B.X, + B.X;
Table 15-11 shows the results of the multiple regression analysis.
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TABLE 15-10 Results of the third multiple regression analysis for Example 15-5

Param- Parameter Standard Test
eter Variable estimate error statistic ~ p-value
B Height .09741 .02540 3.84 .001
B Age X Number —.0001689 .00006052 -2.79 .013
Bs Height/Number 3.467 8.374 41 .684
Bo Intercept 3.2357 3467 9.33 .000
p = Number of parameters = 4 n = Sample size = 20

Degrees of freedom for tests of hypotheses = n — p = 16

TABLE 15-11 Results of the final multiple regression analysis for Example 15-5

Param- Parameter Standard Test
eter Variable estimate error statistic ~ p-value
B Height 10691 .01058 10.11 .000
Bs Age x Number —.00018975 00003256 —5.83 .000
Bo Intercept 3.2605 3330 9.79 .000
p = Number of parameters = 3 n = Sample size = 20

Degrees of freedom for tests of hypotheses = n — p = 17

The least squares estimated model is
Y = 326 + .107X; — .000190X,

All the p-values in Table 15-11 are less than .001. This suggests that all three
parameters—3,, ., and B;—are necessary to the model.

A descriptive statistic that we often use in multiple regression is the -
tiple regression coefficient or coefficient of determination, denoted R The
multiple regression coefficient has an interpretation similar to that of R? in
simple linear regression. The multiple regression coefficient R? is the propor-
tion of the variation in the ¥ values that is explained by the multiple regression
model.

The multiple regression coefficient or coefficient of determina-
tion, R?, is the proportion of the variation in the response variable that is
accounted for, or explained, by the multiple regression model.

For the final model in Table 15-11, we have R?* = .87, a fairly large value. About
87% of the variation in average diameters can be explained by the model that
includes height of the dominant trees and age times the number of pine trees
per acre.

The predicted Y values and residuals for this final model are shown in
Table 15-12. A plot of residuals versus predicted ¥ values is shown in Figure
15-23. This scatterplot looks like “noise” because we cannot see any pattern or
relationship between the residuals and the predicted Y values. This residual
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TABLE 15-12 List of the values of Y, the
predicted Y values, and the residuals from
the model ¥ = 3.26 + .107X, — .000190X,
in Example 15-5

Y= Yo=
Average Predicted e=Y-VY
diameter value of Y = Residual

7.0 6.96 .04
5.0 5.29 -~.29
6.2 5.83 37
5.2 5.52 =.32
6.2 6.15 .05
52 5.06 14
6.2 6.34 —.14
6.4 6.25 A5
6.4 6.34 .06
6.4 7.00 —.60
54 527 13
6.4 6.47 —-.07
54 5.63 —.23
6.7 6.83 —=.13
6.7 6.91 -.21
5.9 5.72 18
6.9 7.04 —-.14
6.9 6.42 48
6.9 6.85 .05
7.9 7.43 A7

plot gives us no reason to doubt the equal-variance assumption or the ade-
quacy of the model.

A dot plot of the residuals from this final model is shown in Figure
15-24. The residuals have a fairly symmetrical distribution concentrated around
zero. This plot gives us no reason to doubt the Gaussian assumption.

We must assume that height, age, and number of pine trees per acre are
observed without error, and that the observed values of average diameter are
independent. We would need additional information about the experiment to
assess these assumptions. What suggestions would you make about experimen-
tal design to help meet model assumptions and reduce extraneous sources of
variation?

A scatterplot matrix of the variables height (X, ), age X number (X,), and
average diameter (¥) is shown in Figure 15-25. We can see the positive associ-
ation between average diameter and height (correlation coefficient = .77).
However, there is only a weak association between average diameter and
age X number (correlation coefficient = .24). It is common in multiple re-
gression situations that simple bivariate plots do not give us a good impression
of which variables are needed in the model.

Notice the strong positive association between height and age X number
(correlation coefficient = .75). Sometimes predictor variables are even more
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FIGURE 15-23 Plot of residuals versus predicted Y values for the model ¥ = 3.26 +
107X, — .000190X, in Example 15-5
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FIGURE 15-24 Dot plot of residuals from the model ¥ = 3.26 + .107X, — .000190X, in Example 15-5

highly correlated. If we try to include in a model two or more predictor vari-
ables that are highly correlated with one another, we can run into trouble. It is
a problem we call mudticollinearity.

When two or more predictor variables in a multiple regression analysis
are highly correlated with one another, we can get errors in the analysis,
a problem called multicollinearity.
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FIGURE 15-25 Scatterplot matrix of X, = height, X, = age X number, and Y =
average diameter in Example 15-5

There are many aspects of multiple regression that we have not ad-
dressed, in addition to possible multicollinearity. We have not discussed how
to choose predictor variables, how to evaluate observations that especially in-
fluence the fitted model, or how to deal with outliers, for instance, Multiple
regression requires a course to itself. This section is meant just to give an idea
of what it is about. For more information see, for example, Draper and Smith
(1981), Daniel and Wood (1980), Myers (1986), or Rawlings (1988).

e e R
Summary of Chapter 15

The linear correlation coefficient is a measure of linear association between
two quantitative variables. The correlation coefficient is a descriptive statistic.
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It may be used to measure linear association between two variables, even in
situations when formal statistical inference may not be appropriate.

When certain assumptions about the observations and sampling process
are satisfied, we can make inferences about the linear association between two
variables. A parametric test that the linear correlation coefficient equals 0 is
also a test that the two variables are independent.

The rank correlation coefficient is a measure of association between two
quantitative variables, based on ranks. A nonparametric test of independence
between two quantitative variables may be based on the rank correlation
coefficient.

The method of least squares is one way to model one quantitative vari-
able as a straight-line function of another. We can use. the method of least
squares to fit a straight line without making any assumptions about the obser-
vations. Hypothesis testing in simple linear regression does require that we
make assumptions about the observations and sampling process.

Considering the relation between correlation and simple linear regres-
sion, we introduce the standard deviation line and compare it with the least
squares line. Examples illustrate the idea of regression toward the mean.

In multiple regression, we model a quantitative variable as a function of
several other variables. We consider only linear models—that is, models that
are linear in the parameters or unknown constants. The method of least
squares allows us to calculate a multiple regression model for a set of obser-
vations. Hypothesis testing in multiple regression requires that we make as-
sumptions about the observations and sampling process.
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* NOTE * age*num is highly correlated with other predictor variables

The regression equation is
avediam = 1.23 + 0.053 age + 0.0825 height + 0.00322 number -0.000282 age*num
+ 16.0 ht/num

Predictor Coef Stdev t-ratio P
Constant 1.233 1.619 0.76 0.459
age 0.0526 0.1683 0.31 0.759
height 0.08246 0.04035 2.04 0.060
number 0.003224 0.002532 1.27 0.224
age*num  -0.0002817 0.0002300 -1.22 0.241
ht/num 16.03 27.89 0.57 0.575
s = 0.2952 R-sq = 88.2% R-sg(adj) = 84.1%

Analysis of Variance

SOURCE DF ss MS F P
Regression 5 9.1651 1.8330 21.03 0.000
Error 14 1.2204 0.0872

Total 19 10.3855

CONTINUE? y

SQURCE DF SEQ SS

age 1 4.7388

height 1 1.4684

number 1 2.3984

age*num 1 0.5307

ht/num b 4 0.0288

Unusual Observations

Obs. age avediam Fit Stdev.Fit Residual St.Resid
2 14.0 5.0000 5.4633 0.1899 -0.4633 -2.05R
10 17.0 6.4000 6.9457 0.1254 -0.5457 =2.04R

R denotes an obs. with a large st. resid.

FIGURE M15-3  Output for the first multiple regression model specified in Example
15-5

For the command

MTB> regress 'avediam' 5 'age' 'height' &
CONT> 'number' 'age*num' 'ht/num' ¢10 cl1;
SUBC> residuals C12.

Minitab will produce the output in Figure M15-3, and save standardized residu-
als in column 10, predicted values in column 11, and residuals in column 12.
We can use these saved values in plots to check model assumptions.

Exercises for Chapter 15

For all exercises, plot the observations in any ways that seem reasonable. De-
scribe the population(s) sampled, whether real or hypothetical. State the as-
sumptions for each test of hypotheses. Do these assumptions seem reasonable?
What additional information would you like to have about the experiment?
Describe the results of your analysis.
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EXERCISE 15-1

EXERCISE 15-2

EXERCISE 15-3

In Exercise 4-12, we looked at sodium content and potassium content (no units
given) in perspiration of ten healthy women (Oja and Nyblom, 1989; from
Johnson and Wichern, 1982, page 182):

Woman 0 2 3 4 5 6 7 8 9 10
Sodium 48.5 65.1 472 532 5557 36.1 248 33.1 474 54.1
Potassium 9.3 80 109 12.2 9.7 7.9 140 7.6 85 113

a. Plot the observations.

b. Calculate the linear correlation coefficient for the sodium and potassium
measurements. Test the null hypothesis that the linear correlation coeffi-
cient between sodium and potassium levels in perspiration of healthy
women is 0.

c. Calculate the rank correlation coefficient for the sodium and potassium
measurements. Carry out a nonparametric test that sodium and potassium
levels in perspiration of healthy women are independent.

d. Compare your answers to parts (b) and (c). Discuss your findings.

In Exercise 4-11, we considered carbon monoxide concentration (parts per
million) and benzo(a)pyrene concentration (ug per 1,000 cubic meters) in 16
different air samples from Herald Square in New York City (Devore, 1982,
page 457; from “Carcinogenic Air Pollutants in Relation to Automobile Traffic
in New York City,” Environimental Science and Technology, 1971, pages 145—
150). The results are shown below as pairs of readings for each air sample:
(carbon monoxide, benzo(a)pyrene).

(2.8,.5) (155,.1) (19.0, .8) (6.8,.9) (55,1.0)
(5.6,1.1) (9.6,39)  (133,4.0) (55,18 (120,57)
(56,1.5)  (195,60) (11.0,73) (128,81) (55, 22)

(10.5,9.5)

a. Plot the observations.

b. Calculate the linear correlation coefficient for the two substances. Test the
null hypothesis that the linear correlation coefficient between carbon
monoxide readings and benzo(a)pyrene readings at Herald Square under
similar conditions is 0.

c. Calculate the rank correlation coefficient for the two substances. Test the
null hypothesis that carbon monoxide readings and benzo(a)pyrene read-
ings at Herald Square under similar conditions are independent.

d. Compare your answers to parts (b) and (c). Discuss your findings.

Scientists wanted to compare the drop net catch method and the sweep net
catch method of collecting grasshoppers (Walpole and Myers, 1989, page 439;
from the Department of Entomology, Virginia Polytechnic Institute and State
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University). They recorded the average number of grasshoppers caught in each
of 17 field quadrants using the two methods. They also recorded the average
height of plants in each quadrant. All measurements were made the same day.

Average Average height

Average drop  sweep net of plants
Quadrant  net catch catch (centimeters)
1 18.00 4.15 52.7
2 8.88 2.02 42.1
3 2.00 .16 348
4 20.00 233 27.6
5 2.38 .26 459
6 2.75 57 97.5
7 3.33 70 102.1
8 1.00 14 97.8
9 1:33 A2 88.3
10 1.75 11 58.7
1 4.13 .56 42.4
12 12.88 2.45 31.3
13 5.38 45 31.8
14 28.00 6.69 354
15 4.75 .87 64.5
16 1.75 J5 25.2
17 A3 .02 36.4

a. Construct a scatterplot matrix of these three variables.

b. Calculate the linear correlation coefficient for each pair of variables.
c. Calculate the rank correlation coefficient for each pair of variables.
d. Compare your answers to parts (b) and (c). Discuss your findings.

EXERCISE 15-4 Body weight and heart weight are shown below for each of 19 normal wood-
chucks (Walpole and Myers, 1989, page 398; from the Department of Veterinary
Medicine and the Statistics Consulting Center, Virginia Polytechnic Institute
and State University).

Body Heart Body Heart

Woodchuck  (grams) (grams)  Woodchuck  (grams) (grams)
1 4,050 11.2 11 3,690 10.8
2 2,465 12.4 12 2,800 14.2
3 3,120 10.5 13 2,775 122
4 5,700 13:2 14 2,170 10.0
5 2,595 9.8 15 2,370 123
6 3,640 11.0 16 2,055 12.5
7 2,050 10.8 17 2,025 11.8
8 4,235 10.4 18 2,645 16.0
9 2,935 1252 19 2,675 13.8

10 4,975 11.2
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EXERCISE 15-5

192}
i
o)

a. Plot the observations.

b. Calculate the linear correlation coefficient for body weight and heart
weight. Test the null hypothesis that the linear correlation coefficient for
body weight and heart weight in normal woodchucks is 0.

c. Calculate the rank correlation coefficient for body weight and heart weight.
Carry out a nonparametric test of the null hypothesis that body weight and
heart weight are independent in normal woodchucks.

d. Compare your answers to parts (b) and (c). Discuss your results,

Investigators simultaneously measured wind speed (m/s) on the ground and
via Seasat satellite at each of 12 times (Milton and Arnold, 1986, pages 325—
326; from “Mapping Ocean Winds by Radar,” NASA Tech Briefs, Fall 1982,
page 27).

Ground
measurement: 4.46

Satellite
measurement:  4.08

399 373 329 482 671 461 387 317 442 376 3.30

394 500 520 392 621 595 307 476 325 489 480

EXERCISE 15-6

a. Plot the observations.

b. Calculate the linear correlation coefficient for the ground and satellite mea-
surements. Test the null hypothesis that the linear correlation coefficient
for ground and satellite measurements of wind speed is 0.

¢. Calculate the rank correlation coefficient for the ground and satellite mea-
surements. Test the null hypothesis that ground and satellite measurements
of wind speed are independent.

d. Compare your answers to parts (b) and (c). Discuss your findings.

Researchers measured inulin clearance (ml/min) of seven living kidney do-
nors and the recipients of their kidneys (Hollander and Wolfe, 1973, page 239,
from Shelp et al., 1970).

Recipient: 61.4 63.3 63.7 80.0 273 84.0 105.0
Donor: 70.8 89.2 65.8 67.1 87.3 85.1 88.1

a. Plot the observations in any ways that seem helpful.

b. Calculate the linear correlation coefficient for recipient and donor inulin
clearance. Test the null hypothesis that the linear correlation coefficient for
recipient and donor inulin clearance is 0.

c. Calculate the rank correlation coefficient for recipientand donor inulin clear-
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ance. Carry out a nonparametric test that recipient and donor inulin clear-
ance measurements are independent.

d. Compare your answers to parts (b) and (c) and discuss your findings.

EXERCISE 15-7 Investigators wanted to study the effects of illumination on a person’s ability to
perform a task (Devore, 1982, page 300; from “Performance of Complex Tasks
Under Different Levels of llumination,” J. Illuminating Eng., 1976, pages 235—
242). A volunteer inserted a fine-tipped probe into the eyehole of a needle,
ten times with low light and a black background and ten times with more light
and a white background. The average time (units not given) at each light level
is shown below for each of nine volunteers.

Volunteer: 1 2 3 4 5 6 7 8 9
Higher light level: 25.85 28.84 32.05 25.74 20.89 41.05 25.01 2496 27.47
Lower light level: 18.23 20.84 22.96 19.68 19.50 24 .98 16.61 16.07 24.59

a. Plot the observations in any ways that seem helpful.

b. Calculate the linear correlation coefficient for the two sets of times. Test the
null hypothesis that the linear correlation coefficient of average times un-
der the two light levels is 0.

c. Calculate the rank correlation coefficient for the two sets of times. Carry
out a nonparametric test of the null hypothesis that the average times under
the two light levels are independent.

d. Compare your answers to parts (b) and (c) and discuss your findings.

EXERCISE 15-8 Consider the measurements of thickness and stiffness on six samples of a
flame-retardant fabric in Example 15-2, plotted in Figure 15-15.

a. Calculate the linear correlation coefficient for these two variables. Compare
the linear correlation coefficient with the rank correlation coefficient cal-
culated in Example 15-2.

b. Find the least squares line modeling stiffness as a function of thickness.
c. Test the null hypothesis that the slope in the straight-line model is 0.
d. Test the null hypothesis that the intercept in the straight-line model is 0.

e. What percentage of the variation in stiffness is explained by the straight-line
model? (That is, what is R2?)

f. Discuss your findings.

EXERCISE 15-9 In a study of the operation of a factory, investigators recorded 25 observations
of amount of steam used per month and average atmospheric temperature
(Draper and Smith, 1981, page 9):
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EXERCISE 15-10

Steam  Average Steam Average
used tempera- used tempera-
(pounds)  ture (°F) (pounds)  ture (°F)
10.98 353 9.57 391
11.13 29.7 10.94 46.8
12.51 30.8 9.58 48.5
8.40 58.8 10.09 59.3
927 61.4 8.11 70.0
8.73 71.3 6.83 70.0
6.36 74.4 8.88 74.5
8.50 76.7 7.68 721
7.82 70.7 8.47 58.1
9.14 57.5 8.86 44.6
8.24 46.4 10.36 334
1219 289 11.08 28.6
11.88 28.1

d.
e.

Plot steam versus temperature.

. Calculate the linear correlation coefficient  for steam and temperature.

Use the method of least squares to model steam used as a straight-line
function of average temperature.

Use residual plots to assess the fit of the model.
Discuss your findings.

Exercise 4-8 described an experiment studying plastic spools used in electric

m

otors. Wire is wound around the spools. When current passes through the

wire, the temperature of the spool rises. Investigators made two measurements
of temperature rise (°C) on each of 12 such plastic spools. The results are
shown below (Nelson, 1986, page 12).

Spool: 1
First reading; 45.0
Second reading:  44.9

45,
44,

2 3 4 5 6 7 8 9 10 1 12
1T 454 459 459 460 462 465 465 468 470 50.6
7 458 453 458 452 452 455 460 46, 455 500

€.

Plot the second reading versus the first reading,

- Find the least squares line modeling the second reading as a straight-line

function of the first reading.

Find the least squares line modeling the first reading as a straight-line func-
tion of the second reading,

» Draw the lines you found in parts (b) and (c) on your plot in part (a). Also,

draw the standard deviation line. Discuss the meaning of each line.
What relationship between the first and second readings would you expect
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EXERCISE 15-11

EXERCISE 15-12

if the two measurements were consistent? Do the two readings appear to
be consistent? Discuss your findings.

Researchers sampled 22 naval installations to examine man-hours spent monthly
on the clerical task of processing items (Myers, 1986, pages 25-26; from Pro-
cedures and Analyses for Staffing Standards Development: Data/Regression
Analysis Handbook, 1979, Navy Manpower and Material Analysis Center, San
Diego, California):

Items Man-hours ltems  Man-hours
processed monthly processed  monthly

15 85 527 2158
25 125 533 2,182
57 203 563 2,302
67 293 563 2,202
197 763 932 3,678
166 639 986 3,894
162 673 1,021 4,034
131 499 1,643 6,622
158 657 1,985 7,890
241 939 1,640 6,610
399 1,546 2,143 8,522

a. Plot monthly man-hours versus items processed.

|~

. Use the method of least squares to model monthly man-hours as a straight-
line function of items processed.

Test the null hypothesis that the slope is 0.
. Test the null hypothesis that the intercept is 0.
. Use residual plots to check model assumptions.

me AN

What percentage of the variation in monthly man-hours is explained by the
straight-line model? (That is, what is R??)

g. Discuss your findings.

Investigators studied physical characteristics and ability in 13 American football
punters. Each volunteer punted a football ten times. The investigators recorded
the average distance for the ten punts, in feet. They also recorded the average
hang time (time the ball is in the air before the receiver catches it) for the ten
punts, in seconds. In addition, the investigators recorded five measures of
strength and/or flexibility for each punter: right leg strength (pounds), left leg
strength (pounds), right hamstring muscle flexibility (degrees), left hamstring
muscle flexibility (degrees), and overall leg strength (foot-pounds). The results
are shown below (Walpole and Myers, 1989, pages 444—445, 450; from the
study “The Relationship Between Selected Physical Performance Variables and
Football Punting Ability” by the Department of Health, Physical Education, and
Recreation at the Virginia Polytechnic Institute and State University, 1983).
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Right leg Left leg Right Left
Punter Distance Hangtime  strength strength flexibility  flexibility Overall strength
1 162.50 4.75 170 170 106 106 240.57
2 144.00 4.07 140 130 92 93 195.49
3 147.50 4.04 180 170 93 78 152.99
4 163.50 418 160 160 103 93 197.09
5 192.00 4.35 170 150 104 923 266.56
6 171.75 4.16 150 150 101 87 260.56
7 162.00 4.43 170 180 108 106 219.25
8 104.93 3.20 110 110 86 92 132.68
9 105.67 3.02 120 110 90 86 130.24
10 117.59 3.64 130 120 85 80 205.88
11 140.25 3.68 120 140 89 83 153.92
12 150.17 3.60 140 130 92 94 154.64
13 165.17 3.85 160 150 95 95 240.57

EXERCISE 15-13

EXERCISE 15-14

a. In this exercise, we will consider only the two variables distance and hang
time. Plot the observations of distance and hang time in any ways that seem
helpful.

b. Find the least squares line modeling distance as a function of hang time.
¢. Find the least squares line modeling hang time as a function of distance.

d. In a scatterplot of distance versus hang time, plot the two lines you found
in parts (b) and (c). Also, plot the standard deviation line. Label each line.
Discuss the meaning and use of each of these three lines.

Refer to the experiment described in Exercise 15-12. For this exercise, con-
sider only the two variables distance and hang time.

a. Plot distance versus hang time.

b. Calculate the linear correlation coefficient for distance and hang time. Test
the null hypothesis that the linear correlation coefficient between distance
and hang time is 0.

¢. Calculate the rank correlation coefficient for distance and hang time. Carry
out a nonparametric test that distance and hang time are independent.

d. Compare your results in parts (b) and (c). Discuss your findings.

Children with congenital heart defects sometimes need a procedure called
heart catheterization. Surgeons pass a 3-mm diameter Teflon tube or catheter
into a major vein or artery. They push the tube into the heart to get information
on the heart’s condition. The surgeons have to guess at the appropriate length
of the catheter.

In this study, investigators determined the exact length of the catheter
needed in 12 children (Rice, 1988, pages 491-492; from Weindling, 1977). The
researchers used a fluoroscope to check when the catheter was in place.



m CHAPTER 15 Correlation, Regression, and the Method of Least Squares

EXERCISE 15-15

Height, weight, and correct catheter length are shown below for each of the
12 children.

Catheter
Height Weight length
Child (inches) (pounds)  (centimeters)

1 42.8 40.0 37.0
2 63.5 93.5 49.5
3 37.5 355 345
4 39.5 30.0 36.0
5 45.5 52.0 43.0
6 38.5 17.0 28.0
7 43.0 385 37.0
8 22.5 8.5 20.0
9 37.0 33.0 335
10 23.5 9.5 30.5
11 33.0 21.0 38.5
12 58.0 79.0 47.0

a.

Construct a scatterplot matrix of height, weight, and catheter length.

Find the linear correlation coefficient for height and weight, for height and
catheter length, and for weight and catheter length.

. Carry out a simple linear regression analysis, modeling catheter length as a

straight-line function of height.

Carry out a simple linear regression analysis, modeling catheter length as a
straight-line function of weight.

Carry out a simple linear regression analysis, modeling weight as a straight-
line function of height.

Discuss your results. Does it look like surgeons could determine the cor-
rect catheter length from the child’s height or weight?

Refer to the experiment described in Exercise 15-12. For this exercise, con-
sider the variables left leg strength, right leg strength, and distance.

a.

b.

C.

Construct a scatterplot matrix of left leg strength, right leg strength, and
distance.

Find the linear correlation coefficient for left and right leg strength, for left
leg strength and distance, and for right leg strength and distance.

Carry out a simple linear regression analysis modeling distance as a
straight-line function of right leg strength.

. Carry out a simple linear regression analysis modeling distance as a

straight-line function of left leg strength.

Carry out a simple linear regression analysis modeling left leg strength as a
straight-line function of right leg strength.

Discuss your results.
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EXERCISE 15-16

EXERCISE 15-17

- EX

In a calibration study in atomic absorption spectroscopy, investigators re-
corded instrument response in absorbance units at each of five concentrations
of copper in solution (Carroll, Sacks, and Spiegelman, 1988):

Amount of
copperin  Instrument
solution  response in
(micrograms/ absorbance

Run milliliter) units
1 .0 .045
2 .0 .047
3 .0 .051
4 .0 .054
5 .050 .084
6 .050 .087
7 .100 F15
8 .100 116
9 .200 .183

10 .200 191
11 500 395
12 .500 .399

a. Plot instrument response versus copper concentration.

b. Use the method of least squares to model instrument response as a straight-
line function of copper concentration.

c. Test the null hypothesis that the slope is 0.
d. Test the null hypothesis that the intercept is 0.

e. What percentage of the variation in instrument response is explained by
the straight-line model? (That is, what is R? ?)

f. Use residual plots to assess the fit.

g. Discuss your results.

Investigators studied the time to failure of samples of electrical insulation for
motors in accelerated life testing (Nelson, 1986, pages 20—~21). The investiga-
tors carried out the accelerated life test at four temperatures, with ten samples
of insulation at each temperature.

Temper-

ature (°C) Hours to failure
190 7,228 7,228 7,228 8,448 9,167 9,167 9,167 9,167 10,511 10,511
220 1,764 2,436 2,436 2,436 2,436 2,436 3,108 3,108 3,108 3,108
240 1175 1,175 1,521 1,569 1,617 1,665 1,665 1,713 1,761 1,953
260 600 744 744 744 912 1,128 1,320 1,464 1,608 1,896
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EXERCISE 15-18

EXERCISE 15-19

a. Plot hours to failure versus temperature.
b. Find the linear correlation coefficient for failure time and temperature.

0

Plot the logarithm of failure time versus the reciprocal of temperature.

d. Find the linear correlation coefficient for the logarithm of failure time and
the reciprocal of temperature.

e. Carry out a simple linear regression analysis modeling the logarithm of
failure time as a straight-line function of the reciprocal of temperature.

f. Use residual plots to assess the fit of the model in part (e).
g. Discuss your findings.

Investigators recorded stopping distance of a car on a road, for several veloci-
ties (Rice, 1988, page 505; from Brownlee, 1965, pages 371-372):

Velocity Stopping

(miles distance
per hour) (feet)
20.5 15.4
20.5 13.3
30.5 33:9
40.5 731
48.8 113.0
57.8 142.6

a. Plot stopping distance versus velocity.

b. Use the method of least squares to model stopping distance as a straight-
line function of velocity.

¢. What percentage of the variation in stopping distance is explained by the
model in part (b)? (That is, what is R??)

d. Use residual plots to assess the fit of the model in part (b).
e. Plot the square root of stopping distance versus velocity.

f. Use the method of least squares to model the square root of stopping dis-
tance as a straight-line function of velocity.

g. What percentage of the variation in the square root of stopping distance is
explained by the model in part (f)? (That is, what is R??)

h. Use residual plots to assess the fit of the model in part (f).

i. Discuss your findings.

An engineer subjected uniform pieces of stainless steel to different levels of
stress, and recorded the time to rupture for each piece. He tested six pieces of
steel at each of four stress levels. Stress levels are reported in pounds per
square inch (psi). The results are shown below (Schmoyer, 1986; from Garo-
falo et al., 1961):
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Stress
level (psi) Rupture time (hours)
28.84 1,267 1,637 1,658 1,709 1,785 2,437
31.63 170 257 265 570 594 779
34.68 76 87 96 115 122 132
38.02 22 37 39 41 42 43
a. Plot rupture time versus stress level.
b. Plot the logarithm of rupture time versus stress level.

Use the method of least squares to model the logarithm of rupture time as
a straight-line function of stress level.

Test the null hypothesis that the slope is 0.

e. Test the null hypothesis that the intercept is 0.

What percentage of the variation in the logarithm of rupture time is ex-
plained by the model in part (c)? (That is, what is R??)

Use residual plots to check model assumptions.

. Discuss your findings.

Schmoyer (1986) plotted the logarithm of rupture time versus the loga-
rithm of stress level. Construct such a plot. Find 2 = #? for these two
variables. Compare with your answers to parts (b) and (f).

EXERCISE 15-20  As part of an environmental impact study, investigators looked at the relation-
ship between stream depth and rate of flow (Rice, 1988, page 463; from Ryan,
Joiner, and Ryan, 1976). The results are shown below (units not given).

Depth: 34 .29
Flow rate: 636 319

.28 42 .29 A1 76 73 46 40
734 1.327 487 924 7.350 5.890 1.979 1.124

Plot flow rate versus depth.

. Use the method of least squares to model flow rate as a straight-line func-

tion of depth.

Plot residuals versus predicted flow rates for the model in part (b). Does
the plot look like random scatter, as it would for an adequate model?

Plot the logarithm of flow rate versus the logarithm of depth.

Use the method of least squares to model the logarithm of flow rate as a
straight-line function of the logarithm of depth.

Use residual plots to assess the model in part (e).
Discuss your findings.
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EXERCISE 15-21  Scientists designed this experiment to study a method for extracting crude oil
. called the carbon dioxide flooding technique (Mendenhall and Sincich, 1988,
page 624; from Wang, 1982). In field use, workers flood carbon dioxide into
oil pockets. The carbon dioxide replaces the crude oil, making the oil easier
to extract. In this experiment, scientists dipped carbon dioxide flow tubes into
oil pockets with known amounts of oil. They tried three carbon dioxide flow
pressures and three dipping angles for the flow tubes. The response variable
is the percentage of oil recovered. Carbon dioxide flow pressure is recorded in
pounds per square inch (psi). The dipping angle is recorded in degrees.

Pressure: 1,000 1,000 1,000 1,500 1,500 1,500 2,000 2,000 2,000
Angle: 0 15 30 0 15 30 0 15 30
Recovery: 60.58 7272 79.99 66.83 80.78 89.78 69.18 80.31 91.99

a. Construct a scatterplot matrix of these three variables.

b. What do you notice about the relationship between pressure and angle? We
could think of this as a two-way factorial experimental design. Each factor
(pressure and angle) has three levels. The linear correlation coefficient
between pressure and angle is 0. This is a feature of a good experimental
design.

c. In the plot(s) containing both pressure and recovery, connect the points
with the same values for angle. This creates three profiles, one for each
angle. Similarly, in the plot(s) containing both angle and recovery, connect
the points with the same values for pressure. This creates three more pro-
files, one for each pressure. In each of these two plots, are the profiles
parallel? Parallel profiles suggest no interaction effect of pressure and angle
on recovery. Profiles that are not parallel suggest there is an interaction
effect. (For a discussion of interaction effects on a response variable, see
Chapter 13.)

d. Use multiple regression methods to model recovery as a function of pres-
sure, angle, and the product of pressure and angle. Use residual plots to
assess the fit. Discuss your findings.

e. Use multiple regression methods to model recovery as a function of pres-
sure and angle. Use residual plots to assess the fit. Compare these results
with those of part (d).

EXERCISE 15-22  Refer to the experiment described in Exercise 15-12.

a. Use multiple regression to model distance as a function of right leg
strength, left leg strength, right flexibility, left flexibility, and overall leg
strength.

b. Starting with the model in part (a), go through the steps for a backward
regression, stopping when the predictor variable(s) have small p-values.
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EXERCISE 15-23

EXERCISE 15-24

¢. Use residual plots to assess the final model in part (b).

d. Construct a scatterplot matrix of all the variables in the final model in
part (b).
€. Discuss your findings.

Refer to the experiment described in Exercise 15-12.

a. Use multiple regression to model hang time as a function of right leg
strength, left leg strength, right flexibility, left flexibility, and overall leg
strength.

b. Starting with the model in part (a), go through the steps for a backward
regression, stopping when the predictor variable(s) have small p-values.

¢. Use residual plots to assess the final model in part (b).

d. Construct a scatterplot matrix of all the variables in the final model in
part (b).

e. Discuss your findings.

Researchers conducted this experiment to evaluate the effect of asphalt content
on permeability of a type of concrete (Mendenhall and Sincich, 1988, page 495;
from Woelfl et al., 1981). They prepared four samples of concrete with each of
six levels of asphalt content. They then measured water permeability as the
amount of water lost when de-aired water flowed across a sample. Asphalt
content is recorded as percentage by total weight of the concrete mix. Perme-
ability is recorded in inches per hour.

Asphalt  Perme- Asphalt  Perme- Asphalt Perme-

content  ability content  ability content ability
3 1,189 5 1,227 7 853
3 840 5 1,180 7 900
3 1,020 5 980 7 733
3 980 5 1,210 7 585
) 1,440 6 707 8 395
4 1,227 6 927 8 270
4 1,022 6 1,067 8 310
4 1,293 6 822 8 208

a. Plot permeability versus asphalt content.

b. Calculate the linear correlation coefficient for permeability and asphalt con-
tent. What percentage of the variation in permeability measurements is ex-
plained by a straight-line model of permeability as a function of asphalt
content?

¢. Does it seem reasonable to model permeability as a straight-line function
of asphalt content?
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d. Use multiple regression to model permeability as a function of asphalt con-
tent and the square of asphalt content.

e. What percentage of the variation in permeability measurements is ex-
plained by the quadratic model in part (d)? (That is, what is R*?)

f. Use residual plots to assess the model in part (d).
g. Discuss your findings.



