Sample Size Determination for a single sample: Suppose we want to be able to detect a difference between a sample mean and a "standard" mean \boldsymbol{M}, if the absolute value of the difference is at least Δ. We do not want the interval $\boldsymbol{x b a r} \pm \boldsymbol{c} \times \boldsymbol{S E}(\boldsymbol{x b a r})$ to contain \boldsymbol{M} if the absolute value of $(\boldsymbol{x b a r}-\boldsymbol{M})$ is greater than or equal to Δ. (We say such a difference is "statistically significant".) Equivalently, we do not want the interval $(\boldsymbol{x b a r}-\boldsymbol{M}) \pm \boldsymbol{c} \times \boldsymbol{S E}(\boldsymbol{x b a r})$ to contain 0 if $|\boldsymbol{x b a r}-\boldsymbol{M}| \geq \Delta$. Then we want $\boldsymbol{c} \times \boldsymbol{S E}(\boldsymbol{x b a r}) \leq \Delta$. Since $\boldsymbol{S E}(\boldsymbol{x b a r})=\boldsymbol{s} / \boldsymbol{s q r t}(\boldsymbol{n})$, the inequality we need to solve is: $n \geq c^{2} s^{2} / \Delta^{2}$.

Example: Our company is developing a new drug to lower blood pressure. Here is the drop in BP (mm Hg) we see in a sample of 5 volunteers: $8,9,11,12,14$.

One sample t-test of $\mathrm{mu}=10 \mathrm{vs}$ not $=10$

Variable	N	Mean	StDev	SE	95% CI	T	P
change in BP	5	10.80	2.39	1.07	$(7.84,13.76)$	0.75	0.495

How big must the sample size be to say that the mean of the sample is "significantly" greater than 10 mm Hg? We have $\Delta=\mathbf{0 . 8} \mathrm{mm}$ Hg. To be conservative, let $\mathbf{c}=\mathbf{2 . 5}$ and $\mathbf{s}=\mathbf{2 . 4}$.
Then $n \geq 2.5^{2} \times 2.4^{2} / \mathbf{0 .} \mathbf{8}^{2}=\mathbf{5 6 . 2 5}$. We need a sample of at least 57 volunteers. (If we let $\mathrm{c}=2$, the sample size estimate becomes $\mathrm{n}=36$.)

Another example: In the past, you have been able to "cure" 60% of patients with a given disease. You have a new treatment to test and you want to say it is better than the old treatment if it "cures" at least 70\% of patients. How many patients with the disease to you need to treat with the new treatment? We will be "conservative" and let $\mathbf{s}^{2}=\mathbf{0 . 5} \times \mathbf{0 . 5}=\mathbf{0 . 2 5}$ and let $\mathbf{c}=\mathbf{2 . 5}$. Then $\Delta=.7-\mathbf{6}=. \mathbf{1}$ and $n \geq 2.5^{2} \times(0.5)^{2} / 0.1^{2}=156.25$ or 157 patients. (If we let $\mathrm{c}=2$, the estimate is $\mathrm{n}=100$ patients.)
[Recall that to use this large sample analysis for $0 / 1$ data, we need at least 5 observations in each of the 2 categories, which seems reasonable here.]

Sample Size Determination for comparison of 2 means: Suppose we want to be able to detect a "significant" difference between 2 population means if the absolute value of the difference is greater than or equal to Δ.
We do not want the confidence interval (xbar - ybar) $\pm \boldsymbol{c} \times \boldsymbol{S E}(\boldsymbol{x b a r}-\boldsymbol{y b} \boldsymbol{b} \boldsymbol{a r})$ to contain 0 if
$|\boldsymbol{x b a r}-\boldsymbol{y b a r}| \geq \boldsymbol{\Delta}$ (we will say such a difference is "statistically significant").
Therefore, we want $\boldsymbol{c} \times \boldsymbol{S E}(\boldsymbol{x b a r}-\mathbf{y b a r}) \leq \boldsymbol{\Delta}$.
Since $\boldsymbol{S} \boldsymbol{E}(\boldsymbol{x b a r}-\boldsymbol{y b a r})=\boldsymbol{s} \times \boldsymbol{s q r t}(2 / n)$, the inequality we need to solve is: $n \geq 2 \boldsymbol{c}^{2} s^{2} / \Delta^{2}$.
Here \boldsymbol{s}^{2} is the pooled estimate of the variance of the 2 populations sampled.
Example: Maximal oxygen capacity was measured for professional women athletes in 2 sports:
basketball speedskating (units not given)
$42.3 \quad 46.1$
42.9
52.0
49.6

N Mean StDev SE Mean
basketball $\quad 344.93 \quad 4.05 \quad 2.3$
speedskating $\quad 249.05 \quad 4.17 \quad 3.0$
Difference $=\mathrm{mu}($ basketball $)-\mathrm{mu}$ (speedskating) \quad Estimate for difference: -4.12
95\% CI for difference: (-16.01, 7.77)
2- Sample t-test of difference $=0$ (vs not $=$): T-Value $=-1.10 \mathrm{P}$-Value $=0.351 \mathrm{DF}=3$
Both use Pooled StDev $=4.0927$
The difference between basketball players and speedskaters is not significant for mean lung capacity. What sample size do we need to see a significant difference in average lung capacity between basketball players and speedskaters? We want to be able to detect a difference of at least 49.05-44.93=4.12 units. Let $\boldsymbol{\Delta}=4$ and $\boldsymbol{s}=4.1$ (pooled StDev shown above). To be conservative, let $\boldsymbol{c}=2.5$. Then $n \geq 2 c^{2} s^{2} / \Delta^{2}$ becomes: $n \geq 2 \times 2.5^{2} \times 4.1^{2} / 4^{2}=13.1$. So we need to plan on 14 or more athletes in each group.

