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Are there any differences in average fruit yield among apple trees treated with
four different fertilizer supplements? Do four thermometers all give the same
average reading of the melting point of a substance? What are the relative bio-
logical effects, on average, of three different anesthetics? Each of these ques-
tions concerns a comparison of three or more measures of central tendency.

We have already discussed ways to compare two measures of central
tendency, considering both two-sample and paired-sample experimental de-
signs. Now we consider inferences about more than two measures of central
tendency, in single-factor experiments and randomized block experiments.
The single-factor experiment is an extension to several populations of the two-
sample experimental design, whereas the randomized block experiment is an
extension of the paired-sample experimental design.

In a single-factor experiment, we have several independent random
samples, one from each of several populations of interest. We want to us¢ the
samples to compare the means of the populations. The single-factor experi-
ment is an extension of the two- (independent) sample experimental design
we discussed in Chapter 11. In Section 12-2 we discuss the classical, paramet-
ric, way to test whether several means are equal: one-way analysis of variance.
We consider a nonparametric analysis, the Kruskal-Wallis test, in Section 12-3.

A randomized block experimental design is an extension of the paired-
sample design. In Section 12-4 we discuss the classical, parametric, analysis of
a randomized block experiment. We consider a nonparametric analysis, Fried-
man’s test, in Section 12-5.

We begin in Section 12-1 with a fairly crude, but useful, approach to
comparing several means: the Bonferroni method of comparing means (or
medians) two at a time.

Comparing Measures of Central Tendency Two at a Time
Using the Bonferroni Method

Why do we need special procedures for comparing more than two location
parameters? Why can we not just compare them two at a time? There is a
problem with that strategy. To illustrate, suppose we have four independent
random samples and we want to make inferences about the medians of the
populations sampled.

For simplicity, let’s consider just two possible comparisons. Suppose we
test whether the medians of the first two populations are equal:

Hy: M, =M, versus H,: M, #* M,
and we also test whether the medians of the other two populations are equal:

Hy: M, =M, versus H,: M;# M,

Since the samples are independent, we can say these two tests are independent.
For each of these two sets of hypotheses, we use a test statistic to measure
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Comparing Measures of Central Tendency Two at a Time Using the Bonferroni Method

how far the observed results are from what we would expect under the app;
priate null hypothesis. To test the first set of hypotheses, we select a decisi
rule for deciding whether the wo population medians M, and M, are diff;
ent—say, with significance level 05, Similarly, we choose a decision rule f
deciding whether the two population medians M, and M, are different, al
with significance level 05,

Consider the two tests together. We can think of 2 combined null h
pothesis that the first two population medians are equal and the other rw
population medians are equal:

Hy,: M, = M, and M, = M,

The combined alternative states that at least one of these equalities does nc
hold:

Hy: M, # M, or M, # M,

We reject the combined nuj] hypothesis if either test statistic is in the corre
sponding rejection region. What is the significance level for this combinec
criterion?

The probability that the results are consistent with the null hypothesis
Hy: M, = M, when these two medians really are equal is 1 — 05 = 95
(because our significance level is .05). Likewise, the probability that the results
are consistent with the null hvpothesis #, . M, = M, when these two medians
really are equal is 1 — 5 = 95,

Suppose the combined null hypothesis is true, so M, = M, and M, =M,
The chance the results are consistent with this combined nul) hypothesis is
95 X 95 = 9025, because the probability of two independent events occur-
ring together is the product of the separate probabilities (Chapter 6). There-
fore, the significance level for the combined test is 1 — 9025 = 0975, almost
twice the significance level for either of the separate tests! We have nearly a
10% chance of rejecting the combined null hypothesis when that combined
null hypothesis is really true (that is, when M, = Myand M, = M,). To test the
overall null hypothesis #,: a1, = M, = M, = M, is even worse, since more
pairwise comparisons are necessary and they are not alj independent.

One way around this difficulty is to use the Bonferroni method for con-
trolling the overall significance level (Rice, 1988, page 384). Suppose m pair-
wise comparisons are necessary to test a combined null hypothesis. We select
a decision rule for each pairwise comparison. Denote the m significance levels
associated with these decision rules by a, through a,,. If a is the significance
level for the overall test, then a is less than or equal to the sum of g, through
«,, (Exercise 12-16).

The Bonferroni method is 4 technique for obtaining an upper bound on
an overall significance level.

Suppose we have m Separate tests of hypotheses, Using the significance
level approach, we have 2 decision rule and associated significance leve]
for each test. For a combined test of hvpotheses, we say the results are
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inconsistent with the combined null hypothesis if any on¢ of the m sepa-
rate test statistics is in its associated rejection region. The significance level
for this combined test is less than or equal to the sum of the significance
levels of the separate tests.

By making the pairwise significance levels a, through a,, small, we can control
the size of the overall significance level a. We will use this idea for the multiple
comparisons procedures we discuss in Sections 12-2 and 12-3, when we want
to calculate interval estimates for the differences between measures of central
tendency for three or more populations.

Multiple comparisons of means refers to the process of comparing sev-
eral means. For our purposcs, multiple comparisons refers to the process
of comparing several means, two dt a time.

There is another way around the difficulty of comparing several mea-

sures of central tendency in a single-factor experiment. We can use¢ one-way
analysis of variance (Section 12-2) or the Kruskal-Wallis test (Section 12-3)
to test the null hypothesis that the population means (or medians) are all
equal. One-way analysis of variance is an extension of the two-sample 7 test
(Section 11-3) tO several independent samples. The Kruskal-Wallis test is an
extension to several independent samples of the Wilcoxon—Mann-Whitney
test for two independent samples (Section 11-4).

Inferences About Several
Experiment: One-Way Analysis of Variance

Means in a Single-Factor

In a single-factor experiment, we have several independent random samples
and we want to use these observations to make inferences about the popula-
tions sampled.

In a single-factor experiment, we have several independent random
samples and we want to make inferences about the populations sampled.

We are here concerned with making inferences about the means of the popu-
lations sampled. Suppose we have k independent random samples, one from
each of k populations. For a classical analysis, we assume that the values in
each population follow a Gaussian distribution and that all & of these Gaussian
distributions have the same variance, o2 Let g, through p, denote the &
population means. We want to test the null hypothesis that these means are
all equal:

H,: ., through . are all equal

The alternative hypothesis is that these means are not all equal:

H,: w, through g are not all equal
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EXAMPLE 12-1

We call the procedure for testing these hypotheses one-way analysis
variance,

One-way analysis of variance is the classical, parametric, approach to
testing the null hypothesis that the population means are all equal in a
single-factor experiment,

Let’s look at an example; then we wil] discuss one-way analysis of varjance an
apply it to this example.

Does a nitrogen supplement improve apple production? To address this ques
tion, researchers divided Jonathan apple trees into four treatment groups. The
applied no nitrogen to the trees in the control group. They provided a nitroger
supplement to the trees in the other three groups: either urea, potassium nj
trate plus calcium, or ammonia plus ammonium sulphate. The researchers
stored fruits of 42 trees for 4 months. They then weighed samples of fruit from
each tree. Fruit weight, in grams, for each tree is shown below (data contrib-
uted by D. A. Ratkowsky to a collection of problems in Andrews and Herzberg,
1985, pages 355-356; from D, A. Ratkowsky and D. Martin, 1974). The research-
ers wanted to use the sample weights to compare mean fruit production under
the four treatments.

Ammonia
Potassium and

nitrate and  ammonium

Control Urea calcium sulphate

85.3 117.5 127.1 77.4
113.8 98.9 108.5 91.3
92.9 108.5 99.9 91.3
48.9 104 .4 124.8 81.7
99 4 96.8 945 89.2
79.1 945 99 .4 69.6
70.0 90.6 117.5 69.0
86.9 100.8 135.0 73.7
87.7 96.0 85.6 75.1
67.3 99.9 102.5 87.0

valid comparisons across treatment groups?

We will use one-way analysis of variance to test the null hypothesis that
the mean fruit weight is the same for all four treatments in Example 12-1.
Before we can discuss this procedure, we need some notation.
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FIGURE 12-1  Fruit weight (in grams) from apple trees in four treatment groups,
Example 12-1 '

One-Way Analysis of Variance for a Single-Factor Experiment

Suppose we have k samples. Let Y, denote the observation on experimental
unit 7 in sample Z Let # denote the sample mean, s} the sample variance, and
n; the size of sample i. As we did in the two-sample case, we can combine the
separate sample variances into a pooled estimate of o2 This pooled estimate
of o* is a weighted average of s? through s3, calculated as follows:

The pooled estimate of the common population variance o? in 2 single-
factor experiment is
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Common names for this varfance estimator g2 are residual mean Square,
within-groups mean Square, and mean Square within,

We use the notation s because it is an estimate of o2 hased on residuals
Recall that a residyg] is the difference between an observation and 3 summary
Of estimate for the mean of the observation, In the case of 4 single-factor
€Xperiment, a residual jg the difference between ap observation and s
8roup mean, (For more on residuals, see Tukey, 1977

Aresidual is the difference between an observation and an estimate of its
expected value,

In a single-factor experiment, a residuaf js the difference Y, — ¥, between
an observation and the average of all the observations in the same group.

In a single-factor €xperiment, the £roup mean is a summary value, estimating
the mean of the population sampled. We see from the definition that s? is an
average of the squares of residuals Y, — Y, hence the name residual mean
square.

The betweengrozqos variance estimate is another measure of variation
we need for our analysis:

The between»groups variance estimate in g single-factor experiment is
£

En/()_/; - )—;)2
—

i ]

The test statistic for testing the null hypothesis that the population means
are all equal, in a single-factor €xperiment, is

Test statistic =
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ulations with the same variance. Then under the null hypothesis the test sta-
tistic has the F distribution with £ — 1 numerator degrees of freedom and
N — k denominator degrees of freedom.

The numerator degrees of freedom and denominator degrees of free-
dom are two constants (or parameters) that define an F distribution. The test
statistic defined above has an F distribution under the null hypothesis that all
the population means ar¢ equal. The numerator degrees of freedom of this F
distribution equal & — 1, used in calculating the numerdaior of the test statistic,
. (We call & ~ 1 the degrees of freedom associated with the between-groups
mean square s3.) The denominator degrees of freedom of this F distribution
equal N — k, used in calculating the denominator of the test statistic, §i.
(We call N — k the degrees of freedom associated with the residual mean
square s; D)

In general, an F distribution has numerator degrees of freedom d, and
denominator degrees of freedom d,. We denote such an F distribution by
F(d;, d). An F distribution is a continuous probability distribution that is
skewed to the right. A random variable having an F distribution takes on posi-
tive values only. (Our test statistic is a ratio of two variance estimates, and
so can have only positive values.) The shape of an F distribution is illustrated
in Figure 12-2. Table D at the back of the book lists values of ¢ for which

Value of the probability function evaluated at x
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FIGURE 12-2 Hllustration of the shape of an F distribution
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EXAMPLE 12-1
{continued)

P(F = ¢) has specified values, where F is a random variable having selecte
numerator degrees of freedom 4, and denominator degrees of freedom d,

An F distribution is also called a variance ratio distribution. Qur test sta
tistic is a ratio of two variance estimates, which has an F distribution if the nul
hypothesis is true. Even though we are comparing hypotheses about popula
tion means, we call the procedure analysis of variance because our test statis
tic is a ratio of two variance estimates,

We know that s? is an estimate of o2, the variance in each population
while s is a measure of variation among the sample means. If the null hypothe.
sis is true, the sample means ¥, through 7, all estimate the common mean of
the & populations. Then s3 is another estimate of o2 If the null hypothesis i
fnot true, ¥, through ¥, do not all estimate the same mean. Then $§ estimates
the variation within populations plus the variation between the population
means u, through w,. Therefore, if the null hypothesis is not true, s§ estimates
something larger than o2,

With this in mind, we see that values of the test statistic near 1 are consis-
tent with the null hypothesis. Values of the test statistic much larger than 1 are
inconsistent with the null hypothesis. Using these ideas, we outline the signifi-
cance level approach to one-way analysis of variance.

The significance level approach to comparing several means in

a single-factor experiment, using one-way analysis of variance

1. The hypotheses are H,: &, through w, are ali equal, and H,: u, through g,
are not all equal, where p, through g, represent the population means.

. The test statistic is s#/s2, as defined above.

3. Assume that we have independent random samples from £ Gaussian distri-
butions with equal variances. Let N denote the sum of the & individual
sample sizes. Then under the null hypothesis, the test statistic has the F
distribution with # — 1 numerator degrees of freedom and N — & de.
norninator degrees of freedom.

4. Select significance level q.

5. Let F denote a random variable having the F(k ~ 1, N — k) distribution.
Find ¢ from Table D at the back of the book suchthat AF=¢)=1 - a
Then the acceptance region is the interval [0, ¢); the rejection region is the
interval {¢, @),

6. The decision rule is:

ro

If test statistic < ¢, say the results are consistent with the null hypothesis.
If test statistic = ¢, say the results are inconsistent with the null hypothesis.
7. Carry out an experiment that satisfies the conditions in step 3. Calculate the

test statistic in step 2. Use the decision rule in step 6 to decide whether the
results are consistent with the null hypothesis.

In Example 12-1, we want to compare the effects of several nitrogen supple-
ments upon fruit production in Jonathan apple trees. The null hypothesis states
that the mean fruit weight is the same for all four treatments. The alternative
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states that the mean fruit weight is not the same for all four treatments. We can
rewrite these hypotheses as

HO: e = Ho = Mo = My
H,: The four means are not all equal

where each subscript denotes a treatment group.

Assume that we have four independent random samples from Gaussian
distributions with equal variances. Then under the null hypothesis, our test
statistic would have the F distribution with ¢ — 1 = 3 numerator degrees of
freedom and 42 — 4 = 38 denominator degrees of freedom (since the total
sample size N equals 42 and there are k = 4 treatment groups).

To verify the independence assumption, we would have to know more
about how the experiment was conducted. What suggestions do you have for
ensuring independence?

Figure 12-1 gives us no reason to doubt that each sample comes from a
Gaussian distribution, since each of the four sample distributions is fairly sym-
metric. (One-way analysis of variance tends to be robust to deviations from the
Gaussian assumption.)

The variation in fruit weights is somewhat larger in the control group
and the potassium nitrate plus calcium group than in the other two groups, the
least variation being in the ammonia plus ammonium sulphate group. How-
ever, these differences in variation are not extreme enough to make one-way
analysis of variance seem inappropriate. (As with the two-sample ¢ test, one-
way analysis of variance is fairly robust to deviations from the equal-variance
assumption. As long as the variances are not too different, actual significance
levels and confidence levels are close to the levels we choose.)

Let’s use significance level @ = .01. Since 1 — a = .99, we use the last
page of Table D. For our test, there are 3 numerator degrees of freedom and
38 denominator degrees of freedom. Table D shows 3 numerator degrees of
freedom but not 38 denominator degrees of freedom. We must choose either
30 or 40 for denominator degrees of freedom in the table. To be conservative
(less likely to reject the null hypothesis), we will use the smaller value, 30.
Then looking in the column for d, = 3 and the row for d, = 30, we find
¢ = 4.51. The acceptance region is [0, 4.51), the rejection region is [4.51, ),
and the decision rule is:

If test statistic < 4.51, say the results are consistent with the null hypothesis
that there is no difference in mean fruit weight among the four treatments.

If test statistic = 4.51, say the results are inconsistent with the null hypothesis,
suggesting there is a difference in mean fruit weight among the four
treatments.

The calculations we need for our analysis are outlined in Table 12-1.

Since the test statistic equals 11.28, we say the results are inconsistent with
the null hypothesis, at the 01 significance level. The p-value, P(test statistic =
11.28 when H, is true), is less than 01. This experiment SUggests that mean
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TABLE 12-1 Steps in calculating the one-

way analysis of variance test statistic

Control Urea calcium sulphate
Y. = 83.130 Y. = 99318 Y, = 109.600 Y, = 80.530

N = 42 Y = 93683
(10 = 1)(327.949) + (11 ~ N(77.

Ammonia
Potassium and
nitrate and ammonium

53 = 230.006 i = 76.525
ny =11 ng, =10

662) + (11 — 1)(230.006) + (10 — 1)(76.525)

= 176.76

52 =

10(83.130 ~ 93.683) + 11(99.31

42 - 4

8 — 93.683) + 11(109.600 — 93.683)" + 10(80.530 — 93.683)

s§ =

It

1,993.27

1 X
Test statistic = 2032/ = 11.28

TABLE 12-2 Anal

4 -1

Numerator degrees of freedom = 4 — 1=3

176.76 Denominator degrees of freedom = 42 - 4 = 38

ysis of variance table for a single-factor experiment

Source of

variation squares freedom square
k

Treatments
(between groups)

Residual
(within groups)

Total proy M B

treatments. Looking at Figure 12-1, can
group means are nearly the same and which

fruit weight is not the same for all four

you make a dec

Sum of Degrees of Mean

2 n(¥, - v k=1 S
k n;
2 (Yn V,)Z N -k st
=1 j=1
k n;

Y, — v N =1

ision as to which

are very different?

The Analysis of Variance Table for One-Way Analysis of Variance

We often summarize the calculations of one-way analysis of variance in a table
called an anabysis of variance table Computer output for one-way analysis of
variance is displayed in such a wble. A general form of analysis of variance
table for a single-factor experiment is shown in Table 12-2.

Computer output often has another column at the right of the table,
showing the p-value associated with the test statistic. The last row in the table,
the total row, is the sum of the previous two rows for sum of squares and
degrees of freedom. We include this total row for completeness; we do not
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EXAMPLE 12-1

fcontinued)

TABLE 12-3 Analysis of variance table for
the single-factor experiment in Example 12-1

Degrees
Sum of of Mean Test
Source of variation squares freedom square statistic p-value
SO e e B
Between groups 5,979.8 3 1,993.27 11.28 0.0000
Residual 6,716.9 38 176.76
(within groups)
Total 12,696.7 41

use it in our test of hypotheses. The analysis of variance table for Example 12-1
is shown in Table 12-3. The p-value is listed as 0.0000. This means that the
p-value was less than 0001,

If our results are inconsistent with the null hypothesis, we would like to
see where the differences are. Which population means seem to be similar and
which seem to be different? To address this question formally, we can usc 2
mudtiple comparisons procedure. There are many ways to make multiple com-
parisons. We will use a procedure based on the Bonferroni method.

We calculate a confidence interval for the difference ., — p; between the
means for populations 7 and j as

T
n,o "

B

*C

The subscripts i and j refer to samples ¢ and j, respectively. The residual mean
square s? is the pooled (within-groups) variance estimate based on the &
samples. The number ¢ comes from the ¢ distribution with N — k& degrees of
freedom, where N is the total sample size and & is the number of samples.
Suppose we calculate m such confidence intervals, making m pairwise
comparisons of population means. Denote the confidence levels associated with
these intervals by A, through A,,. Then the confidence level associated with
the m intervals taken together is greater than or equal to 1 — 272, (1 — A, ).

The Bonferroni method is a technique for obraining a lower bound on
an overall confidence level.

Suppose we make m pairwise comparisons of means, with confidence lev-
els A, through A,,. Using the Bonferroni method, we say the confidence
level for the m intervals taken together is greater than or equal to

1~(1—A1)—(1—Az)—"'~(1~Am)~

Let's make multiple comparisons of mean fruit weights in Example 12-1, using
the Bonferroni method. Because there are four groups, there are (3) = 6 pos-
sible pairwise comparisons, and we will let m = 6. Each separate interval will
have confidence level .99. The total sample size is 42 and there are four
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TABLE 12-4 Multiple comparisons for Example 12-1

Confidence interval for Confidence interval

1 1
[ 83.1 — 993 + 2.750 \/1 76.76(;‘0- + ]—1-) = (=322, -.2)
He = [y 83.1 — 109.6 + 2.750 \/1 7676(-116 + ]—]1-) = (=425, —10.5)
e = M, 83.1 — 80.5 + 2.750 \/1 76.76(1—]6 + 1_]6) = (=-13.8, 19.0)
Mo — g 99.3 — 109.6 + 2.750 \/l 76.76(;1—]- + ]—]]-) = (-~259,53)

1
Hy — M, 99.3 - 80.5 £ 2.750 ‘/1 76.76(1—1]- + ]—6) = (2.8, 34.8)
1

Mp = Mo 109.6 - 80.5 + 2.750 \/176.76(]—‘- + 716) = (13.1, 45.1)

The confidence leve! for each interval is .99. Therefore, the overall confidence level is greater than or equal

to1 — (01

Note: =

+ .01 + .01 +.01 + 01 + .01) = .94,
control, u = urea, p = potassium nitrate plus calcium, a = ammonia plus ammonium sulphate.

groups, so we get ¢ from the ¢ distribution with 42 — 4 = 38 degrees of
freedom. In Table C, we have a choice between 30 and 40 degrees of free-
dom. We will be more conservative (getting wider intervals) and use 30. Then
¢ = 2.750. The calculations for the six confidence intervals are outlined in
Table 12-4.

Zero is in the confidence interval for u, — M. and the confidence interval
for ., — u,, but not in the other intervals. Taken together, the intervals suggest
that mean fruit weight is the same for the control group and the ammonia plus
ammonium sulphate group. Mean fruit weight also seems to be the same for
the urea group and the potassium nitrate plus calcium group; these two treat-
ments appear to have mean fruit weights greater than the control and ammonia
plus ammonium sulphate groups. This agrees with the visual comparisons we
can make by examining the four distributions in Figure 12-1.

In Section 12-3, we discuss nonparametric tests of hypotheses and mul-
tiple comparisons for a single-factor experiment.

Nonparametric Analysis of a Single-Factor Experiment:
The Kruskal-Wallis Test

The Kruskal-Wallis test is a nonparametric procedure used to check for
equality of several distributions in a single-factor experiment. We will start with
an example, then outline the significance level approach to the test of hypothe-
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EXAMPLE 12-2

ses, and apply it to the example. Finally, we discuss nonparametric multiple
comparisons based on the Bonferroni method.

Maximal oxygen uptake is a measure of physical working capacity or aerobic
power. In a survey of aerobic power in world-class athletes, Wilmore lists
maximal oxygen uptake for nine young women athletes: three basketball play-
ers, four cross-country skiers, and two speed skaters (Wilmore, 1984). The
results are shown below:

mi
ial _ml
Sport Maximal oxygen uptake (kg - min)
Basketball 423, 429, 496
Cross country skiing 56.9, 58.1, 61.5, 68.2
Speed skating 46.1, 52.0

Are there differences in aerobic power among women athletes in these three
sports? How would you design an experiment to answer this question? What
would you do to reduce the effects of extraneous factors? How should the
experiment be conducted to ensure valid comparisons among the three sports?

A plot of the observations is shown in Figure 12-3. What does this plot

T
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FIGURE 12-3 Plots of maximal oxygen uptake for female basketball players, cross-
country skiers, and speed skaters in Example 12-2
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suggest about the relative levels of aerobic power in women basketball players
cross-country skiers, and speed skaters? Which groups of athletes seem simila;
and which seem very different, with respect to aerobic power?

We will use the Kruskal-Wallis test to compare the distributions of maxi
mal oxygen uptake for women in the three sports. Before applying the test tc
this example, let’s first describe it in general.

The Kruskal-Wallis Test for a Single-Factor Experiment

Suppose we have k independent random samples, one from each of k popu-
lations. The & distributions are continuous, with the same shape and variation,
but possibly different locations (they may be shifted away from each other).
Three continuous distributions with the same shape and variation are illus-
trated in Figure 12-4. A special case is one in which the distributions are all
Gaussian with the same variance, the situation discussed in Section 12-2.

If the & distributions have the same shape and variation, then differences
or shifts in location are described by differences between the population
means (or by differences between the population medians). Our null hypothe-
sis states that the & populations have the same location, and therefore the same
distribution. This is the same as saying that the & populations have the same
mean (and the same median).

Under the null hypothesis, the exact distribution of the Kruskal-Wallis
test statistic described below is the Kruskal—Wallis distribution corresponding
to the sample sizes in the experiment. A Kruskal-Wallis probability distribu-
tion is derived from the probability model for an experiment in which ranks 1
through # are randomly divided into three or more groups; see the Appendix
on the Kruskal-Wallis distributions at the end of the text.

Table H at the back of the book lists probabilities of the form P(KW = ¢),
where KW denotes a random variable having a Kruskal-Wallis distribution.
Table H covers only three groups (k = 3) and sample sizes from 2 to 5. There
are many possible values for £ and the sample sizes; it is not possible to table
probabilities for many Kruskal-Wallis distributions, For situations not covered
by Table H, we use an approximation to the distribution of the Kruskal-wallis
test statistic under the null hypothesis, comparing the test statistic with the
chi-square distribution for & — 1 degrees of freedom. Degrees of freedom

FIGURE 12-4  Illustration of three distributions having the same shape and variation, but different locations. The
differences between the means #a, iz, and u, of the distributions describe the differences in location.
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—

value of the probability function evaluated at x

0
Value of the variable, x

W

FIGURE 12-5 The shape of a chi-square distribution

here refers to the constant or parameter that defines a particular chi-square
distribution.

A chi-square distribution is a continuous probability distribution that is
skewed to the right. A random variable with such a distribution takes on only
positive values. The general shape of a chi-square distribution is illustrated in
Figure 12-5.

A chi-square distribution is characterized by a number called its degrees
of freedom. We often denote the chi-square distribution with d degrees of
freedom by x%. Some probabilities associated with several chi-square distri-
butions are listed in Table E at the back of the book.

The Kruskal-Wallis procedure for comparing several distributions is out-
lined below.

The significance level approach to comparing several

distributions in a single-factor experiment, using the

Kruskal-Wallis test

1. The null hypothesis states that the & populations all have the same proba-
bility distribution. The alternative hypothesis states that the k distributions
have the same shape and variation, but are shifted away from each other
(they do not all have the same location).
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EXAMPLE 12-2

fcontinued)

2. Rank the observations in the combined samples from smallest to largest. I
two or more observations have the same value, assign each the average of
the ranks they share. Let R, denote the sum of the ranks, 7, the number of
observations, and R, = R/n, the average rank in sample i Calculate the test
statistic as

12 - N+ 1V
Test statistic = — R, —
N(N+1),»=Z,(‘ 2 )

or, equivalently, as

- 12 &)

Test statistic = NV TD mzl il GV
where N is the total sample size, the sum of n, through 7, . This test statistic
measures how far the individual sample rank averages R, differ from the
overall average rank, (N + 1)/2. If each R, is close to (N + 1)/2, then the
test statistic is small, consistent with the null hypothesis. If the R;’s are not
all close to (N + 1)/2, then the test statistic is large, inconsistent with the
null hypothesis.

3. Assume that the samples are independent random samples of continuous-
type observations. Then under the null hypothesis, the test statistic has the
Kruskal-Wallis distribution for sample sizes n, through 7,. An approxima-
tion to the distribution of the test statistic under the null hypothesis is given
by the chi-square distribution with £ — 1 degrees of freedom.

4. Select a significance level a.

5. Using Table H, find the number ¢ such that P(KW = ¢) = o, where KW has
the Kruskal-Wailis distribution corresponding to the experimental sample
sizes. Alternatively, use Table E to find the number ¢ such that P(X = ¢)
= 1 — a, where X has the chi-square distribution with £ — 1 degrees of
freedom. In either case, the acceptance region is the interval [0, ¢); the
rejection region is the interval [¢, ).

6. The decision rule is:

If test statistic < ¢, say the results are consistent with the null hypothesis
that the & population distributions are the same.

If test statistic = ¢, say the results are inconsistent with the null hypothesis,
suggesting that the £ distributions do not all have the same location.

7. Carry out an experiment satisfying the assumptions in step 3. Calculate the

test statistic in step 2. Use the decision rule in step 6 to decide whether the
observations are consistent with the null hypothesis.

Let’s apply the Kruskal-Wallis test procedure to Example 12-2. We want to test
the null hypothesis that the distribution of maximal oxygen uptake is the same
for female world-class athletes in the three sports. The alternative hypothesis
says these three distributions are not all the same; some are shifted away from
each other. We assume that we have independent observations and that the
women tested are representative of female world-class athletes in their respec-
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tive sports. We cannot check these assumptions without additional information
about the experiment. We also assume that the three distributions are the same
except possibly for differences in location. This assumption does not seem
unreasonable from the plots in Figure 12-3.

Implicit assumptions are that we can compare the measurements of maxi-
mal oxygen uptake across sports and that these measures truly reflect aerobic
power in these women. (A treadmill test may not provide a good measure of
aerobic power in swimmers, for example.) We have no way of checking these
assumptions from the information provided. We will proceed in our analysis
with caution.

we will use significance level .05. Let KW denote a random variable hav-
ing the Kruskal-Wallis distribution for sample sizes 2, 3, and 4, From Table H
we see that P(KW = 5.4) = 051, close to .05. The acceptance region is {0, 5.4),
the rejection region is (5.4, ), and the decision rule is:

If test statistic < 5.4, say the results are consistent with the null hypothesis that
the three distributions are the same.

If test statistic = 5.4, say the results are inconsistent with the null hypothesis,
suggesting that the three distributions have different locations (and dif-
ferent medians).

We calculate the test statistic as shown in Table 12-5. We use the second
of the two formulas, because it is easier for hand calculations. The test statistic
equals 6.444, inconsistent with the null hypothesis, and the p-value, P(KW =
6.444 when H, is true), is between .005 and 011. There appear to be differ-
ences in maximal oxygen uptake (as measured in this experiment) among
female world-class athletes across the three sports.

Suppose we had used the chi-square approximation. Looking in Table E
for 3 — 1 = 2 degrees of freedom, we see that P(X < 5.99) = .95. Therefore,
the cutoff for our acceptance and rejection regions is 5.99 (compared with 5.4

TABLE 12-5 Steps in calculating the Kruskal—Wallis
statistic for Example 12-2

Basketball Cross-country
players skiers Speed skaters
Value  Rank Value  Rank Value  Rank
42.3 1 56.9 6 46.1 3
429 2 58.1 7 52.0 5
49.6 4 61.5 8
68.2 9
n, =3 n =4 n,=2
R =7 R, = 30 R, =8
R, = 2.333 R, =75 Ry =4

Test statistic =
9

9+

12 7? + 300 8
3 4 2
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using the exact Kruskal-Wallis distribution). We still say our results are incon-
sistent with the null hypothesis; the approximate p-value is between .025
and .05.

To get a feel for the differences among the three sports, we can calculate
a confidence interval for the difference between each pair of medians. We will
use the Wilcoxon-Mann-Whitney procedure to calculate each confidence
interval (see Section 11-4). The Bonferroni method gives a lower bound for
the overall confidence level of these intervals taken together. There are
(3) = 3 ways to compare our three groups two at a time, so we will calculate
three separate confidence intervals.

First let’s calculate a confidence interval for the difference between me-
dians of maximal oxygen uptake for cross-country skiers and basketball play-
ers. We find the 4 x 3 = 12 differences between values for skiers and for
basketball players. The smallest difference is 56.9 — 49.6 = 7.3 and the largest
difference is 682 ~ 423 = 259 From Table G we know that (W < 0)
= .029, where W is a random variable having the Wilcoxon—-Mann-Whitney
distribution for sample sizes 3 and 4. The interval (7.3, 25.9) has confidence
level 1 — 2(.029) = 942

Similarly, (49, 22.1) is an interval estimate for the difference between
medians of maximal oxygen uptake for female cross-country skiers and speed
skaters, with confidence level .866. An interval estimate for the difference be-
tween medians of maximal oxygen uptake for female speed skaters and bas-
ketball players is (- 3.5, 9.7), with confidence level 800,

Using the Bonferroni method, we see that the overall confidence level
for these three intervals taken together is greater than or equal to 1 — (1 ~
942) — (1 — 866) ~ (1 — B00) = .608, or about 61%. This is not very large,
but it is the best we can do with such small sample sizes.

The results of our multiple comparisons are summarized in Table 12-6.
Zero is not in the first two intervals; median maximal oxygen uptake seems to
be greater for the cross-country skiers than for the other two groups of ath-
letes. Zero is in the third interval, so based on these observations we cannot
say there is any difference between basketball players and speed skaters with
respect o maximal oxygen capacity. This agrees with what we observe in

TABLE 12-6 Nonparametric multiple comparisons for Example 12-2

individual

Confidence confidence
interval for Confidence interval level
M: — M, (D,, Dy;) = (7.3, 25.9) 942
Me — M, (D, Dy) = (4.9,221) 866
M — M, (Dy, D) = (—=3.5,9.7) .800

The overall confidence level is greater than or equal to 1 — (.058 + .134 + .200) =
.608.

Note:  The subscripts B, C, and S refer to the basketball players, cross-country skiers, and
speed skaters, respectively.
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EXAMPLE 12-3

Figure 12-3. The distributions for the basketball players and the speed skaters
overlap. The distribution for the cross-country skiers is shifted toward larger
values, not overlapping the other two sample distributions at all.

In Section 12-4, we discuss the classical, parametric, analysis of random-
ized block experiments.

Parametric Analysis of a Randomized Block Experiment

A randomized block design is an extension to several treatments of the paired-
sample design we discussed in Section 11-6. We will consider the simplest
randomized block design: the number of experimental units in a block equals
the number of treatments. Within each block, experimental units are similar
with respect to factors that could affect the outcome of the experiment. We
randomly assign treatments to experimental units within each block, one unit
per treatment. If there are no differences among treatment effects, we expect
similar responses from experimental units within a block. If there are differ-
ences among treatment effects, we hope the randomized block design will
help us see those differences.

In 2 randomized block experiment, experimental units within a block
are similar with respect to factors that could affect the response. In the
simplest design, the number of experimental units in a block equals the
number of treatments. The treatments are randomly assigned to experi-
mental units within a block.

Let’s consider an example.

Are there differences among thermometers in determining melting points? To
address this question, three technicians used each of four thermometers to
measure the melting point of Hydroquinone (Duncan, 1974, page 632; from
Wernimont, 1947, page 8). The recorded melting points (in °C) are shown
below.

Technician
Thermometer

Thermometer 1 2 3 average

1 174.0 173.0 173.5 173.500

2 173.0 172.0 173.0 172.667

3 171.5 171.0 173.0 171.833

4 173.5 171.0 172.5 172.333
Technician
average 173.000 171.750 173.000

The investigators wanted to assess differences among thermometers.
However, they were aware that different technicians might obtain different
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FIGURE 12-6 Recorded melting point of Hydroquinone plotted by technician. Ther-
mometer numbers are shown in the dots.

available, the researchers had each of them use each thermometer to deter-
mine the melting point of Hydroquinone,
In this experiment, each technician is a block. The idea of blocking in

eters valid.

Plots of the melting point measurements are shown in Figures 12-6 and
12-7. Figure 12-6 shows plots of the readings by technician. The thermometer
numbers are shown in the dos, Readings are plotted by thermometer in Figure
12-7. The technician numbers are shown within the dots, What do these plots
suggest about differences among thermometers and differences among tech-
nicians in determining the melting point of Hydroquinone?

We want to test for differences among thermometers. We wil] use the
classical analysis of a randomized block experiment to assess these differences.
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FIGURE 12-7 Recorded melting point of Hydroquinone plotted by thermometer.
Technician numbers are shown in the dots.

This classical analysis allows us to test for differences among technicians
(blocks) as well. Let's outline the classical, parametric, approach to analyzing a
randomized block experiment, and then apply it to this example.

Classical Analysis of a Randomized Block Experiment

To outline the parametric analysis of a randomized block experiment, we need
the notation in Table 12-7. Suppose€ there are b blocks, with & experimental
units per block. The number of treatments equals k. Y, denotes the response
of the experimental unit in block / receiving treatment i, T, denotes the average
response of the & experimental units receiving treatment £, and B, represents
the average response of the k experimental units in block j. The average of all
k X b observations is denoted by Y. The treatment mean square s% defined in
Table 12-7 is a measure of random variation, plus differences among the means
for the k treatments. The block mean square §% measures random variation,
plus differences among the mean responses for the b blocks. The residual
mean square §7 is a measure of random variation among observations or re-
sponses in the experiment.

To assess differences among treatments on mean response, we compare
sz and ¢ If there are really no differences among treatments, then s} and 7
each estimate random variation among observations in the experiment, 50
these two variance estimates should be similar in magnitude. If there are dif-
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larger than s2.

Similarly, to assess differences among blocks, we compare s§ and s2, If
there really are po differences in average responses among blocks, sz and s?
should be similar in magnitude, since both then estimate random variation
among observations in the €xperiment. If there are differences among blocks,
we expect 52 to be larger than $¢, since s3 then estimates random variation plus
differences among blocks, :

With these ideas in mind, we can outline the significance leve] approach
to the classical analysis of a randomized block experiment.

The significance level approach to classical analysis
of a randomized block experiment
1. The hypotheses about treatment differences are:

Hy:  The k treatments all have the same average effect on response.
H,: The average effect on fesponse is not the same for all & treatmengs,

The hypotheses about block differences can be stated as:

Hs:  The average Tesponse is the same for all blocks.
Hy: The average response is not the same for all b blocks,

2. To test the hypotheses about treatment effects, we use the test statistic

S2
Test statistic( T) = ;_f

r
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To test the hypotheses about block effects, we use the test statistic

SZ

Test statistic(B) = ;%
T

3. Assume that the & X b observations are all independent, from Gaussian
distributions. These distributions have the same variance o2 The means
may differ, depending on treaument and block. We also assume that the
relative treatment effects are the same for each block.

Under the null hypothesis of no treatment differences, test statistic(T)
has the F distribution with £ — 1 numerator degrees of freedom and
(k — 1Xb - 1) denominator degrees of freedom. Small values of test sta-
tistic(1), near 1, are consistent with the null hypothesis of no differences
among treatments on average. Large values of test statistic(T) are inconsis-
rent with this null hypothesis.

Under the null hypothesis of no block differences, test statistic(B) has the F
distribution with & — 1 numerator degrees of freedom and (& — 1IXb — 1)
denominator degrees of freedom. Small values of test statistic(B), near 1,
are consistent with the null hypothesis of no differences in average re-
sponse among blocks. Large values of test statistic(B) are inconsistent with
this null hypothesis.

4. Select significance level a, for the first test of hypotheses, a. for the sec-
ond test. ;

5. For the test of treatment effects, find the number ¢ from Table D such
that P(F, = ¢) = 1 — & Here, F, denotes a random variable having the
Fk—1,(kR - 1Xb — 1) distribution. The acceptance region is the interval
[0, ¢,); the rejection region is the interval [¢,, ).

For the test of block effects, find the number ¢, from Table D such that

P(F, = ¢;) = 1 — a,. Here, F; denotes a random variable having the

Fb—1,(kR— 16 — 1)) distribution. The acceptance region is the interval

[0, ¢,); the rejection region is the interval [¢z, )

6. To test for treatment differences, the decision rule is:

If test statistic(T) < €, 52y the results are consistent with the null hypothesis
of no treatment differences in average response.

If test statistic(T) = €y, say the results are inconsistent with this null hy-
pothesis, suggesting there are wreatment  differences in average
response.

To test for block differences, the decision rule is:

If test statistic(B) < €., 52y the results are consistent with the null hypothesis
of no block differences in average response.

If test statistic(B) = ¢z, say the results are inconsistent with this nuil hy-
pothesis, suggesting there are block differences in average response.

7. Carry out an experiment that satisfies the assumptions in step 3. Calculate
the test statistics in step 2. Use the decision rules in step 6 to decide whether
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EXAMPLE 12.3
(continued)

there seem to he differences among treatments and differences amon,
blocks. Draw conclusions based on the experimental results.

Let’s use this parametric approach to analyze the results of the experiment i
Example 12-3. The four thermometers represemt the treatments in this experi
ment, while the three techniciang represent the blocks. A response is the melt
ing point determination a technician makes with 2 particular thermometer. The
hypotheses about thermometer (treatment) differences are:

H,:  Onaverage, the four thermometers give the same reading for the melting
point of Hydroquinone.
H,: The four thermometers do not give the same reading on average.

The hypotheses about technician (block) differences are:

HE: On average, the three technicians get the same reading for the melting
point of Hydroquinone.
Hr: The three technicians do not get the same reading on average,

Note that we presented the results of the experiment in Example 12-3 in the
format shown in Table 12-7 The only statistic not shown there is the average
ofall 12 observations, ¥ = 172,583,

We assume that the 12 observations are al] independent. We cannot
check this assumption withour more information on how the experiment was
conducted. What suggestions would you make about the conduct of the ex-
periment in order to ensure independence of observations?

We also assume that the observations come from Gaussian distributions
with the same variance. One way to check this assumption is through plots of
residuals. Recall that a residual is the difference between an observation and a
summary, or predicted value, or estimate of the mean of the observation,

For a randomized block design, the predicted value for observation ¥,
(treatment 4, block /) is the estimated mean value 7, + B, ~ ¥ based on
our model assumptions. The residual for that observation istheny, — 7, —
B+ ¥

A residual is the difference between an observation and an estimate of its
expected value. In the simplest randomized block design, a residual has
theform¥, — 7, - B + ¥ where ¥, denotes the observation correspond-
ing to treatment 7 and block 7 7. is the average of all observations for
treatment 4, B, is the average of observations in block 7, and ¥is the average

of all the observations,

of st at the bottom of Table 12-7, we add up the squared residuals in order to
calculate this variance estimate. This is why we often call st the residual mean
square. The residuals for Example 12-3 are shown in Table 12-8.
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TABLE 12-8 Residuals for the randomized block
probability model in Example 12-3

Residuals (°C)

Technician
e
Thermometer 1 2 3
—_ _ S
1 .08 .33 - .42
2 -.08 a7 - .08
3 -.75 .00 75
4 75 - .50 -.25
e
r.—*;_,__.,.___———‘———*’——_#____,___..——-——-——«
| : 3 |
| O 0 O O O 0 C O O O ‘
% -5 0 5 ‘v
|

FIGURE 12-8 Dot plot of residuals in Example 12-3

A dot plot of the residuals is shown in Figure 12-8. The plot gives us no
reason to doubt the Gaussian assumption. Figure 12-9 shows a plot of residuals
by thermometer; we se¢ that the variation among residuals for thermometer 2
s less than for the other three thermometers. Figure 12-10 is a plot of resid-
vals by technician; the variation among residuals is somewhat smaller for
technician 2 than for the other two technicians. These differences in variation
are not extreme enough o make us avoid the classical analysis of this random-
ized block experiment. (The analysis is fairly robust to small deviations from
the equal-variance assumption, meaning that as long as variances are not too
different, significance levels and confidence levels are close to the levels we
choose.)

For our analysis, we also assume that the relative thermometer effects are
the same for each technician. Consider the dot plots in Figure 12-6. If the
assumption held, we would expect the order of the thermometers to be the
same for each technician. In fact, all three technicians obtained the highest
readings with thermometer 1. But the order varies across technicians for the
other three thermometers. We do not have strong evidence for or against
the assumption that the relative thermometer effects are the same for all
three technicians. We will proceed with our analysis, with our usual caution
in interpretations.

If our model assumptions all hold, test statistic(T) has the F(3, 6) dis-
wribution under the null hypothesis of no treatment differences. Test statis-
tic(B) has the (2, 6) distribution under the null hypothesis of no technician
differences.
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FIGURE 12-10 Piot of residuals by technician in Example 12-3
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TABLE 12-9 Calculations for parametric analysis
of the randomized block experiment in Example 12-3

k = Number of treatments = 4 _
b = Number of blocks = 3 ¥ = Overall sample mean = 172.583

3
§2 o= R [(173.500 — 172.583)" + (172.667 — 172.583)

4+ (171.833 — 172.583)" + (172.333 —~ 172.583)]

= 1.47
4
L g—j’l‘ [(173.000 - 172.583)* + (171.750 — 172.583)°
+ (173.000 — 172.583)*}

= 2.08
R B e o .
s? G106 -1 [.08) + (33) + ( 427 + (=087 + (A7) + (—.08)

+ (“.75)2 + (0)2 + (75)2 + (75)2 + (—_50)2 + (__25)2}
= .39
1.47 2.08

Test statistic(T) = ——= = 3. Test statistic(B) = 0 = 5.
est statistic(T) 39 3.8 est statistic(B) 59 53
k—1= b-1=2 (k-1b-1=6

We will use significance level .10 for both tests of hypotheses. Looking in
Table D, we see that if F, has the F(3, 6) distribution, then P(F, < 3.29) = 90.
The acceptance region for the test about thermometer effects is [0, 3.29), the
rejection region is {3.29, ), and the decision rule is:

If test statistic(T) < 3.29, say the results are consistent with the null hypothesis
that the thermometers give the same reading on average.

If test statistic(T) = 3.29, say the results are inconsistent with this null hypothe-
sis, suggesting that the thermometers do not give the same reading on
average.

If F, has the F(2, 6) distribution, then P(F; = 3.46) = .90. The acceptance
region for the test about technician effects is {0, 3.46), the rejection region is
[3.46, ®), and the decision rule is:

If test statistic(B) < 3.46, say the results are consistent with the null hypothesis
that the technicians get the same reading on average.

If test statistic(B) = 3.46, say the results are inconsistent with this null hypoth-
esis, suggesting that the technicians do not get the same reading on
average.

The calculations for our analysis are outlined in Table 12-9.

Test statistic(T) equals 3.8, which is inconsistent with the null hypothesis
that there are no differences among thermometers on average, at the .10 sig-
nificance level. The p-value is berween 05 and .10.
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Test statistic(B) equals 5.3, which is inconsistent with the nul] hypothes
that there are no differences among technicians on average, at the .10 signi
cance level. The p-value is a little less than .05.

readings. Thermometer 2 gave intermediate readings.
The analysis also suggests the the technicians 8ot somewhat differen

in Figure 12.7),

The p-value for the test of thermometer differences was between .05 anc
10, which we might consider borderline statistical significance. Whether or
not we consider the results of this experiment of practical importance depends
on the accuracy (closeness to the correct value) and precision (lack of varia-
tion, or repeatability) required when melting points are determined in practi-
cal situations.

Suppose we had ignored the technicians in our analysis. If we had done
4 one-way analysis of variance, with three readings for each thermometer. we
would have found no significant difference among thermometers, with Dp-value
= .2 (Exercise 12-18). The randomized block design was useful in this experi-
ment. Because there were differences among technicians, blocking helped us
see differences among thermometers. Also, from a quality control point of

view, it is useful to see that different technicians can get different readings on
average.

A general form of analysis of variance table for the simplest randomized
block design is shown in Table 12-10. The analysis of variance table for Ex-

TABLE 12-10 Analysis of variance table for a randomized block
experiment (number of treatments equals the size of each block)

Source of Degrees of Mean Test
variation Sum of squares freedom square  statistic
e 2 s
Treatments b Z‘ (7, - v k=1 53 "
; 7 V2 2 54
Blocks k; (B, -~ ¥ b -1 53 p
k
Residuals 22, T -8 + 7 k = )b = 1) s?
it pwi
k b
Total 23, - V) kb — 1
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TABLE 12-11 Analysis of variance table for
the randomized block experiment in Example 12-3

Source of Sumof  Degreesof  Mean Test

variation squares freedom square statistic  p-value
Thermometers 4.42 3 1.47 3.8 .08
Technicians 417 2 2.08 5.3 .05
Residuals 2.33 6 39

Total 10.92 1

fou o oote2 M

ample 12-3 is shown in Table 12-11, with an added column showing the p-
value for each test statistic.

In Section 12-5, we consider a nonparametric method, called Friedman’s

test, for analyzing a randomized block experiment.

IR Nonparametric Analysis of a Randomized Block

Experiment: Friedman’s Test

Before considering an example, we will first outline a nonparametric proce-
dure for analysis of a randomized block experiment, Friedman’s test. This
is a test of treatment differences (not block differences). Suppose we have b
blocks, with & experimental units per block. T here are k treatments, one treat-
ment per experimental unit in each block.

The significance level approach to nonparametric analysis
of a randomized block experiment, using Friedman’s test
1. The hypotheses are:

H,: The treatments have the same average effect on response.
H,: The treatments do not all have the same average effect on response.

_ Rank the k observations within each block. The smallest observation gets
rank 1 and the largest gets rank k. Tied observations get the average of the
ranks they share. Let R, denote the average of the ranks for treatment 1. Let
R, denote the average of the ranks for treatment 2, and so on. R, is the
average of the ranks for treatment k. The overall average rank is (k + 1)/2.
The test statistic is

b & (- k+1)
Test statistic = -7+ R -
est statistic k(le+l),2’;<' > )

3 We assume that the & X b observations are all independent, from distribu-
tions with similar shape and variation. We also assume that the relative treat-
ment effects are the same for each block. Then under the null hypothesis of
no treatment differences, the test statistic has approximately the chi-square
distribution with & — 1 degrees of freedom. Small values of the test statistic
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are consistent with the nul| hypothesis, while large values are inconsisten
with the null hypothesis,

4. Select significance level a.

5. Find the number ¢ in Table E such that AX < ¢) = 1 - «, where X has
the chi-square distribution with & — 1 degrees of freedom. The acceptance
region is the interval [0, ¢). The rejection region is the interval [, @),

6. The decision rule is:

If test statistic < ¢, say the results are consistent with the null hypothesis of
no treatment differences.

If test statistic = ¢, say the results are inconsistent with the null hypothesis,
suggesting that there are treatment differences.

7. Carry out an experiment satisfying the assumptions in step 3. Calculate the
test statistic in step 2. Use the decision rule in step 6 to decide whether the
results are consistent with the null hypothesis. Draw conclusions based on
the experimental results.

Let’s apply Friedman’s test to the following example,

EXAMPLE 12-4 Investigators wanted to compare the effects of three anesthetics upon plasma
epinephrine concentration in dogs. They measured plasma epinephrine con-
centration (in nanograms per milliliter) for ten dogs while under each of these
three anesthetics: isofluorane, halothane, and cyclopropane. The measure-
ments are listed below (Rice, 1988, page 431; from Perry, Van Dyke, and Theye,

1974).
Dog
Anesthetic 1 2 3 4 5 6 7 8 9 10
Isofluorane .28 51 1.00 39 29 .36 32 .69 A7 33
Halothane .30 .39 .63 .68 .38 21 .88 .39 51 .32

Cyclopropane 1.07 1.35 .69 .28 1.24 1.53 49 .56 1.02 30

What suggestions would you make for the design of this experiment?
How would you seek to reduce the effects of extraneous factors? Should each
dog receive the anesthetics in the same order? Would you worry about carry-
over effects of anesthetics from one treatment period to the next? What other
concerns would you have and how would your experimental design address
those concerns?

Plots of the observations are shown in Figures 12-11 and 12-12. Figure
12-11 shows a plot of the ten measurements of plasma epinephrine concentra-
tion, for each of the three anesthetics, Responses under the three anesthetics
are plotted for each dog in Figure 12-12. What do these plots suggest about
differences among anesthetics and differences among dogs with respect to
plasma epinephrine concentration?
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SECTION 12-5  Nonparametric Analysis of a Randomized Block Experiment: Friedman’s Test n

In this experiment, the anesthetics are the treatments and the dogs are
blocks. We want to test for differences in average effects of the anesthetics or
plasma epinephrine concentrations, with hypotheses:

H,: The three anesthetics have the same average effect on plasma epineph
rine concentration.

H,: The three anesthetics do not have the same average effect on plasma
epinephrine concentration,

We must assume that the 30 observations are independent. We cannot
check this assumption without more information on how the experiment
was carried out. What suggestions would you make in order to ensure
independence?

We also assume that the relative effects of the anesthetics are the same
for the ten dogs. Looking at Figure 12-12, we see that this assumption is badly
violated. For five dogs (dogs 1, 2,5, 6, and 9), plasma epinephrine concentra-
tions were much higher under cyclopropane than under the other two anesthet.
ics. These are the five largest values plotted for cyclopropane in Figure 12-11.
For the other five dogs, there are smaller differences among the anesthetics.
Also, cyclopropane did not result in the largest values for these dogs. Clearly,
the relative effects of the three anesthetics are not the same for all ten dogs.

For a valid analysis, we must assume that the relative differences among
anesthetics (treattents) are the same for each dog (block). Our plots show us
that this assumption is not reasonable. For a moment we will ignore this prob-
lem and go through the mechanics of the procedure; then we will discuss our
results in terms of this violation of assumptions. [This example has appeared
in a number of references as a randomized block experiment requiring a stan-
dard analysis. In fact, as our plots show, a major assumption of both parametric
and nonparametric analysis of a standard (unreplicated) randomized block
experiment is badly violated. ]

If all assumptions for Friedman’s test did hold, then under the null hy-
pothesis the test statistic would have approximately the chi-square distribution
with 3 — 1 = 2 degrees of freedom. We will use significance level .10. From
Table E, we find that P(X = 4.61) = 90, where X has the chi-square distribu-
tion with 2 degrees of freedom. The acceptance region is [0, 4.61), the rejection
region is [4.61, ®), and the decision rule is:

If test statistic < 4.61, say the results are consistent with the null hypothesis of
no difference in mean plasma epinephrine concentration among the
three anesthetics.

If test statistic = 4.61, say the results are inconsistent with the null hypothesis,
suggesting that there are differences in mean plasma epinephrine con-
centrations among the three anesthetics.

The calculations we need for Friedman'’s test are outlined in Table 12-12.

The test statistic equals 1.4, consistent with the null hypothesis of no differ-
€nce among anesthetics, at the .10 significance level. The approximate p-value,
based on the chi-square distribution with 2 degrees of freedom, is about 5.
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TABLE 12-12 Calculations for Friedman’s test in
Example 12-4. Observations for each dog are ranked from 1 to 3.

Dog

e ——————e— Sum of
Anesthetic 1 2 3 4 5 6 7 8 9 10 ranks
isofluorane 1 2 3 2 1 2 1 3 1 3 19
Halothane 2 1 1 3 2 1 3 1 2 2 18
Cyclopropane 3 3 2 1 3 3 2 2 3 1 23
- 19 - 18 = 23
R,——T6~1A9 Rzﬂ]0~1.8 R3—10—2.3

3+ 1
Overall average rank = 5 2
k = Number of treatments = 3 b = Number of blocks = 10
12 x 10

T isti = e (1. - 2+ . - 2 - )= .
est statistic 36 1 (19 -2 (1.8 — 22 + (2.3 — 21| 1.4

Degrees of freedom = k — 1 = 2

If we ignore the violation of our model assumptions, Friedman’s test tells us
there do not appear to be differences among the anesthetics. This seems to
be true for five of the dogs (dogs 3, 4,7, 8, and 10). However, as we saw in
Figure 12-12, dogs 1, 2, 5, 6, and 9 had plasma epinephrine concentrations
much higher under cyclopropane than under isofluorane or halothane. Our
plots suggest that there may be differences among anesthetics. Also, the relative
effects of the anesthetics vary with dogs. This is called an interaction effect of
anesthetic and dog upon the response. There is no way to account for this
interaction in our analysis of this randomized block experiment. In Example
12-4, the plots are much more useful and informative than the formal analy-
sis, which is misleading because not all the assumptions for the analysis are
satisfied.

Exercise 12-19 asks you to use Friedman’s test to check for thermometer
differences in Example 12-3, where the assumptions for the test seem more
reasonable than in Example 12-4.

We say we have an interaction effect of treatment and block on response
if the relative effects of treatments differ for different blocks. The only way to
account for such interaction in our analysis is to have larger blocks. Then we
assign each treatment to two or more experimental units within each block.
We can analyze this larger experiment using two-way analysis of variance
for a replicated randomized block experiment. See, for example, Kirk (1982,
Chapter 6).

In Chapter 13 we discuss two-way analysis of variance, for a two-factor
experiment.
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I Summary of Chapter 12

The Bonferroni method provides an upper bound on the overall significance
level when we make several tests of hypotheses. The method provides a lower
bound on the overall confidence level when several confidence intervals are
used for multiple comparisons.

In a single-factor experiment (an extension to several samples of the two-
sample design), we assume that we have & independent random samples, one
from each of & populations. If we assume that the samples come from Gaussian
distributions with the same variance, then we can use one-way analysis of vari-
ance to test the null hypothesis that the population means are all equal. If we
assume that the samples come from distributions with the same shape and
variation, but possibly different locations, we can use the Kruskal-Wallis test
to test the null hypothesis that the distributions are equal.

In the simplest randomized block design (an extension of the paired-
sample design), experimental units within a block are similar with respect to
characteristics that might affect the response. The number of experimental
units in each block equals the number of treatments. The treatments are ran-
domly assigned to experimental units within a block,

For a parametric analysis of a randomized block experiment, we assume
that the observations are all independent, from Gaussian distributions with the
same variance; the means may vary depending on treatment and block. We
also assume that the relative treatment effects are the same within each block.
We can test the null hypothesis that the average effect is the same for all treat-
ments, as well as the null hypothesis that the average response is the same for
all blocks.

For a nonparametric analysis of a randomized block experiment, we as-
sume that the observations are independent, from distributions having similar
shape and variation. We also assume that the relative treatment effects are the
same for each block. Friedman'’s test assesses the null hypothesis that the av-
erage treatment effect is the same for all treatments.

Residual plots are useful for checking whether model assumptions seem
reasonable. A residual is the difference between an observation and a sum-
mary, predicted value, or estimate of the mean of the observation.

-Minitab Appendix for Chapter 12

Finding Probabilities for F and Chi-Square Distributions

We introduced the F distributions and the chi-square distributions in Chap-
ter 12. We can use the CDF, PDF, and RANDOM commands with the F and
CHISQUARE subcommands, as we have discussed for other distributions. With
the F subcommand, we specify numerator degrees of freedom and then
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denominator degrees of freedom. With the CHISQUARE subcommand, we
specify the degrees of freedom. For instance,

MTB> cdf 12.2;
SUBC> f 4 6.
12.2000 0.99852
MTB> cdf 6.5;
SUBC> chisquare 2.
6.5000 0.9612

Minitab tells us that if the random variable X has the F(4, 6) distribution, then
P(X < 122) = .9952. If the random variable Y has the chi-square distribution
with 2 degrees of freedom, then P(Y = 6.5) = .9612.

Performing One-Way Analysis of Variance
with the ONEWAY Command

Suppose the data from Example 12-1 are in two columns on our worksheet.
Column 1 (named GROUP) contains a code for group: 1 = control, 2 = urea,
3 = potassium nitrate and calcium, 4 = ammonia and ammonium sulphate.
Fruit weights are in column 2 (named FRUITWT). We use the ONEWAY com-
mand for a parametric one-way analysis of variance:

MTB> oneway 'fruitwt' 'group'
The results are shown in Figure M12-1.

If we specify two additional columns at the end of the ONEWAY com-
mand, we can save residuals and estimated (or predicted) values of observa-

tions. In Example 12-1, the command

MTB> oneway 'fruitwt' 'group' c3 c4
MTB> name ¢3 'resid' c4 'predict’

produces the same output as shown in Figure M12-1. In addition, Minitab
stores the residuals from the fitted model in C3, which we name RESID. Mini-

ANALYSIS OF VARIANCE ON fruitwt

SOURCE DF ss MSs F P
group 3 5980 1993 11.28 0.000
ERROR 38 6717 177

TOTAL 41 12697

INDIVIDUAL 95 PCT CI’S FOR MEAN
BASED ON POOLED STDEV

LEVEL N MEAN STDEV ——t—mmmm——= e e S
1 10 83.13 18.11 - y
2 11 99.32 8.81 (mmmm e )
3 11 109.60 15.17 (mmmmkmmme)
4 10 80.53 8.75 (====- *oan)
—— e o R
POOLED STDEV = 13.30 75 90 105 120

FIGURE M12-1  Output from the ONEWAY command in Example 12-1
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resid -
- *
25+ *
- * *
- * *
- 3 * * *
- * 2 *
O+ * * 3 2
- 3 * 3 *
- 2 * 2
- 2 * *
-25+ *
- *
Fmmmmm el R e Fom Fom e ——— Fo e predic
78.0 84.0 0.0 96.0 102.0 108.0

FIGURE M12-2  Scatterpiot of residuals versus predicted values in Example 12-1

LEVEL NOBS MEDIAN AVE. RANK Z VALUE
1 3 42.90 2.3 -2.07
2 4 59.80 7.5 2.45
3 2 49.05 4.0 ~0.59

OVERALL 9 5.0

H = 6.444

* NOTE * ONE OR MORE SMALL SAMPLES
FIGURE M12-3  Output from the KRUSKAL-WALLIS command for Example 12-2

tab stores the estimated (or predicted) observations in C4, named PREDICT.
We can use these saved values, say in a histogram of residuals or a plot of
residuals versus predicted values, to check model assumptions. For instance,
the command

MIB> plot 'resid' 'predict'

produces the scatterplot in Figure M12-2.

We can use the TWOT command and the Bonferroni method to make
multiple comparisons, if the results of ONEWAY indicate differences among
means.

Carrying Out a Kruskal—Wallis Comparison of Means

The KRUSKAL-WALLIS command carries out the calculations for the Kruskal-
Wallis test. Suppose our worksheet contains the data for Example 12-2. Column
1 (named SPORT) contains a code for sport: 1 = basketball, 2 = Cross-country
skiing, 3 = speed skating. Column 2 (named UPTAKE) contains maximal OXy-
gen uptake. The command

MTB> krus 'uptake' ‘sport’

results in the output in Figure M12-3.
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The student edition of Minitab does not print a p-value for the Kruskal—
wallis test statistic. We can look it up in a table for the Kruskal-Wallis distri-
bution. If we think the sample sizes are large enough, we can use the large-
sample chi-square approximation. In our example, we might want to compare
the test statistic with the chi-square distribution with 2 degrees of freedom
(since there are three groups). The test statistic equals 6.444 and the approxi-
mate p-value is P(X = 6.444), where X has the chi-square distribution with
2 degrees of freedom. We can find this approximate p-value using Minitab as
follows:

MTB> cdf 6.444 ki1;
SUBC> chisquare 2.
MTB> let k2=1-k1
MTB> print k1l k2

K1 0.960125

K2 0.0398753

Minitab prints the cumulative probability K1 = 0.960125 and the approximate
pvalue K2 = 1 = K1 = 0.0398753 corresponding to the observed value 6.444
of the test statistic. (Recall that the p-value based on the exact Kruskal-Wallis
distribution was between .005 and .011.)

If we want to make multiple comparisons based on Mann—Whitney inter-
vals, we must unstack the observations in ‘UPTAKE based on ‘SPORT’:

MTB> unstack 'uptake' c¢3-c¢5;
SUBC> subscripts 'sport'.

C3 contains uptake values for sport 1; C4, for sport 2; C5, for sport 3. Now we
can use the MANN-WHITNEY command two columns at a time on C3 through
CS. We apply the Bonferroni method to get the overall confidence level for
our multiple comparisons.

Analyzing a Randomized Block Experiment
with the TWOWAY Command

To analyze the results of a randomized block experiment, as discussed in Sec-
tion 12-4, we use the TWOWAY command. Consider the experiment in Ex-
ample 12-3. Suppose column 1 (named THERM) of our worksheet contains
thermometer number, column 2 (named TECH) contains technician number,
and column 3 (named MELT) contains measured melting points. We can get
descriptive statistics for melting point by thermometer and by technician. The
command

MTB> describe 'melt’';
SUBC> by ‘therm'.

gives the output in Figure M12-4, while the command
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melt

melt

therm N
1 3
2 3
3 3
4 3
therm MIN
1 173.00
2 172.00
3 171.00
4 171.00

MEAN
173.50
172.67
171.83
172.33

MAX
174.00
173.00
173.00
173.50

MEDIAN
173.50
173.00
171.50
172.50

Q1
173.00
172.00
171.00
171.00

I

FIGUREM12-4 Descriptive statistics for MELT by thermometer

melt

melt

tech N
1 4
2 4
3 4
tech MIN
1 171.50
2 171.00
3 172.50

MEAN
173.00
171.75
173.00

MAX
174.00
173.00
173.50

MEDIAN
173.25
171.50
173.00

Q1L
87
oo
63

171.
171.
172.

TRMEAN STDEV SEMEAN

173.50 0.50 .29

172.67 0.58 0.33

171.83 1.04 0.60

172.33 1.26 Q.73
Q3

174.00

173.00

173.00

173.50

TRMEAN STDEV SEMEAN

173.00 1.08 0.54

171.75 0.96 0.48

173.00 0.41 0.20
Q3

173.88

172.75

173.37

FIGURE M12-5 Descriptive statistics for MELT by technician

SOURCE
therm
tech
ERROR
TOTAL
FIGURE M12-6  Analysis of variance table for the r.
Example 12-3
MTB> describe 'melt’;
SUBC> by 'tech'.

ANALYSIS OF VARIANCE

DF
3
2
6

11

gives the output in Figure M12-5.

MTB>

The TWOWAY command

twoway 'melt’

'therm'

gives the output in Figure M12-6.
Notice that the Minitab output for TWOWAY does not include test statis-
tics or p-values. To test for thermometer differences, we calculate the test
statistic from the analysis of variance table and use Minitab to calculate the

p-value:

MTB> let k1=1.472/0. 389
MTB> cdf ki1 k2;

SUBC> f 3 8.

MTB> let k2=1-k2

MIB> print ki k2

K1 3.78406

K2 0.0777537

melt

8s
4.417
4.167
2.333

10.917

'tech’

MS
1.472
2.083
0.389

andomized block experiment in
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Minitab prints the value of the test statistic K1 = 3.78406 and the p-value
K2 = 0.0777537. We go through similar steps to test for technician differences:

MTB> let k3=2.083/0.389
MTB>  cdf k3 k4;

suBc> f 2 6.

MTB> let k4=1-k4

MIB> print k3 k4

K3 5.35476

K4 0.0462980

Minitab prints the value of the test statistic K3 = 535476 and the p-value
K4 = 0.0462980. Because of round-off error, these values do not exactly equal
what we found in Example 12-3.

As with ONEWAY, we can specify two extra columns as part of the
TWOWAY command to save residuals and predicted values. The command

MTB> twoway 'melt' 'therm' 'tech’ c4 ¢5

produces the same output as in Figure M12-6, and saves residuals in C4 and
predicted values in C5. We can use these saved values in plots to check model
assumptions.

Using Minitab to Carry Out Friedman’s Test

The student edition of Minitab does not have a procedure for Friedman’s test.
We can calculate the test statistic using Minitab, however. Consider the data in
Example 12-4. Suppose column 1 (named DOG) of our worksheet contains
dog number. Column 2 (named ANES) contains a code for anesthetic: 1= iso-
fluorane, 2 = halothane, 3 = cyclopropane. Column 3 (named RESPONSE)
contains plasma epinephrine concentration. We want to unstack the RESPONSE
column into ten columns, one for each dog:

MTB> unstack 'response’' cll-c20;
SUBC> subscript 'dog'.

C11 contains the three observations for dog 1, C12 contains the three obser-
vations for dog 2, and so on. If we print columns 11-20, we get the output in
Figure M12-7.

ROW Cc11 c12 C13 Cl4 C1s Cls Cc17 Cc18 Ci9 c20

1 0.28 0.51 1.00 0.39 6.29 0.36 0.32 0.69 0.17 0.33
2 0.30 0.39 0.63 0.68 0.38 0.21 0.88 0.39 0.51 0.32
3 1.07 1.35 0.69 0.28 1.24 1.53 0.49 0.56 1.02 0.30

FIGURE M12-7 Contents of columns 11-20
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1 1 2 3 2 1 2 1 3 1 3
2 2 1 1 3 2 1 3 1 2 2
3 3 3 2 1 3 3 2 2 3 1

FIGUREM12-8 Columns 11-20, after replacing observations by ranks within
columns

Now we want to rank the observations for each dog (block). We will
replace the observations with the ranks in columns 11-20:

MTB> rank c11 cl1

MTB> rank c¢20 c20
where the dots indicate that we type this command for all ten columns, If we
now print columns 1120, we get the output in Figure M12-8.

We need the sum of the ranks for each treatment (anesthetic). We will
put these sums in column 21:
MTB> rsum cll-c20 c21
To find average ranks for the three rows, we divide column 21 by 10:

MTB> let c21=c21/10

The overall average rank is (3 + 1)/2, where 3 is the number of treatments,
We subtract this value from each element of column 21:

MTB> let c21=c21- (3+1)/2

Then we square each element of column 21:
MTB> let c21=c21%%2

We sum the elements of column 21:

MTB>  sum ¢21 kil

Since the number of blocks is 10 and the number of treatments is 3, the test
statistic is calculated as

MTR:> let k2=k1%12%10/ (3% (3+1))

We compare this test statistic with the chi-square distribution with 2 degrees
of freedom, since there are three treatments:
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MTB>  cdf k2 k3;
SUBC> chisquare 2.
MTB> let k3=1-k3
MTB> print k2 k3
K2 1.40000

K3 0.496585

Minitab prints the value K2 = 1.40000 of Friedman’s test statistic and the large-
sample approximate p-value K3 = 0.496585.

I
Exercises for Chapter 12

EXERCISE 12-1

For each exercise, plot the observations in any ways that seem reasonable.
Describe the population(s) sampled, whether real or hypothetical. For each
statistical procedure, state appropriate hypotheses. Discuss the assumptions
that make the analysis appropriate. Do these assumptions seem reasonable?
What additional information would you like to have about the experiment?
Discuss the results of each analysis.

Does an insect electrocuting device reduce mosquito biting? Researchers
equipped suburban yards with either an insect electrocuting device, a standard
6-volt CDC trap, or no device. People serving as bait captured mosquitos com-
ing to bite in each yard. The investigators took steps to allow for differences
among yards and differences in attractiveness of the volunteers as mosquito
bait. Details of the experiment are given in Nasci, Harris, and Porter (1983).
The response for each yard is the percentage of the highest total number of
mosquitos collected in any yard that night. The results are shown below.

Device Percentage of maximum mosquito count
Electrocuting device 66 57 57 31 87 97 89
100 85 100 61 58
CDC trap 100 75 50 77 58 100 62
82 88 86 100 44
None 75 84 100 74 40 94 87
55 91 63 83 87

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean mosquito
response is the same for each device. Do the assumptions of the analysis
seem reasonable?

¢. Go through the steps for a nonparametric analysis. Do the assumptions of
this analysis seem reasonable?

d. Compare your results in parts (b) and (¢). Discuss your findings.

e. Why did the investigators choose as a response the percentage of highest
total number of mosquitos collected in a yard in a night?
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EXERCISE 12-2

EXERCISE 12-3

441

In a study of a synthetic vaccine for malaria, scientists divided twelve 18-21-
year-old male volunteers into four groups. They assigned three volunteers to a
saline control group. They divided the other nine men among three different
vaccine dose/treatment regimens. After vaccination, the researchers recorded
a stimulation index for each volunteer, determined from proliferation assays
of peripheral blood mononuclear cells. The results are shown below (Patar-
royo ¢t al.,, 1988).

Group Stimulation index

Saline control 1.4 1.0 4.0

Regimen 1 1.5 5.6 12.4

Regimen 2 6.6 9.1

Regimen 3 35.1 13.4 0.8 33

a.
b.

Plot the observations.

Use a parametric analysis to test the null hypothesis that the mean stimula-
tion index is the same for each treatment group. Do the assumptions for
this analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

Take the logarithm of each stimulation index. Use a parametric analysis
to test the null hypothesis that the mean of the logarithm of stimulation
index is the same for each treatment group. Do the assumptions for this
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

Go through the steps for a nonparametric analysis. Do the assumptions for
this analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

Compare your results in parts (b), (c), and (d). Discuss your findings.

Researchers measured the amount of nitrogen expired by people on four dif-
ferent diets (Devore, 1982, page 600; from “Production of Gaseous Nitrogen
in Human Steady-State Conditions,” J. Applied Physiology, 1972, pages 155—
159). The results are shown below.

Diet Expired nitrogen (liters)

Fasting 4.079 4.859 3.540 5.047 3.298 4.679

2.870 4.648 3.847

23% protein 4.368 5.668 3.752 5.848 3.802 4.844

3.578 5.393 4374

32% protein 4.169 5.709 4.416 5.666 4.123 5.059

4.403 4.496 4.688

67 % protein 4.928 5.608 4.940 5.291 4.674 5.038

4.905 5.208 4.806
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EXERCISE 12-4

EXERCISE 12-5

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that mean expired
nitrogen is the same for all four diet groups. Do the assumptions for the
analysis seem reasonable? Use the Bonferroni method to make multiple
COMpArisons.

c. Go through the steps for a nonparametric analysis. Do the assumptions for
this analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

d. Compare your answers to parts (b) and (c). Discuss your findings.

Researchers measured skin potential (in millivolts) in each of eight volunteers
after requesting each of four emotions: fear, happiness, depression, and calm-
ness. The results are shown below (Devore, 1982, page 599; from “Physiolog-
ical Effects During Hypnotically Requested Emotions,” Psychosomatic Med.,
1963, pages 334—343).

Volunteer
Emotion 1 2 3 4 5 6 7 8
Fear 23.1 57.6 10.5 23.6 119 54.6 21.0 203

Happiness 227 53.2 9.7 19.6 13.8 471 13.6 236
Depression 225 53.7 10.8 21.1 13.7 39.2 13.7 16.3
Calmness 22,6 53.1 83 216 13.3 37.0 14.8 14.8

a. Plot the observations.
b. Are the relative differences among emotions similar for all eight volunteers?

¢. Use a parametric analysis to analyze the results of this experiment. Use
residual plots to check model assumptions.

d. Use a nonparametric analysis to test for differences in skin potential under
the four emotions. Compare vour results with what you found in part (c).

e. Discuss your findings.

In a study of the effects of long-term freezing on bread dough, researchers
used three types of flour. They made four batches of bread dough using each
of the three types of flour. They then froze the dough. After the period of
freezing, the researchers removed the dough from the freezer and recorded
the volume increase in the bread dough 4 hours later. The results are shown
below (from an example in Hocking, 1985, page 7).

Flour type Volume increase
1 1.1 1.8 1.0 1.2
2 2.7 29 33 2.8
3 3.1 3.2 3.3 3.2
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EXERCISE 12-6

EXERCISE 12-.7

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean volume
increase is the same for the three types of flour. Do the assumptions for the
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons. ’

¢. Use a nonparametric analysis to test the null hypothesis that the median
volume increase is the same for the three types of flour. Do the assumptions
for the analysis seem reasonable? Use the Bonferroni method to make mul-
tiple comparisons.

d. Compare your results in parts (b) and (¢). Discuss your findings.

An investigator wanted to compare the working life of three types of stopwatch
(Rice, 1988, page 432; from Natrella, 1963). He tested several of each type,
using each stopwatch through repeated cycles (on, off, restart) until it no
longer worked. Survival times (thousands of cycles until failure) are listed
below.

Type 1 1.7 1.9 6.1 125 16.5 251 30.5
42.1 825
Type 2 13.6 19.8 252 46.2 46.2 61.1
Type 3 13.4 209 25.1 29.7 46.9
e

a. Plot the observations,

b. Use a parametric analysis to test the null hypothesis that mean life is the
same for the three types of stopwatch. Do the assumptions for the analysis
seem reasonable? Use the Bonferroni method to make multiple comparisons.

¢. Use a nonparametric analysis to test the null hypothesis that median life is
the same for the three types of stopwatch. Do the assumptions for this
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

d. Compare your answers to parts (b) and (¢). Discuss your findings.

W. E. Woodward, a shortstop for the 1970 Cincinnati Reds, compared three
methods of rounding first base. Twenty-two volunteers used each method to

the average time of two runs (units not given). The results are shown below
(Hollander and Wolfe, 1973, pages 140-141; from W. F, Woodward, “A Com-
parison of Base Running Methods in Baseball,” M. Sc. thesis, Florida State Uni-
versity, 1970).
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EXERCISE 12-8

Round out Narrow angle Wide angle

Runner method

-

€.

Researchers scored smoothness of nine
1987, page 447; from
Appearance, Hand, and Consumer Acceptance,

1 5.40
2 5.85
3 5.20
4 5.55
5 5.90
6 5.45
7 5.40
8 5.45
9 5.25
10 5.85
11 5.25
12 5.65
13 5.60
14 5.05
15 5.50
16 5.45
17 5.55
18 5.45
19 5.50
20 5.65
21 5.70
22 6.30

method

5.50
5.70
5.60
5.50
5.85
5.55
5.40
5.50
5.15
5.80
5.20
5.55
5.35
5.00
5.50
5.55
5.55
5.50
5.45
5.60
5.65
6.30

Plot the observations.

Use a parametric analy
residual plots to check model assumptions.

Use a nonparametric analysis to test fo
rounding first base. Do the assumptions

method

5.55
5.75
5.50
5.40
5.70
5.60
5.35
5.35
5.00
5.70
5.10
5.45
5.45
4.95
5.40
5.50
5.35
5.55
5.25
5.40
5.55
6.25

Compare your results with what you found in part (c).

Discuss your findings.

“Line-Dried vs. Machine-Drie

pages 27-35). The results are listed here.

. Are the relative differences among methods similar for all 22 runners?
sis to analyze the results of this experiment. Use

r differences among methods of
for the analysis seem reasonable?

types of fabric dried five ways (Devore,
d Fabrics: Comparison of
" Home Econ. Research J., 1984,

Fabric Machine dry Line dry
Crepe 2.5
Double knit 2.0
Twill 3.4
Twill mix 2.4

Line dry,
then
15-minute
tumble

2.8
3.6
3.8
29

Line dry
with
softener

2.5
2.4
3.1
1.6

Line dry
with air
movement

N= W e

1.
2.
3.
1.
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EXERCISE 12-9

Line dry,
then Line dry Line dry

15-minute with with air
Fabric Machine dry Line dry tumble softener  movement
Terry 3.8 1.3 2.8 2.0 16
Broadcloth 22 1.5 2.7 1.5 1.9
Sheeting 35 2.1 2.8 2.1 2.2
Corduroy 3.6 1.3 2.8 1.7 1.8
Denim 2.6 1.4 24 1.3 1.6

a. Plot the observations.

b. Are the relative differences among drying methods similar for the nine
types of fabric?

c. Use a parametric analysis to analyze the results of this experiment. Use
residual plots to check model assumptions.

d. Use a nonparametric analysis to test for differences among drving methods.
Do the assumptions for the analysis seem reasonable? Compare your results
with what you found in part (c).

e. Discuss your findings.

Researchers wanted to study the effects of four treatments on earthworm pop-
ulations. They applied all treatments at concentrations of 1,000 liters/hectare.
(A hectare, abbreviated ha, is a metric unit of area equal to 2.471 acres.) The
researchers divided a large rectangular field into 40 square plots, separated by
buffer areas. They divided the 40 plots into groups of 10. All the plots in a
group received one treatment. After treatment, the researchers applied an ir-
ritant that caused the earthworms to rise to the surface. They recorded total
biomass/m? in equal sized subplots of each of the 40 plots. The results are
shown below (part of a data set contributed by R. P. Blackshaw and P. J. Diggle
to a collection of problems in Andrews and Herzberg, 1985, pages 301-306).

Treatment Biomass/meter?

Water only 17.61 21.19 19.34 33.11 26.63 24.49
39.12 16.40 53.32 39.26

.5 kg/ha Benlate 72.61 24.47 9.38 63.90 36.10 28.38
18.91 36.77 10.65 49.58

.6 kg/ha Bevistin 57.10 74.06 23.74 28.40 32.31 32.15

78.15 23.20 21.63 68.21
1.4 kg/ha Cercobin 32.34 2217 26.20 59.82 26.90 70.68
63.01 55.54 49.26 78.62

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean biomass/
m? is the same for all four treatments. Do the assumptions of the analysis
seem reasonable? Use the Bonferroni method to make multiple comparisons.
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EXERCISE 12-10

EXERCISE 12-11

c. Use a nonparametric analysis to test the null hypothesis that the median
biomass/m? is the same for all four treatments. Do the assumptions for
the analysis seem reasonable? Use the Bonferroni method to make multiple
€cOmparisons.

d. Compare your results in parts (b) and (¢). Discuss your findings.

Some researchers wanted to compare yield using four methods of manufactur-
ing penicillin. One important ingredient in producing penicillin is corn steep
liquor. Because this ingredient is extremely variable, the researchers decided
on a randomized block design. They divided a single blend of corn steep li-
quor into four parts and randomly assigned the four parts to the four manufac-
turing methods. These four runs comprised a block. To further reduce the
effects of extraneous factors, the researchers used a random process to deter-
mine the order of runs within a block. The yields of penicillin (units not given)
under the four manufacturing methods are listed below for each of five blends
of corn steep liquor. The order of the run within a block is shown in parenthe-
ses next to the yield (from an example in Statistics for Experimenters, by Box,
Hunter, and Hunter, John Wiley and Sons, New York, 1978, page 209).

Manu- Blend of corn steep liquor

facturing

method 1 2 3 4 5
1 89 (1) 84 (4) 81 (2) 87 (1) 79 (3)
2 88 (3) 77 (2) 87 (1) 92 (3) 81 (4)
3 97 (2) 92 (3) 87 4) 89 (2) 80 (1)
4 94 (4) 79 (1) 85 (3) 84 (4) 88 (2)

a. Plot the observations.

b. Are the relative differences among manufacturers similar within all five
blends of corn steep liquor?

c. Use a parametric analysis to analyze the results of this experiment. Use
residual plots to check model assumptions.

d. Within each block, plot residuals versus run order. Does there appear to be
atrend? If there were a trend, what would it mean?

e. Use a nonparametric analysis to test for differences among manufacturing
methods on penicillin yield. Compare your results with what you found
using the parametric analysis in part (¢).

f. Discuss your findings.

Investigators wanted to compare aggressive behavior of three species of mice,
labeled 1, 11, and III. Species IIT was a cross of species I and Il. The experi-
menters placed a mouse in the center of a box that was 1 meter square. The
floor of the box was divided into 49 equal squares. The researchers recorded
the number of squares the mouse crossed in 5 minutes. The results are shown
below (Rice, 1988, pages 431~-432).
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EXERCISE 12-12

Species | 309 229 182 228 326 289 231 225 307
281 316 290 318 273 328 325 191 219
216 221 198 181 110 256 240 122 290
253 164 211 215 211 152 178 194 144
95 157 240 146 106 252 266 284 274
285 366 360 237 270 114 176 224

Species 37 90 39 104 43 62 17 19 21
9 16 65 187 17 79 77 60 8
81 39 133 102 36 19 53 59 29
47 22 140 41 122 10 41 61 19
62 86 66 64 53 79 46 89 74
44 39 59 29 13 11 23 40

Species I 140 218 215 109 151 154 93 103 90

184 7 46 9 41 241 118 15 156
111 120 163 101 170 225 177 72 288
129

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean number
of squares crossed is the same for each species. Do the assumptions for this
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

c. Use a nonparametric analysis to test the null hypothesis that the median
number of squares crossed is the same for each species. Do the assump-
tions for this analysis seem reasonable?

d. Compare your answers to parts (b) and (¢). Discuss your findings.
Researchers applied five types of electrode to the arms of 16 volunteers and

measured resistance (Berry, 1987). They wanted to see if the different types of
electrode gave similar measurements. The results (in k.ohms) are shown below.

Type of electrode
Volunteer 1 2 3 4 5
1 500 400 98 200 250
2 660 600 600 75 310
3 250 370 220 250 220
4 72 140 240 33 54
5 135 300 450 430 70
6 27 84 135 190 180
7 100 50 82 73 78
8 105 180 32 58 32
9 90 180 220 34 64
10 200 290 320 280 135
1 15 45 75 88 80
12 160 200 300 300 220
13 250 400 50 50 92
14 170 310 230 20 150
15 66 1,000 1,050 280 220

16 107 48 26 45 51
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EXERCISE 12-13

a. Plot the observations.

b. Are the relative differences among electrode types similar for all 16
volunteers?

¢. Use a parametric analysis to analyze the results of this experiment. Use
residual plots to check model assumptions.

d. Use a nonparametric analysis to test for differences among electrode types.
Compare your results with what you found using the parametric analysis in
part (¢).

e. There are two very large readings for volunteer 15. The investigators specu-
lated that this may have been due to a large amount of hair on this volun-
teer’s arm. However, we have no information on the amount of arm hair
for any of the volunteers. Exclude the observations for volunteer 15 and
repeat parts (b), (¢), and (d). Compare your results when the observations
for volunteer 15 are included and excluded.

f. Discuss your findings.

Does knowledge of output improve performance in repetitive work? In this
experiment, investigators looked at performance in grinding a piece of metal
to meet size and shape specifications (Hollander and Wolfe, 1973, page 121;
from Hundal, 1969). They randomly divided 18 men into three groups. The
investigators gave the six men in the first group no information on their output.
They gave the six men in the second group rough estimates of their output.
They gave the six men in the third group accurate and detailed information on
their output. The response variable is the number of pieces finished by each
worker during a fixed time interval. The results are shown below.

No information

Rough information Detailed information

40 35 38 43 44

41 38 40 47 44 40 42 48 40 45 43 46 44

EXERCISE 12-14

a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean output is
the same under the three conditions. Do the assumptions for the analysis
seem reasonable? Use the Bonferroni method to make multiple comparisons.

¢. Use a nonparametric analysis to test the null hypothesis that the median
output is the same under the three conditions. Do the assumptions for the
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

d. Compare your answers to parts (b) and (c¢). Discuss your findings.

Researchers treated 12 patients with cardiac arrhythmias with each of three
active drugs in a double-blind experiment. The researchers treated a patient
with one drug for 1 week. They then made a 24-hour ambulatory electrocar-
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EXERCISE 12-15

diograph recording. They repeated this regimen for each of the three drugs,
with treatment periods widely separated by intervals with no drugs. The re-
sponse is the number of premature ventricular contractions per hour. The
results are shown below (Berry, 1987).

Patient Drug A Drug B Drug C
1 170 7 0
2 19 1.4 6
3 187 205 18
4 10 3 1
5 216 2 22
6 49 33 30
7 7 37 3
8 474 9 5
9 4 b 0

10 1.4 63 36
11 27 145 26
12 29 0 0

a. Plot the observations.
b. Are the relative differences among drugs similar for all 12 patients?

c. Use a parametric analysis to analyze the results of this experiment. Use
residual plots to check model assumptions.

d. Use a nonparametric analysis to test for differences among drugs. Do the
assumptions for the analysis seem reasonable? Compare with your results
in part (c).

e. Discuss your findings.

For a middle-school science project to study possible effects of acid rain, a
student planted 12 tomato seeds in loam, in separate containers (Foster, 1986).
She randomly divided the 12 containers into three groups. The student wa-
tered the four seeds in group 1 every day with water having pH 4.0. She
watered the four seeds in group 2 every day with water having pH 5.6. Finally,
she watered the four seeds in group 3 every day with distilled water having
pH 7.0. When plants came up, she watered the soil (not the leaves). Three of
the four plants in group 1 came up; all of the plants in the other two groups
came up. After 3 weeks, the student measured the height of each plant. The
results are shown below.

Group Height of tomato plants (centimeters)
pH 4.0 1.8 1.5 19
pH 5.6 2.1 2.1 2.0

w o

1
pH 7.0 2.7 26 2.4 2.
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EXERCISE 12-16

EXERCISE 12-17

EXERCISE 12-18

EXERCISE 12-19

EXERCISE 12-20

EXERCISE 12-21

Base your analyses on the 11 plants that came up.
a. Plot the observations.

b. Use a parametric analysis to test the null hypothesis that the mean height is
the same for the three levels of pH. Do the assumptions for the analysis
seemn reasonable? Use the Bonferroni method to make multiple COmpArisons.

c. Use a nonparametric analysis to test the null hypothesis that the median
height is the same for the three levels of pH. Do the assumptions for the
analysis seem reasonable? Use the Bonferroni method to make multiple
comparisons.

d. Compare your answers to parts (b) and (c). Discuss your findings.

e. How does the fact that one seed in group 1 did not germinate contribute
to your discussion of this experiment?

Suppose we have m null hypotheses to test. For each test, we state a criterion
for deciding whether the data are inconsistent with the null hypothesis. We say
the data are inconsistent with the “combined” null hypothesis if at least one
of the m criteria is satisfied. Let a denote the significance level associated with
this “combined” criterion. Let a through w,, denote the significance levels
associated with the m separate criteria. Show that « is less than or equal to the
sum of e, through a,,. (Hint: We know from Chapter 6 that if event £ can be
written as the union of events E, through E,,, then the probability of E is less
than or equal to the sum of the probabilities of events E, through £,,.)

Find the Kruskal-Wallis distribution for samples of size 1, 2, and 2.

Consider the experiment in Example 12-3. Ignore the technicians and g0
through the steps for one-way analysis of variance to test for differences among
thermometers. Compare your results with what we found in Example 12-3.

Test for differences among thermometers in Example 12-3, using Friedman’s
test. Compare your results with the results of the parametric analysis in Section
12-3. Do the assumptions for Friedman’s test seem reasonable?

Discuss the sampling situations in which one-way analysis of variance and
the Kruskal-Wallis test are appropriate. Which procedure is preferred in each
situation?

Discuss the sampling situations in which the classical analysis of a randomized
block experiment and Friedman’s test are appropriate. Which procedure is
preferred in each situation?




