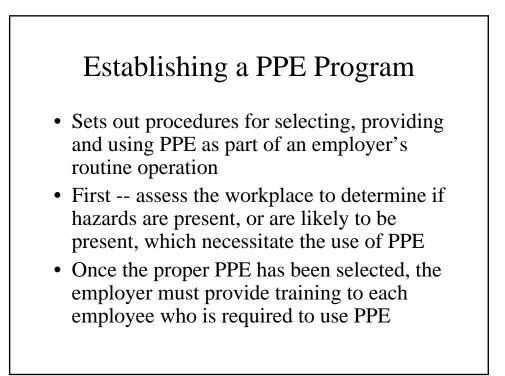


TUR Methods to Reduce Industrial Waste Streams:

- Toxic chemical substitution
 - Substitute soy based ink for petrochemical ink
 - Use aqueous cleaners instead of organic solvents
- Process modification
 - Eliminate unnecessary cleaning steps
 - Install drip racks and drag out recovery tanks
- Product reformulation
 - Replace compressed gas aerosol cans with manual pump sprayers

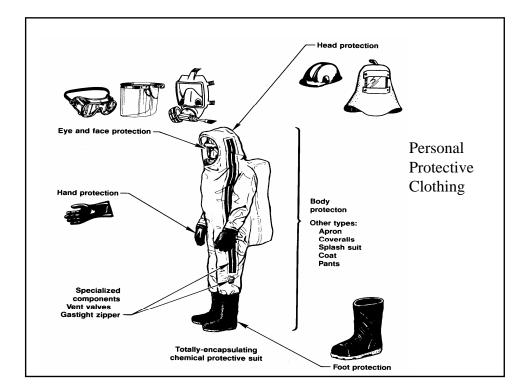
TUR Methods to Reduce Industrial Waste Streams:

- Process modernization
 - Install thermostats and automatic flow controls
 - Install high pressure low volume spray nozzles
- Improve operations and maintenance
 - Tighten and repair gaskets, faucets etc
 - Install lids to reduce evaporation and spills
- In-process recycling and reuse
 - Capture and recycle solvents and rinse water


Protecting Employees from Workplace Hazards

- Employers must protect employees from workplace hazards such as machines, hazardous substances, and dangerous work procedures that can cause injury
- Employers must:

Use all feasible engineering and work practice controls to eliminate and reduce hazards


Then use appropriate personal protective equipment (PPE) if these controls do not eliminate the hazards.

• Remember, PPE is the <u>last</u> level of control!

PPE

- Employers must assess hazards, select appropriate PPE, train workers in use, assure fit, maintain equipment and assure usage.
- Training includes:
 - When PPE is necessary;
 - What PPE is necessary;
 - How to properly don, doff, adjust, and wear PPE;
 - The limitations of the PPE; and,
 - The proper care, maintenance, useful life and disposal of the PPE.

Use of PPE

Dept of Labor reports....

- Hard hats worn by only 16% of workers with head injuries
- 1% of 770 workers with face injuries wore face protection
- 23% of workers with foot injuries wore safety shoes or boots
- 40% of workers with eye injuries wore eye protection

Head Protection

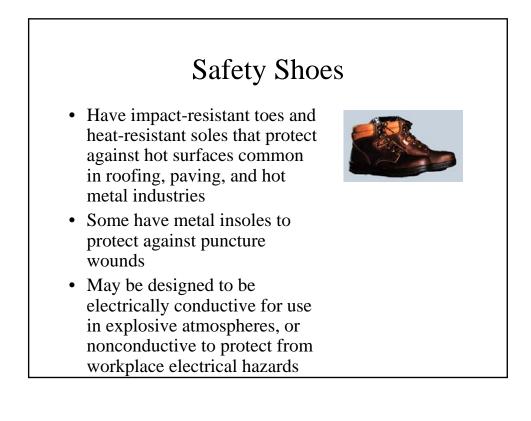
- 1910.135(a)(1)
- The employer shall ensure that each affected employee wears a protective helmet when working in areas where there is a potential for injury to the head from falling objects.
- 1910.135(a)(2)
- The employer shall ensure that a protective helmet designed to reduce electrical shock hazard is worn by each such affected employee when near exposed electrical conductors which could contact the head.

Classes of Hard Hats

<u>Class A</u>

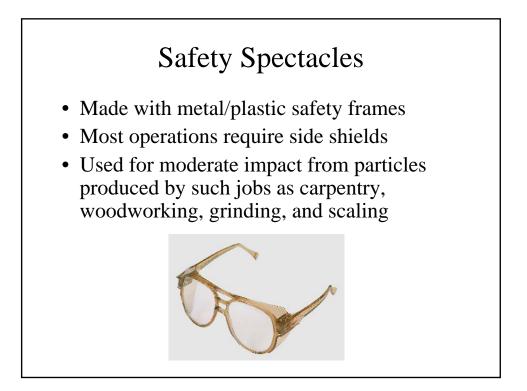
- General service (e.g., mining, building construction, shipbuilding, lumbering, and manufacturing)
- Good impact protection but limited voltage protection

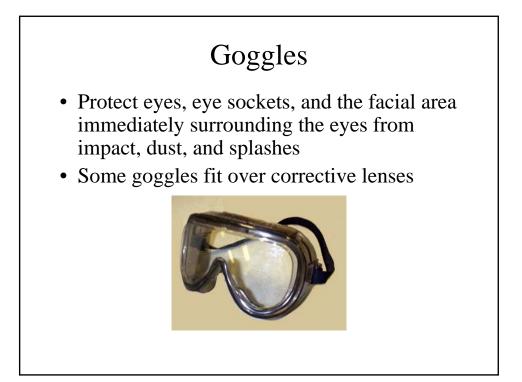
Class B

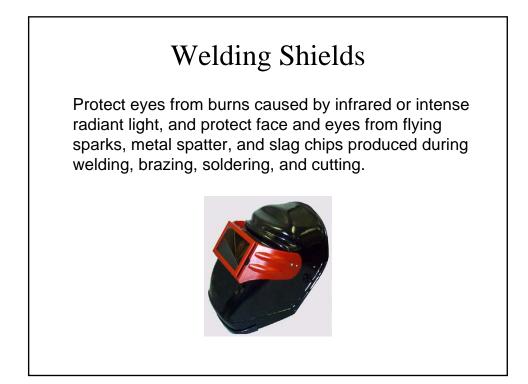

- Electrical work
- Protect against falling objects and high-voltage shock and burns

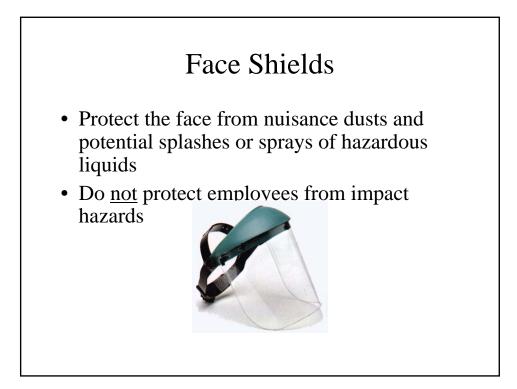
Class C

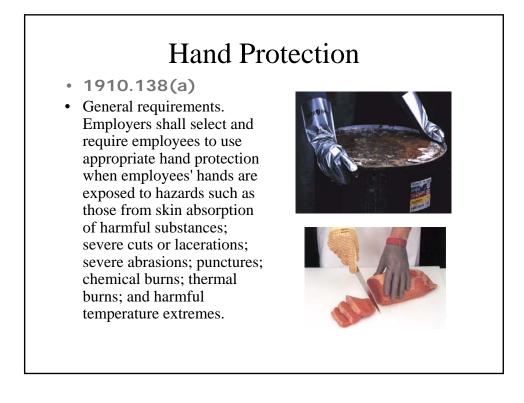
- Designed for comfort, offer limited protection
- Protects heads that may bump against fixed objects, but do not protect against falling objects or electrical shock

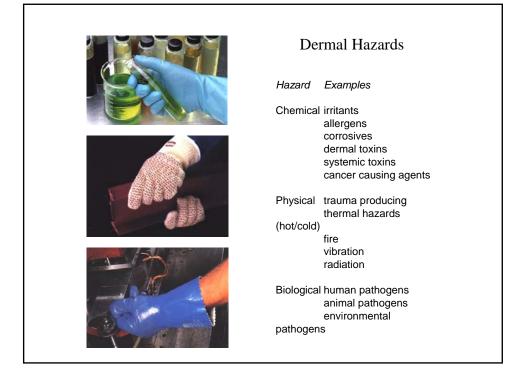

<section-header><text>

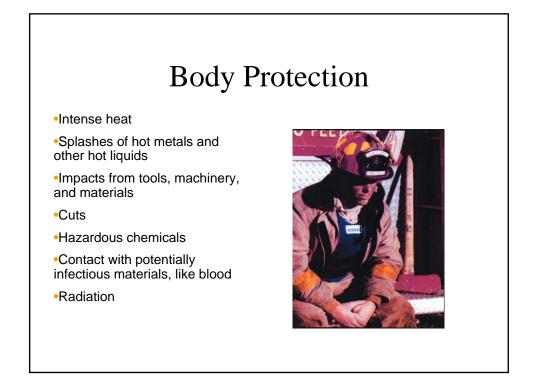


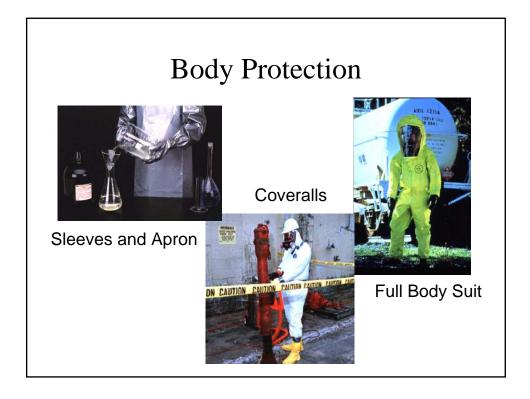

Eye Protection


- 1910.133(a)(1)
- The employer shall ensure that each affected employee uses appropriate eye or face protection when exposed to eye or face hazards from flying particles, molten metal, liquid chemicals, acids or caustic liquids, chemical gases or vapors, or potentially injurious light radiation.

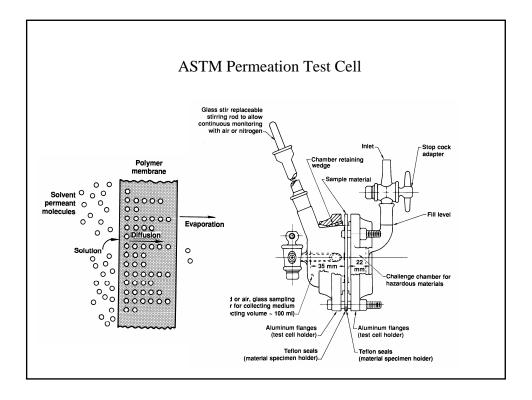






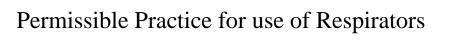

Eye Protection					
Source	Assessment of Hazard	Protection			
IMPACT - Chipping, grinding, machining, drilling, chiseling, riveting, sanding, etc.	Flying fragments, objects, large chips, particles, sand, dirt, etc.	Spectacles with side protection, goggles, face shields. For severe exposure, use face shield over primary eye protection.			
CHEMICALS - Acid and chemicals handling	Splash Irritating mists	Goggles, eyecup and cover types. For severe exposure, use face shield over primary eye protection Special-purpose goggles			
DUST - Woodworking, buffing, general dusty conditions	Nuisance dust	Goggles, eyecup and cover types.			

	Eve	e Protection
	Lyc	riotection
Source	Assessment of Hazard	Protection
LIGHT and/or RADIATION		
Welding - electric arc	Optical radiation	Welding helmets or welding shields. Typical shades: 10-14
Welding - gas	Optical	
	radiation	Welding goggles or welding face shield. Typical shades: gas welding 4-8, cutting 3-6, brazing 3-4
Cutting, torch brazing,	Optical	
torch soldering	radiation	Spectacles or welding face shield. Typical shades: 1.5-3
Glare	Poor vision	Spectacles with shaded or special-purpose lenses, as suitable.



		•
	Performance Req	uirements
Hazard	Performance Characteristic Required	Common Protective Clothing Materials
Thermal	insulation value	heavy cotton or other natural fabrics
Fire	insulation and flame resistance	aluminized gloves; fire retardant; aramid fib and other special fabrics
Mechanical	abrasion resistance; tensile strength	heavy fabrics; leather with metal studding
Cuts	cut resistance	metal mesh; aromatic polyamide fiber and other special fabrics
Punctures	puncture resistance	leather; fabric coated with filled plastic; thick elastomers
Vibration	damping	natural or polymeric gloves with elastomeric linings
Chemical/toxic	permeation resistance	polymeric materials; elastomeric materials
Biological	"fluid-proof;" puncture resistant	latex or polymer
Radiologic	usually fluid resistant or particle	polymer gloves; lead lined resistant for radionuclides or shield containing

Туре	Advantages	Disadvantages	Use Against
Natural rubber	Low cost, good physical properties, dexterity	Poor vs. oils, greases, organics. Frequently imported; may be poor quality	Bases, alcohols, dilute water solutions; fair vs. aldehydes, ketones.
Natural rubber blends	Low cost, dexterity, better chemical resistance than natural rubber vs. some chemicals	Physical properties frequently inferior to natural rubber	Same as natural rubber
Polyvinyl chloride (PVC)	Low cost, very good physical properties, medium cost, medium chemical resistance	Plasticizers can be stripped; frequently imported may be poor quality	Strong acids and bases, salts, other water solutions, alcohols
Neoprene	Medium cost, medium chemical resistance, medium physical properties	NA	Oxidizing acids, anilines, phenol, glycol ethers
Nitrile	Low cost, excellent physical properties, dexterity	Poor vs. benzene, methylene chloride, trichloroethylene, many ketones	Oils, greases, aliphatic chemicals, xylene, perchloroethylene, trichloroethane; fair vs. toluene


Туре	Advantages	Disadvantages	Use Against	
Butyl	Speciality glove, polar organics	Expensive, poor vs. hydrocarbons, chlorinated solvents	Glycol ethers, ketones, esters	
Polyvinyl alcohol (PVA)	Specialty glove, resists a very broad range of organics, good physical properties	Very expensive, water sensitive, poor vs. light alcohols	Aliphatics, aromatics, chlorinated solvents, ketones (except acetone), esters, ethers	
Fluoro- elastomer (Viton) ™ *	Specialty glove, organic solvents	Extremely expensive, poor physical properties, poor vs. some ketones, esters, amines	Aromatics, chlorinated solvents, also aliphatics and alcohols	
Norfoil (Silver Shield)	Excellent chemical resistance	Poor fit, easily punctures, poor grip, stiff	Use for Hazmat work	

PPE Compatability Data

- NIOSH database
 - http://www.cdc.gov/niosh/ncpc/ncpc2.html
 - http://www.cdc.gov/od/ohs/manual/pprotect.htm
- Glove Compatibility Resources
 - Lab Safety <u>http://www.labsafety.com/refinfo/ezfacts/default.htm</u> look under references...Factsheet 166 Chemical Compatibility Guide for Gloves
 - Best Glove Manufacturing, Inc.: http://www.chemrest.com
 - North Safety: http://www.northsafety.com
 - MAPA
 Professional: <u>http://www.mapaglove.com/pro/chemicalsearch.asp</u>
- Clothing Compatibility Resources
 - Tyvek Clothing: http://www.dupont.com/tyvek/protective-apparel
 Kappler Apparel: http://www.kappler.com

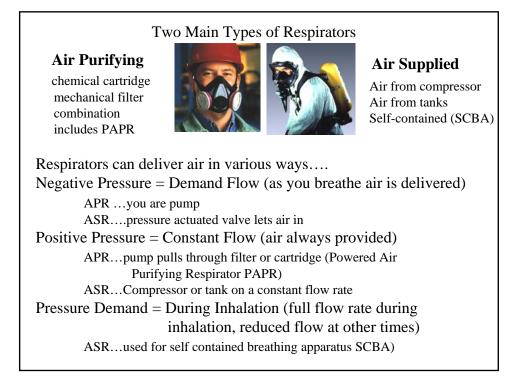
Summary

- Assess the workplace for hazards
- Use engineering and work practice controls to eliminate or reduce hazards before using PPE
- Select appropriate PPE to protect employees from hazards that cannot be eliminated
- Inform employees why the PPE is necessary and when it must be worn
- Train employees how to use and care for their PPE and how to recognize deterioration and failure
- Require employees to wear selected PPE in the workplace

- The primary means to control occupational diseases caused by breathing contaminated air is through the use of feasible engineering controls, such as enclosures, confinement of operations, ventilation, or substitution of less toxic materials
- When effective engineering controls are not feasible, or while they are being instituted, appropriate respirators shall be used pursuant to this standard
- Employer shall provide respirators, when necessary, which are applicable and suitable for the purpose intended
- Employer shall be responsible for establishment and maintenance of a respirator program

Respirator Program Elements

- 1. Selection
- 2. Medical evaluation
- 3. Fit testing
- 4. Use
- 5. Maintenance and care
- 6. Breathing air quality and use
- 7. Training
- 8. Program evaluation

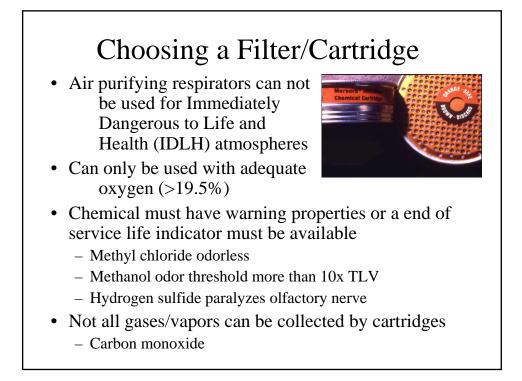

Respirator Program

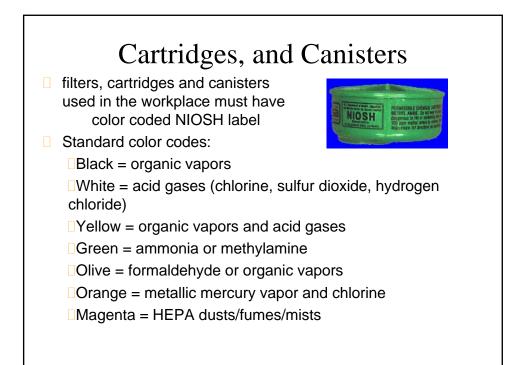
- Must develop a written program with worksite-specific procedures when respirators are necessary or required by the employer
- Must update program as necessary to reflect changes in workplace conditions that affect respirator use
- Must designate a program administrator who is qualified by appropriate training or experience to administer or oversee the program and conduct the required program evaluations
- Must provide respirators, training, and medical evaluations at no cost to the employee

Respirator Program (cont'd) Where Respirator Use is Not Required

- Employer may provide respirators at employee's request or permit employees to use their own respirators, if employer determines that such use in itself will not create a hazard
- If voluntary use is permissible, employer must provide users with the information contained in Appendix D
- Must establish and implement those elements of a written program necessary to ensure that employee is medically able to use the respirator and that it is cleaned, stored, and maintained so it does not present a health hazard to the user

<u>Exception</u>: Employers are not required to include in a written program employees whose only use of respirators involves voluntary use of filtering facepieces (dust masks).

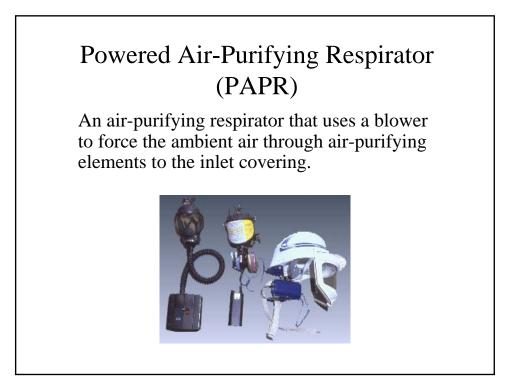


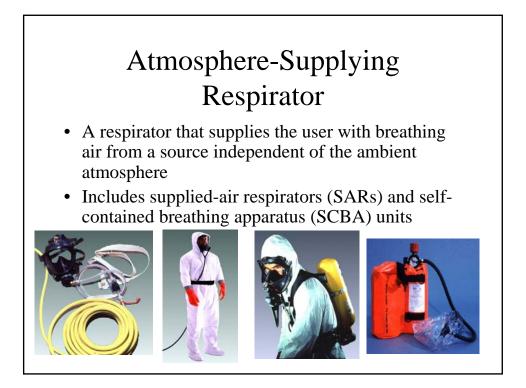

18

Air-Purifying Respirator (APR)

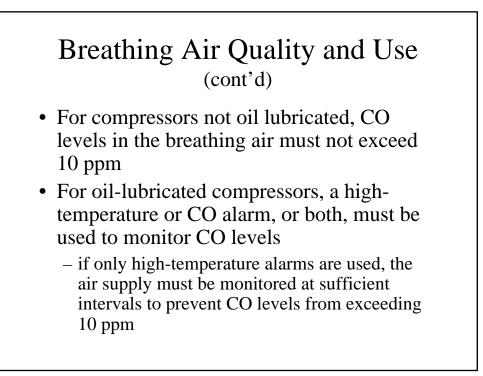
A respirator with an air-purifying filter, cartridge, or canister that removes specific air contaminants by passing ambient air through the air-purifying element.

	Prop	pert	ies	of C	Organio	c Cher	nicals	
Chemical N	nol. Wt. Bo	oiling V int °C Pre	/apor essure	IDLH ⁽¹⁴⁾ (ppm)	Threshold Limit Value ⁽¹⁵⁾	Geometric Mean	Range Lab of	Bre
		tori	r (20°C)		(ppm)	Odor Threshold ⁽¹⁶⁾ (ppm)		hrou Tim (mi
Benzene	78.11	80.1	75	3000	10	61	34–119	88
Toluene	92.1	110.6	22	2000		1.6	0.16–37	
m-Xylene	100.6	139.1	9	10,000		20	20	11
Methanol	32.04	64.7	97	25,000		160	4.2-596	
Ethanol	46.07	78.5	44	_	1000	180	49–716	45
Isopropanol	60.09	82.5	33	20,000		43	37–610	81
n-Butanol 3-methyl-1-bi	74.12 Itanol88 15	117 131 4	6 2.8	8000 8000		1.2 121	0.12–11	14
Methylene ch			349	5000		160	160	15.
Chloroform	119.4	61.3	160	1000		192	133–276	52.
Methyl chloro		74.1	100	1000		390	390	58.
Trichloroethy Carbon	ene131.4	87	58	1000	50	82	82	8
tetrachloride	153.8	76.75	91	300	5	252	140-584	9


Filtering Facepiece (Dust Mask)


A negative pressure particulate respirator with a filter as an integral part of the facepiece or with the entire facepiece composed of the filtering medium.

-				ertified under ace of HEPA)
		iciency Test Max (%) Loading		Use
	N-series (NaCl ^A) N-100 9 N-99 N-95	200 9.97 99 95	D	nonoil aerosols
	R-series (DOP oil ^B restriction may app R-100 9 R-99 R-95		0	oil and nonoil aerosols (time use
	P-series (DOP oil ^B P-100D 9 P-99 P-95) stabilized e 9.97 99 95	efficiency	oil and nonoil aerosols
	the total mass load (100 mg/filter for d ^D The P-100 filter m	phthalate. f oil aerosols, servio ling is less than 200 ual filter respirators nust be colored mag is at least 99.97% of) mg). genta.	be limited to 8 hours of use or up until amoving monodisperse particles of 0.3



Breathing Air Quality and Use

- Compressed breathing air must meet at least the requirements for Type 1 Grade D breathing air described in ANSI/CGA G-7.1-1989:
 - Oxygen content (v/v) of 19.5 23.5%
 - Hydrocarbon (condensed) content of 5 milligrams per cubic meter (mg/m^3) of air or less
 - CO content of 10 parts per million (ppm) or less
 - CO₂ content of 1,000 ppm or less
 - Lack of noticeable odor
- Compressors supplying breathing air to respirators must be equipped with suitable in-line airpurifying sorbent beds and filters that are maintained and replaced or refurbished per manufacturer's instructions

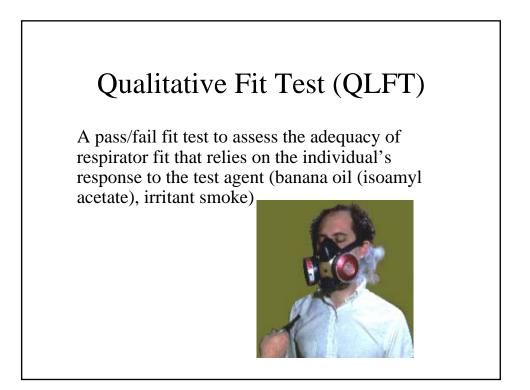
Protection Factor =

Concentration of a substance in ambient air

Concentration inside the respirator when worn

If concentration is 10ppm outside respirator and 1 ppm inside respirator then the PF = 10/1 = 10

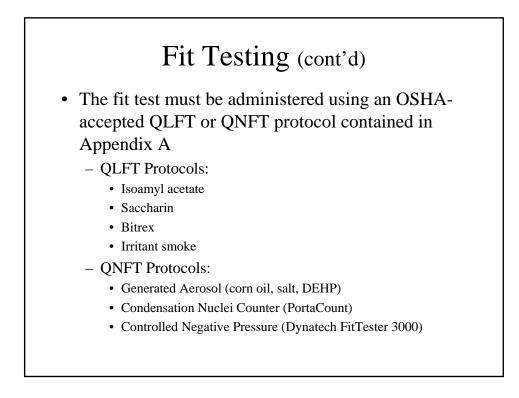
Maximum Use Level (MUL) or Maximum Use Concentration (MUC)=


 $MUC = PF \times OEL$

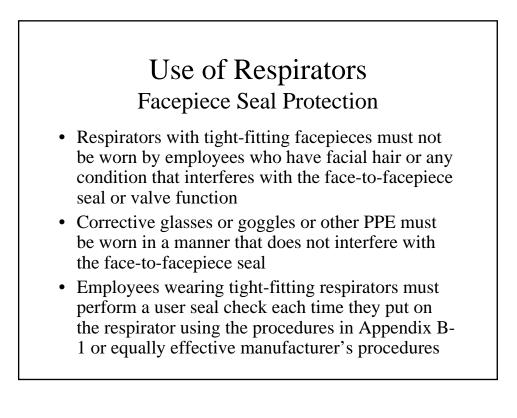
If PF = 10 and OEL = 500 ppm then $MUC = 10 \times 500 = 5000$ ppm This is the maximum concentration where the respirator can be safely worn.

			Assigned I ctors	1010010	,11
Type of Respirator 1992 ⁽²⁾	NIOSH Respirator	ANSI Z88.2-	Type of Respirator	NIOSH Respirator	ANSI Z88.2-
	Decision Logic ⁽²²⁾			Decision Logic ⁽²²⁾	
<i>Air-purifying</i> Single use or quarter-	mask 5	10	<i>Air-line</i> Half-mask		
Half-mask	10 ^A	10	demand	10	10
Full-facepiece, D/M o		100	continuous flow	50	50
Full-facepiece, all oth		100	pressure demand Full-facepiece	1000	50
Powered air-purifying			demand	50	100
Half-mask	50	50	continuous flow	50	1000
Full-facepiece	50	1000 ^B	pressure demand	2000	1000
Loose-fitting facepiec	e 25	25	Loose-fitting facepiec	e 25	25
Hood or helmet	25	1000 ^B	Hood or helmet	25	1000
			SCBA		
			Demand	50	100
^B 100	udes disposable par if dust/mist filter is u	ised.	Pressure demand s if QNFT is used. ations can be estimated.	10,000	10,000 ^C

Fit Testing


- Employees using tight-fitting facepiece respirators must pass an appropriate qualitative fit test (QLFT) or quantitative fit test (QNFT):
 - prior to initial use,
 - whenever a different respirator facepiece (size, style, model or make) is used, and
 - at least annually thereafter
- Must conduct an additional fit test whenever the employee reports, or the employer or PLHCP makes visual observations of, changes in the employee's physical condition (e.g., facial scarring, dental changes, cosmetic surgery, or obvious change in body weight) that could affect respirator fit

Quantitative Fit Test (QNFT)


An assessment of the adequacy of respirator fit by numerically measuring the amount of leakage into the respirator.

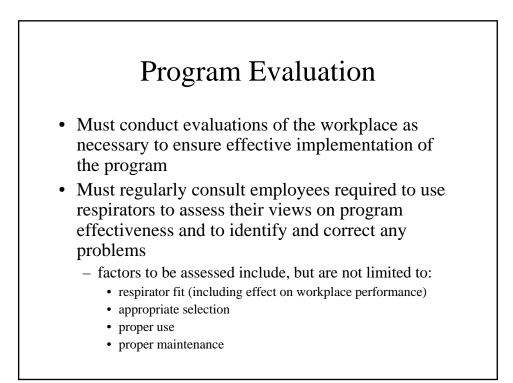
Fit Testing (cont'd)

- QLFT may only be used to fit test negative pressure APRs that must achieve a fit factor or 100 or less
- If the fit factor is determined to be equal to or greater than 100 for tight-fitting half facepieces or equal to or greater than 500 for tight-fitting full facepieces, the QNFT has been passed with that respirator

User Seal Check

An action conducted by the respirator user to determine if the respirator is properly seated to the face.

Positive Pressure Check



Negative Pressure Check

Training and Information (cont'd)

- Training must be provided prior to use, unless acceptable training has been provided by another employer within the past 12 months
- Retraining is required annually, and when:
 - changes in the workplace or type of respirator render previous training obsolete
 - there are inadequacies in the employee's knowledge or use
 - any other situation arises in which retraining appears necessary

Recordkeeping

- Records of medical evaluations must be retained and made available per 29 CFR 1910.1020
- A record of fit tests must be established and retained until the next fit test is administered
- A written copy of the current program must be retained
- Written materials required to be retained must be made available upon request to affected employees and OSHA