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Abstract. We introduce a notion of ‘cover of level n’ for a topological space, or more
generally any Grothendieck site, with the key property that simplicial homotopy classes
computed along the filtered diagram of n-covers biject with global homotopy classes when
the target is an n-type. When the target is an Eilenberg–MacLane sheaf, this specializes
to computing derived functor cohomology, up to degree n, via simplicial homotopy classes
taken along n-covers. Our approach is purely simplicial and combinatorial.

Introduction

The well-known theory of Čech cohomology with coefficients in a (pre)sheaf has been
extended by Grothendieck and his collaborators from topological spaces to arbitrary
Grothendieck topologies. Čech cohomology of sites is isomorphic to their derived functor
cohomology, in general, only in dimensions 0 and 1. Verdier has introduced a variant of the
notion of cover in such a way that the cohomology groups computed along his ‘hypercovers’
are isomorphic to derived functor cohomology in all dimensions, for arbitrary sites. The
starting point for this research was the following näıve but (perhaps) irresistible question:
Is there a notion of ‘cover of level n’ with respect to which Čech covers have level 1, and
get the cohomology right up to dimension 1, while Verdier covers have level ∞, and get the
cohomology right in all dimensions?

The answer is (as the author discovered after most of this research was completed) that
while the term, ‘truncated hypercovering of level n’, does make an appearance in Artin–
Mazur [2], p. 96 (see also Verdier’s Appendice to SGA4, fascicule 1, exposé 5 for the original
description) its properties seem to be mostly unexplored. But there are good reasons for
such an exploration. One is liberating n-covers from the formalism of sites (which makes
them look much less similar to plain simplicial sets than they really are) and the other is
to embed them in a theory of Postnikov sections, which makes the formalism applicable to
coefficients more general then Eilenberg–MacLane spaces (i.e. abelian ones).

Recall that the data for an open cover of a topological space can be assembled into a
simplicial sheaf with distinguished properties, and hypercovers are simplicial sheaves by
definition. The notion of n-cover is cast in a simplicial language, and is defined intrinsically
in terms of the topos, i.e. the category of sheaves on the site. We also introduce a notion of
Čech n-cover that is specific to a site; these are genuine combinatorial objects, standing in
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the same relation to n-covers as topological open covers do to the simplicial sheaf they give
rise to.

One of the several equivalent definitions of abelian sheaf cohomology is

Hn(E, A) = hoE∆op (1, K̃(A, n))

Here E = Sh(C, J) is the category of set-valued sheaves on a site, A an abelian sheaf, hoE∆op

stands for the category of simplicial objects in E with the local weak equivalences (formally)

inverted, 1 is the terminal object of E∆op
and K̃(A, n) is a simplicial Eilenberg–MacLane

sheaf corresponding to A in degree n. Level n Čech cohomology will be defined as a filtered
colimit of simplicial homotopy classes whose source is an n-cover; from the viewpoint of
simplicial homotopy theory, the target could be an arbitrary simplicial sheaf (so perhaps
‘level n Čech homotopy’ would be a better name) and the main result becomes the following

Theorem. Write [covn
E] for the category with objects the n-covers of E and morphisms

simplicial homotopy classes of maps. [covn
E] is a cofiltered category possessing cofinal small

subcategories. Let X be a simplicial object in E. Writing [−, X] for the contravariant
‘simplicial homotopy classes’ functor E∆op → Set , one has a natural map (of sets)

colim
[covn

E]
[−, X]→ hoE∆op (1, X)

which is a bijection if X is an exact n-type.

There’s an analogous statement for Čech n-covers. An exact n-type is, in turn, a partic-
ularly good simplicial model for a (local, in the case of sheaves) weak homotopy type with
vanishing local homotopy groups above dimension n. For example, of all simplicial sets of
the weak homotopy type of an Eilenberg–MacLane space K(G, 1), the nerve of G is also
exact. Any homotopical n-type, taken in the ordinary sense, possesses models that are exact
n-types. The concept, which is due to Duskin, will be discussed in detail.

As a corollary of the main theorem, the Čech cohomology groups of level n “get co-
homology correctly” (i.e. are isomorphic to derived functor cohomology) in dimensions 0
through n. Setting n = 1 and X = K(G, 1) (here G being a sheaf of groups), one recovers
Grothendieck’s theorem on (not necessarily abelian) H1 and its computability by ‘level 1’,
that is ordinary Čech cohomology. The preservation of algebraic structure on homotopy
classes — for example, in case X is a group or abelian group object up to homotopy —
follows by naturality.

0, 1 and 2-covers can be economically reindexed as groupoids with extra structure, and it
might be thought that n-covers, as defined here, could shed light on the elusive notion of ‘n-
groupoids’ or ‘weak n-categories’. That is not so, one can see, already for n = 2. The reason
is that n-covers are defined via horn- and simplex-filling conditions, i.e. purely existential
conditions, while for groupoids and similar algebraic structures one expects operations and
identities — such as functional or functorial choices of fillers.

The reader who is impatient (or turned away by the prevalence of the term ‘topos’) but
wishes to get a feel for the subject is encouraged to look at Thm. 2.15 and Prop. 2.16 —
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showing how cleanly one can ‘chop off’ Verdier covers, and the main property of Verdier
covers, at a finite stage; or at the discussion on the last few pages, where we give an example
of a sheaf cohomology class that is not supported on any Čech cocycle (in the classical sense)
but can be represented by a higher Čech cocycle (in the sense of this paper).

The proof of the main theorem is quite straightforward; it employs no additive tools such
as chain complexes or spectral sequences, but proceeds purely by local manipulations on
simplicial objects, mainly with Postnikov sections. One reason for the length of this paper
is the number of ‘service paragraphs’ it contains, somewhat independent but (it is hoped)
enjoyable illustrations of the various notions used. Though the intrinsic level of generality of
our results is that of simplicial sheaves on any Grothendieck site, essentially all proofs can
be phrased in direct combinatorial terms involving plain simplicial sets. The very first such
‘service paragraph’, entitled For logical reasons, explains just how this is possible; it is a
depository of some sheaf-theoretic technologies that were only perfected after the publishing
of SGA4. These tricks, constantly used by a handful of ‘experts’, make proofs both more
streamlined and more general, often eliminating assumptions of ‘enough points’ on sites.

Acknowledgements. I am indebted to J. Duskin for several email messages and generous
simplicial guidance; this work could not have started without his definitions and insights. I
also wish to thank the referee for his insistence on making this paper (yet) more practical
and concrete.

Notational and terminological conventions. A topos is a category abstractly equivalent
to the category of Set-valued sheaves on some Grothendieck site. To minimize set-theoretical
issues, we assume that our toposes can always be written as the category of sheaves on a small
site. Under this assumption, a topos will possess a proper class of objects and small hom-sets
in the usual sense, and there won’t be a need to adjoin extra set-theoretical universes.

As general background on sites, toposes and geometric morphisms, we recommend the
first three chapters of MacLane–Moerdijk [16].

Write hoE∆op for E∆op
[W−1], the category of simplicial sheaves with the class of local weak

equivalences inverted. This is a locally small category (i.e. between any two objects there is
a hom-set rather than proper class of morphisms); this can proved on purely set-theoretic
grounds, or follows from W being part of a Quillen model category structure on E∆op

. We
will not use any model-theoretic arguments, though.

The symbol 1 will always stand for a terminal object, in the category that’s clear from
the context.

1. For logical reasons

Let us illustrate the point with an example that is needed in this paper.
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Proposition 1.1. Let

X
f

//

q

��

Y

p

��

A
g

// B

be a pullback diagram in SSet, with p a Kan fibration. Assume g is an n-equivalence, that
is, it induces isomorphisms on πi for 0 6 i 6 n, and in addition it induces an epi on πn+1

(for all basepoints). Then f is an n-equivalence.

Proposition 1.2. Let E be a topos and

X
f

//

q

��

Y

p

��

A
g

// B

a pullback diagram in E∆op
, with p a local Kan fibration. Assume g is a local n-equivalence,

that is, it induces isomorphisms on the sheaves πi for 0 6 i 6 n, and in addition it induces
an epi on πn+1 (for all local basepoints). Then f is a local n-equivalence.

Proof of 1.1. Consider the geometric realization functor with values in the category of
compactly generated Hausdorff spaces, and apply it to the above diagram. It preserves finite
limits by a result of Gabriel–Zisman [10], and takes Kan fibrations to Serre fibrations by a
result of Quillen [18]. In the topological world, the claim follows from the five lemma applied
to the homomorphism induced between the homotopy long exact sequences of p and q; and
that implies the conclusion for the simplicial (or ‘combinatorial’) homotopy groups too. �

Prop. 1.2 is a formal consequence of Prop. 1.1. There are three strategies for seeing that:

(1) Both the hypotheses and the desired conclusion of Prop. 1.1 can be phrased purely in
the language of sets, membership, ordered tuples and projections, and unions and intersec-
tions (allowing countable unions as well), in the syntax known as geometric logic; see the
textbook of Moerdijk–MacLane [16]. There is an interpretation of the language of sets in any
topos (akin to the formalism of ‘virtual elements’ and ‘diagram chases via virtual elements’
in arbitrary abelian categories, cf. MacLane [15]). This interpretation, at the same time,
defines precisely the meaning of local and ensures — thanks to a theorem of Joyal, Deligne
and others, and one of Makkai and Reyes, respectively — that theorems whose hypotheses
and conclusions can be phrased in finitary resp. countable geometric logic, stay valid in an
arbitrary topos.

(2) Both the hypotheses and the conclusion of Prop. 1.2 can be formulated in the language

of diagrams, finite limits and countable colimits. For example, to say that Y
p−→ B is a

local Kan fibration in E∆op
means that the canonical maps Yn � Λk

n(Y )×Λk
n(B) Bn from the

object of n-simplices of Y to the matching object of (n, k)-horns in Y above n-simplices of
B, are epimorphisms. To say that a map in E∆op

A
g−→ B
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induces an epi on πn for all local basepoints means that the corner map in the diagram

πn(A)
πn(g)

))RRRRRRRRRRRRRRR

"" ""EE
EE

EE
EE

E

��
33

33
33

33
33

33
33

33

• //

��

πn(B)

��

A0

g0
// B0

is an epimorphism. Here A0, B0 are the degree 0 parts of the simplicial objects A, B (“all the
local basepoints”); πn(A), πn(B) are the bundle of homotopy groups above them (i.e. group
objects in E/A0, E/B0), and • stands for a pullback. πn(A) is, in turn, a certain subquotient
of the degree n part of Ex∞(A), which is a countable colimit of Exk(A), each of which, and
the connecting maps as well, arises as collections of matching tuples and projection maps. . .

The data thus packaged — a set of diagrams, together with requirements that given
subdiagrams be limits resp. colimits — go by the name of sketch; see Adámek–Rosický [1]
or Borceux [4] for a full and careful definition. Props. 1.1 and 1.2 are identical in this form;
they both state that if certain subdiagrams of a given sketch are assumed to be limits resp.
colimits, then certain other(s) will be limits (colimits) too. The fundamental theorem of
sketches states that if a theorem sketchable via finite limits and finite colimits holds in the
category Set , then it will hold in any topos; and same holds if the sketch contains countable
colimits, but the total cardinality of all diagrams used is countable. (In simplicial homotopy
theory, one often needs this second version because of Ex∞.)

(3) Any Grothendieck topos E has a Boolean cover, that is to say, a complete Boolean

algebra B and a surjective geometric morphism Sh(B)
f−→ E. f ∗ preserves and reflects

statements that can be formalized in geometric logic. Sh(B) provides a Boolean-valued
model for the axioms of Zermelo–Fraenkel set theory (including the axiom of choice). Hence
if a theorem of geometric logic is provable in ZFC, it holds in the internal logic of every
Grothendieck topos.

Terminology. The phrase ‘for logical reasons’, when used in a proof, signifies that one
can appeal to any one of the strategies (1), (2) or (3) to verify a claim in Set , in order to
conclude its validity in every topos.

2. n-covers

Recollections on the coskeleton functor. Let ∆[0, n] denote the full subcategory of ∆
(which is the category of finite ordinals and monotone maps) with objects 0, 1, . . . , n. The

truncation functor SSet = Set∆op trn−→ Set∆[0,n]op has a right adjoint (a Kan extension) which
we will denote by coskn. (Note that the literature often uses coskn or Coskn to denote what
would be the composite coskn ◦ trn in this paper.)

Proposition 2.1. For X ∈ SSet, the following are equivalent:
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(1) X is isomorphic to an object in the image of coskn.
(2) The canonical morphism X → coskn ◦ trn(X) is an isomorphism.
(3) Write ∂∆k(X) for the set of (k+1)-tuples of (k−1)-simplices of X that are compatible

so as to form the boundary of a standard k-simplex. The canonical map Xk
bk−→

∂∆k(X) (whose coordinates are the boundary mappings) is a bijection for all k > n.
(4) The canonical map Xk → hom(trn(∆k), trn(X)) is a bijection for all k > n. (This

map sends a k-simplex of X, thought of as a simplicial map ∆k → X, to its n-
truncation.)

(5) For any k > n and any diagram in the shape of the solid arrows

∂∆k
//

��

��

X

∆k

==

precisely one lift exists that makes it commutative. (Here ∂∆k stands for the k − 1-
skeleton, that is “boundary”, of the standard k-simplex ∆k.)

If X satisfies (any, hence all) these conditions, it is said to be n-coskeletal.

The first two versions of this definition can be repeated verbatim for simplicial objects in
any category with finite limits (in particular, a topos); and also the third, if one uses iterated
pullbacks to assemble the ‘boundary object’ ∂∆k(X). (1) through (3) remain equivalent, and
will serve as the definition of coskeletal objects in general. (4) is probably the most easily
visualizable description of the coskeleton functor for simplicial sets, and property (5) is
included for completeness and comparison; cf. the notion of exact fibration below.

Simplicial torsors. Given X ∈ E∆op
, a simplicial torsor over X (in the broadest sense) is a

map T → X such that T → 1 is a weak equivalence — i.e. T has locally the weak homotopy
type of a ‘point’, the terminal object of E∆op

. Defining a map of torsors to be a simplicial
map over X, they form a full subcategory ST(X) of the overcategory E∆op

/X. Write π0C
for the class of connected components of a category C.

Theorem 2.2. There is a natural map π0ST(X) → hoE∆op (1, X) which is a bijection if X
is locally Kan.

This is a close variant on work of K. Brown [5] and Jardine [14]. See [3] for a proof.

In the 70’s, Duskin defined a certain class of simplicial objects X for which, as it turns
out, a much smaller collection of simplicial torsors T suffices to calculate homotopy classes.
When one thinks of these torsors as lying over the terminal object instead, they amount to
the notion of cover that is the subject matter of this article.
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Recall that a map X
f−→ Y of simplicial sets is a Kan fibration, or satisfies Kan’s lifting

condition in dimension k if in every commutative square of the form

Λi
k

//

��

��

X

f

��

∆k
//

??

Y

(2.1)

a lift, as indicated by the dotted arrow, exists. (Λi
k is the simplicial set obtained by omitting

the non-degenerate simplex of dimension k and the face opposite the vertex i, 0 6 i 6 k,
from ∆k.) The following definition and proposition are due to Duskin [7].

Definition 2.3. A simplicial map X
f−→ Y satisfies the exact Kan condition in dimension

k if in any commutative diagram of the type (2.1), precisely one dotted lift exists. X ∈ SSet
is an exact n-type if X → 1 is a Kan fibration which is exact in dimension k for all k > n.

Another way to phrase the condition of X being an exact n-type is: the canonical map
Xk → Λi

k(X) from the object of k-simplices to the object of (k, i)-horns is epi for k 6 n and
an isomorphism for k > n. For logical reasons, this formulation is valid in any topos. (In
other words, for a topos E, X ∈ E∆op

is an exact n-type if X → 1 is a local Kan fibration
which is exact above dimension n; the notion of ‘exact’ has a unique meaning, no local and
global versions.)

Proposition 2.4. Let E be a topos, T ∈ E∆op
.

(i) If T satisfies the exact Kan condition above dimension n, then T must be n + 1-
coskeletal.

(ii) If T is n-coskeletal, then it satisfies the exact Kan condition above dimension n + 1.
(iii) If T is locally Kan and n-coskeletal, then it has vanishing local homotopy groups in

dimension n and above.
(iv) An exact n-type has vanishing local homotopy groups above dimension n.

Proof. For logical reasons, it suffices to prove these for E = Set .

(i) Suppose one has n + 3 matching n + 1-simplices that together can be assembled into

an n + 2-boundary in T , i.e. a map ∂∆n+2
b−→ T . Omitting (say) the 0th of these simplices,

one obtains a horn Λ0
n+2 ↪→ ∂∆n+2 → T . By assumption, this horn has a filler ∆n+2

f−→ T .

Consider the two n + 1-simplices: d0∆n+2 ↪→ ∆n+2
f−→ T (the 0th face of f) and the 0th

simplex in the matching set ∂∆n+2
b−→ T . They have the same boundary; since T satisfies

the exact Kan condition above dimension n, they must coincide. So f is a filler for b. Again
by exactness in dimension n + 2, this filler must be unique.

(ii) By adjunction, coskn(X) satisfies the exact Kan condition with respect to Λk
m � ∆m

iff X satisfies the unique lifting condition with respect to trn(Λk
m � ∆m). That will certainly

happen for m > n + 1, for trn(Λk
m � ∆m) is an isomorphism then. (Note that Λk

m leaves
out cells of dimension m− 1 and higher from ∆m.)
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(iii) A 0-coskeletal simplicial set is just the nerve of a groupoid that is equivalent (as a
category) to the terminal category; so it is automatically Kan, and (if non-empty) simplicially
contractible.

If n > 0, choose any 0-simplex x ∈ T0 and any k-simplex y ∈ Tk, k > n, all of whose faces
are (the degeneracies of) x. This y, together with k +1 copies of the (unique) k-dimensional
degeneracy of x, make up a compatible boundary of a k +1-simplex. Since T is n-coskeletal,
this boundary has a filler. Thence y is null-homotopic modulo its boundary. Since T was
assumed to be Kan, this means its homotopy groups are trivial in dimension k, any k > n.

(iv) By definition, an exact n-type is a Kan complex; now use (i) and (iii). �

Asides on exact n-types. The following observation of Duskin [7] must have been
motivational in his definition of ‘exact’: let n ∈ N and A be an abelian group (just a group
if n = 1, or a set if n = 0). Then K(A, n), the standard simplicial model of an Eilenberg–
MacLane space, is an exact n-type.

By the standard model we mean the constant simplicial set A if n = 0, the nerve of A if
n = 1, and the de-normalization of the appropriate chain complex concentrated in degree n
if n > 1. Recall that this K(A, n) is n-reduced, i.e. has a singleton in dimensions below n, A
itself in dimension n, suitable tuples of elements of A in dimension n + 1, and is coskeletal
above that.

Duskin [7] actually introduced the term n-hypergroupoid for what is called exact n-type
here, while Glenn [11] uses ‘n-hypergroupoid’ to mean any simplicial set satisfying the exact
Kan condition above dimension n (not requiring it to be a Kan complex in all dimensions).
I confess to replacing ‘n-hypergroupoid’ by ‘exact n-type’ (prompted by, of course, Duskin’s
definition of ‘exact Kan fibration’, Def. 2.3) so as to emphasize its homotopical meaning
(valid for all n) and de-emphasize its link to groupoids (known to be valid for small n).
In this context, one should also observe that the exact Kan condition above dimension n
places no restriction on the homotopy type of X in the absence of the Kan condition in lower
dimensions. For example, the nerve of any small category is 2-coskeletal, hence satisfies the
exact Kan filling condition in dimensions greater than 3. Nonetheless, any homotopy type
can be realized as the nerve of a small category. By way of contrast, if the nerve of a category
is a Kan complex (which means, therefore, extra conditions only in dimensions 1 through 3),
then that category is a groupoid, and its nerve has the homotopy type of a disjoint union of
Eilenberg–MacLane spaces.

• The converse to Prop. 2.4(iv) holds as well, i.e. every (topological) n-type has simplicial
models that are exact n-types. In fact, we will see in Prop. 2.5 below that there is a model
for the Postnikov section functor that takes values in exact n-types.

• Duskin [8] describes a fascinating example of a non-abelian exact 3-type, the Azumaya
complex AZ(R) of a commutative ring R. AZ(R) has a unique vertex ∗; its edges are Azumaya
R-algebras, its 2-simplices certain invertible bimodules and its 3-simplices, isomorphisms
between those. πi(AZ(R), ∗) is isomorphic to the Brauer group of R (defined as equivalence
classes of Azumaya algebras), the Picard group of R, and R×, respectively, for i = 1, 2, 3.
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One surmises that more constructions of this type exist in the domains of deformation
theory, formal group laws or bordism — though as n increases, it requires more and more
ingenuity to make ‘deformation data of the nth order’ fit the geometry of n-simplices.

• Note that an exact n-type is also an exact m-type for any m > n. An exact n-type
is a minimal simplicial set (in the sense of Kan) in dimensions k > n, meaning that two
k-simplices that are homotopic modulo their boundaries must be equal, but this need not
hold in dimensions below n. Consequently, exact n-types are not necessarily economical
models of topological n-types; as we will see, there are infinitely many exact n-type models
of the point(!), and they can be quite complicated.

Duskin–Postnikov sections. Duskin has also defined a particularly good model for Post-
nikov sections. His results appear in Glenn [11]; we only summarize the facts needed later.

Proposition 2.5. For each n ∈ N, there exists a functor Pn from the full subcategory of
simplicial sets whose objects are Kan complexes to its full subcategory with objects the exact
n-types, as well as a natural transformation pn from the identity to Pn with the following
properties:

• Pn preserves Kan fibrations
• pn induces isomorphisms on πi for i 6 n
• Pn and pn are definable in terms of finite limits and countable colimits.

We can now state our main definition and its most important property.

Definition 2.6. An n-cover of a topos E is an exact n-type T ∈ E∆op
such that T → 1 is a

local weak equivalence.

Proposition 2.7. Let E be a topos and X ∈ E∆op
an exact n-type. Write covn

E(X) for the
full subcategory of ST(X) with objects T → X such that T is an n-cover of E. Then there is
a canonical bijection π0covn

E(X)→ hoE∆op (1, X).

Proof. The bijection is π0covn
E(X) → π0ST(X) → hoE∆op (1, X), where the first map is

induced by covn
E(X) ↪→ ST(X) and the second map is that of Thm. 2.2. So it suffices to

prove the first one to be a bijection.

Now quite generally, if one has two categories C, D and functors C F−→ D, C G←− D such
that every object c of C is connected to GF (c) via a zig-zag of arrows in C, and every object d
of D is connected to FG(d) via a zig-zag of arrows in D (these zig-zags are not required to be
functorial, or even be of some fixed shape) then π0F and π0G are inverse bijections between
π0C and π0D. It follows that if F is onto on hom-sets (for example, it is the inclusion of a
full subcategory) and for any d in D there exists a map d → FG(d), then F and G induce

bijections on connected components. Apply this to the full inclusion covn
E(X)

F−→ ST(X),
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G being defined by the diagram:

T //

f

��
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@ T̃

!!B
BB

BB
BB

B

f̃

��
11

11
11

11
11

11
11

11

((RRRRRRRRRRRRRRRRRR

G(T ) //

��

PnT̃

Pnf̃
��

X // PnX

Starting with a torsor T
f−→ X, factor it (functorially) as a weak equivalence T → T̃ followed

by a local fibration T̃
f̃−→ X. Apply Pn to f̃ , T̃ → PnT̃ and X → PnX coming from the

natural transformation pn of Prop. 2.5, and let G(T ) be the indicated pullback, the (natural)
map T → G(T ) = FG(T ) (over X) being the above composite.

First, Pnf̃ is a local fibration, and so is its pullback G(T ) → X; since X is locally Kan,
so is G(T ). Second, G(T ), being a pullback of three objects each of which satisfies the exact
Kan condition above dimension n, itself satisfies it; so it is an exact n-type, and has vanishing

local homotopy groups above n. Finally, PnT̃ , being a Postnikov section of an object that

is weakly equivalent to 1, is itself weakly equivalent to 1. G(T )→ PnT̃ is an n-equivalence
by virtue of Prop. 1.2; so G(T ) has trivial local homotopy groups up to dimension n too.
Therefore G(T )→ X belongs to covn

E(X), and we have a functor and natural transformation
as required. �

Scholium. There are several functorial models of the Postnikov n-section of a Kan
complex X, the simplest being, no doubt, coskn+1 ◦ trn+1(X). Some version of the main
theorem would work with each; the difference is that they would not specialize to the classical
theory of Čech covers. See Remark 3.7 for an elaboration of this point. As regards Duskin’s
Pn, though all we need is contained in Prop. 2.5, it may be worthwhile to compare the
details of its construction with the much better known model due to Moore (see e.g. Goerss–
Jardine [13] section VI.3).

The Moore–Postnikov n-section PM
n (X) is the image of the canonical map X →

coskn ◦ trn(X). This is the same as saying that PM
n (X) is a quotient complex of X, where

two k-simplices x, y ∈ Xk are identified if they have identical boundaries up to dimension n,
i.e. identical n-truncations.

For the Duskin–Postnikov n-section Pn(X), consider the truncation trn(X) first. Introduce
a relation ∼n on its n-simplices by defining two to be equivalent if they are simplicially
homotopic in X modulo their boundaries. (This is an equivalence relation by virtue of the
assumption that X is a Kan complex.) Since the face maps from Xn factor through this
equivalence, there results a well-defined truncated simplicial object trn(X)/ ∼n. (It is not
being claimed that X/ ∼n would be a well-defined simplicial object!) There is a canonical

map X
p−→ coskn(trn(X)/ ∼n), adjoint to the quotient map trn(X) → trn(X)/ ∼n. Define

Pn(X) to be the image of p.
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P0(X) is the disjoint union of π0(X) many copies of the (simplicial) point, the terminal
object of SSet . PM

0 (X) is the disjoint union of π0(X) many simplicially contractible sets;
these are of the form cosk0(X0,i), where X0,i is the vertex set of the ith connected component
of X.

P1(X) is the nerve of π1(X), the Poincaré groupoid of X (one object for each 0-simplex
and one edge for each homotopy class of 1-simplices). PM

1 (X) keeps all the 0-simplices
and all the 1-simplices of X. It is not the nerve of any category (though it is simplicially
homotopy equivalent to Nπ1(X), of course).

In short, Pn(X) is a ‘slimmer’ and geometrically perhaps more natural Postnikov section,
even though the extra reduction only involves the n-simplices. It also has the beautiful
property (which we did not use) that it is idempotent (as opposed to just homotopy idem-
potent) on locally Kan objects in E∆op

. Note finally that PM(X) and P(X) need not have
the intended homotopy type, and certainly need not be (local) Kan complexes, unless X is
a (local) Kan complex.

Finitary description of exact n-types and n-covers. The notions of exact fibration,
exact n-type and n-cover are preserved by inverse image parts of topos morphisms, in par-
ticular, by stalk functors. In the case of toposes with enough points, these notions are also
reflected by stalk functors (for the usual logical reasons), e.g. T ∈ E∆op

will be an n-cover iff
all stalks of T are n-covers in SSet .

Def. 2.6, after a little unwrapping, turns out to describe structures well known in low
dimensions. We will decode these first.

0-covers. An exact 0-type in SSet is a simplicial set that is constant, i.e. all of whose
structure maps are the identity. A topos E has (up to isomorphism) a single 0-cover, the
constant simplicial object on the terminal object of E. cov0

E is equivalent to the trivial
(unique object, only the identity morphism) category.

1-covers. An exact 1-type T ∈ SSet turns out to be precisely the same as the nerve of
a groupoid — see Duskin [7]. The graph underlying this groupoid is just the 1-truncation
T1 ⇒ T0 of T . Such a simplicial set T has the homotopy type of a point iff the corresponding
groupoid has one component and trivial vertex groups, which happens iff T is 0-coskeletal
and nonempty. Correspondingly, a 1-cover of a topos E is a 0-coskeletal simplicial object
X ⇐ X2 W X3 . . . such that X → 1 is an epimorphism. A simplicial morphism between
0-coskeletal objects is necessarily induced from an ordinary map at level 0; we thus have an
adjoint equivalence

cov1
E

cosk0

�
tr0

{X ∈ E | X � 1}

between 1-covers of E and the full subcategory of E of objects with global support, that is,
ones that map to the terminal object via an epimorphism.

2-covers. The reader sceptical of the intricacies of ‘higher dimensional diagram chases’
is invited to work out a finitary algebraic description of exact 2-types. Duskin’s [9] solution
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is what he calls a bigroupoid, which is a bicategory in which all 1-arrows are equivalences
and all 2-arrows are isomorphisms. A bicategory itself (not needed in this paper) is a higher
categorical structure made up of objects, 1-arrows and 2-arrows, such that the composition
of 1-arrows is not associative; its failure to be associative is measured by a (functorially
assigned) 2-isomorphism, which in turn is subject to a coherence condition; this coherence
condition can be visualized as a 4-simplex, or alternatively as a MacLane–Stasheff pentagon.
Identities are likewise relaxed. Duskin assigns a simplicial set, a ‘nerve’, to any bicategory
— this being a rather more involved affair than the nerves of strict higher categories — and
proves that the nerve is an exact 2-type iff it arises from a bigroupoid.

What of 2-covers, that is, exact 2-types weakly equivalent to a point? It follows from
general principles — see Prop. 2.10 below — that a 2-cover, as a simplicial object, must be
1-coskeletal. Let us take E = Set , and think of the truncation of a simplicial set to levels 0

and 1 as a graph T1

s

⇒
t

T0; ‘graph’ will mean ‘directed graph equipped with unit arrows at

each vertex’ throughout, but we will omit notation for units for the sake of legibility.

Since π0 of the 1-coskeleton of this graph must be trivial, T0 must be non-empty and
the graph must be connected. The Kan fibrancy condition on its 1-coskeleton implies that
our graph satisfies the right lifting condition (or ‘injectivity condition’), in the category of
graphs, with respect to the following three inclusions, which should be thought of as the
edge truncations of the three Kan horn conditions in dimension 2:

•

��
@@

@@
@@

@

•

??~~~~~~~
•

� � //

•

��
@@

@@
@@

@

•

??~~~~~~~
// •

(2.2)

•

•

??~~~~~~~
// •

� � //

•

��
@@

@@
@@

@

•

??~~~~~~~
// •

(2.3)

•

��
@@

@@
@@

@

• // •

� � //

•

��
@@

@@
@@

@

•

??~~~~~~~
// •

(2.4)

But given that the graph is connected, these imply that for every pair u, v of vertices, there
is some edge starting at u and ending at v. Conversely, this latter condition implies that

cosk1(T1

s

⇒
t

T0) satisfies the Kan condition in dimension 2 (as well as, tautologically, in

dimension 1); from being 1-coskeletal, it satisfies the Kan condition exactly above dimension
2; it is connected, and its πn vanishes for n > 1, by virtue of being Kan and 1-coskeletal.

To conclude, a 2-cover in SSet is the same data as a graph T1

s

⇒
t

T0 such that T0, the set of

vertices, is non-empty, and T1

s×t
� T0 × T0 is surjective. The 2-cover associated to this data

is just the 1-coskeleton of the truncated simplicial object T1

s

⇒
t

T0.
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For logical reasons, one actually has

Corollary 2.8. There is an adjoint equivalence

cov2
E

cosk1

�
tr1

{diagrams T1

s

⇒
t

T0 in E such that (0) and (1)}

between 2-covers of E and the full subcategory of graph objects in E satisfying

(0) T0 � 1 is an epimorphism

(1) T1

s×t
� T0 × T0 is an epimorphism.

This is also a special case of Prop. 2.11 below.

Remark 2.9. If one prefers the bigroupoid formalism, then one can think of the injectivity
condition with respect to (2.2) as expressing the possibility of composing graph edges, and
(2.3) and (2.4) resp. as permitting ‘left’ and ‘right’ division, without assuming that such
operations have been chosen, or indeed, that they can be chosen with any kind of consistency.
The bigroupoid associated to the data T1 ⇒ T0 in Set has T0 as objects, T1 as 1-arrows,
and exactly one 2-arrow from any 1-arrow to any other with the same source and target.
This also fixes the composition of 2-arrows. To define composition of 1-arrows, choose,
completely arbitrarily, a composite for each composable pair, respecting source and target
— this is made possible by (2.2). The association isomorphism, being a 2-arrow between
the 1-arrows (ab)c and a(bc), is uniquely defined. The coherence condition on the next level,
which requires that the two possible re-association sequences from (((ab)c)d to a(b(cd))),
when expressed as 2-arrows, coincide, is satisfied tautologously. In this bicategory, obviously
every 1-arrow is an equivalence and every 2-arrow an isomorphism; so it is a bigroupoid.

The correspondence between bigroupoids and exact 2-types breaks down when one passes
to sheaves of them, since the requisite choices can be made locally at best. A bigroupoid does
carry more information than an exact 2-type; for example, functional choices of fillers for
certain horns. Equivalently, the category of bigroupoids (as a many-sorted universal algebra)
will not be naturally equivalent to the category of exact 2-types (as full subcategory of SSet).
In this paper, we will employ direct simplicial descriptions throughout.

n-covers. These turn out to be, quite simply, truncated simplicial objects with simplex
filling conditions up to the top dimension.

Proposition 2.10. If T is an n-cover, then it is (n− 1)-coskeletal.

Proof. For logical reasons, it is enough to prove this for simplicial sets. By Prop. 2.1, what

we have to prove is that the canonical maps Tk
bk−→ ∂∆k(T ) are bijections for k > n− 1.

Recall that in SSet , a Kan complex T that has the weak homotopy type of the point will
satisfy the right lifting condition with respect to the boundary inclusions, meaning the bk

will be surjective for all k. (For logical reasons, this second, ‘local’ version remains valid in
any topos.) By virtue of T being exact Kan above dimension n, bk will be injective for k > n
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(if any k-horn has precisely one filler, then certainly any k-boundary can have at most one
filler). Thence bk is bijective for k > n.

So we are left to prove that bn is injective. It is easiest to argue topologically. Let

∆n
s−→ T , ∆n

t−→ T be two n-simplices of T whose boundaries coincide. Since T was
assumed to have the weak homotopy type of a point, the geometric realizations of s and t
are homotopic modulo the boundary. Since T was assumed to be a Kan complex, s and t
are simplicially homotopic modulo the boundary. But two n-simplices of an exact n-type
that are simplicially homotopic modulo the boundary, must coincide. �

Proposition 2.11. Write ∆[0, n − 1] for the full subcategory of ∆ (i.e. the category of
finite ordinals and monotone maps) whose objects are 0, 1, . . . , n − 1. There is an adjoint
equivalence

covn
E

coskn−1

�
trn−1

{T ∈ E∆[0,n−1]op | (F) holds for k = 0, 1, 2, . . . , n− 1}

between n-covers of E and the full subcategory of n − 1-truncated simplicial objects in E

satisfying

(F) Tk

bk

� ∂∆k(T ) is an epimorphism

where ∂∆k(T ) and bk are defined as in Prop. 2.1(3).

Proof. Use, again, that a simplicial object T in a topos has the weak homotopy type of

the point and is locally Kan at the same time if and only if the maps Tk

bk

� ∂∆k(T ) are
epimorphisms for all k. The part of the claim that trn−1 is a functor between these two
categories follows from the ‘only if’ direction of this. That coskn−1 is a functor with the
desired properties follows from the ‘if’ direction, together with Prop. 2.4(ii). The adjoint
equivalence follows from Prop. 2.10. �

As in any simplicial category with finite limits and colimits, there is a notion of simplicial
homotopy in E∆op

: the role of the interval is played by the constant simplicial sheaf ∆[1]

with its two global sections corresponding to ∆[0]
i0, i1−−→ ∆[1]. Post- and pre-composition of

maps respect simplicial homotopies. Write [X, Y ] for the hom-set homE∆op (X, Y ) modulo
the equivalence relation generated by simplicial homotopy. Let covn

E be the full subcategory
of E∆op

whose objects are n-covers, and write [covn
E] for the category with the same objects,

but morphisms from T1 to T2 being [T1, T2].

Proposition 2.12. [covn
E] is a cofiltered category.

Proof. The product of two n-covers is an n-cover. The possibility of equalizing (in the simpli-
cial homotopy category) a parallel pair of arrows between n-covers follows, given Prop. 2.11,
from the proof of the analogous fact for Verdier hypercovers as given by Artin and Mazur [2].

A hypercover of E is, by definition, a full simplicial object T ∈ E∆op
such that Tk

bk

� ∂∆k(T )
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is an epimorphism for all k ∈ N. Given parallel arrows T1 ⇒ T2 between two hypercov-
ers, Artin and Mazur construct a hypercover T , map T → T1 and simplicial homotopy
T × ∆[1] → T2 by induction, working up degree-by-degree. Their construction remains
valid, unchanged, up to degree n, producing an n-truncated simplicial equalizer of a pair
of arrows between n-truncated simplicial objects that satisfy the boundary-filling conditions
up to degree n. �

Proposition 2.13. [covn
E] possesses (non-canonical) small cofinal subcategories.

Proof. covn
E is an accessible category in the sense of Makkai and Paré [17], either directly

from its definition in geometric logic or because, by virtue of Prop. 2.11, it is the category
of models of a sketch (see Section 1 for details of this notion). It follows that it has a small
dense subcategory G ↪→ covn

E; meaning that every n-cover is a filtered colimit of a diagram
from G, a fortiori every n-cover permits at least one map from a member of G. The image
of G in [covn

E] is a full cofinal small subcategory. �

Proposition 2.14. Write hom(−, X) resp. [−, X] for the contravariant hom- resp. hom-
modulo simplicial homotopy functors E∆op → Set. Each of

colim
covn

E

hom(−, X)

colim
covn

E

[−, X]

colim
[covn

E]
[−, X]

bijects canonically with π0covn
E(X).

Proof. This follows from elementary manipulations on representatives of these colimits.

Recall from Prop. 2.7 that covn
E(X) stands for the category whose objects are T → X, T

some n-cover of E, and whose morphisms are commutative triangles. Write C1(X) for the
category whose objects are simplicial homotopy classes of maps T → X, T some n-cover, a
morphism from T1 → X to T2 → X being an actual map T1 → T2 that makes the resulting
triangle commute up to simplicial homotopy; and write C2(X) for the category whose objects
are simplicial homotopy classes of maps T → X, T some n-cover, and where a morphism
from T1 → X to T2 → X is a simplicial homotopy class of maps T1 → T2 that makes the
resulting triangle commute up to simplicial homotopy. Then

π0covn
E(X) = colim

covn
E

hom(−, X)

π0C1(X) = colim
covn

E

[−, X]

π0C2(X) = colim
[covn

E]
[−, X]

The ‘take its simplicial homotopy class’ functors covn
E(X) → C1(X) → C2(X) induce sur-

jections π0covn
E(X) � π0C1(X) � π0C2(X). To prove π0covn

E(X) � π0C1(X) injective, it

suffices to show that if two maps T
f

⇒
g

X are simplicially homotopic, then T
f−→ X and
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T
g−→ X are connected by a zig-zag of morphisms in covn

E(X). Let T ×∆[1]
h−→ X be the

homotopy. Note that T ×∆[1] is a simplicial object over X that is weakly equivalent to 1.

As in the proof of Prop. 2.7, h can be factored T × ∆[1]
h1−→ G(T )

h2−→ X where G(T ) is

an n-cover. The requisite zig-zag is the composite T
i0−→ T ×∆[1]

h1−→ G(T ) together with

T
i1−→ T×∆[1]

h1−→ G(T ). Two applications of this argument show that π0C1(X)� π0C2(X)
is injective. �

Propositions 2.7, 2.12, 2.13 and 2.14 together yield our main result. Recall that an n-cover
of the Grothendieck topos E is a simplicial object U ∈ E∆op

that has the weak homotopy
type of 1, is locally Kan in all degrees and satisfies the unique Kan extension condition above
degree n, and we write [−,−] for simplicial homotopy classes and hoE∆op (−,−) for global
homotopy classes.

Theorem 2.15. For any X ∈ E∆op
, there is a natural map

colim
[covn

E]
[−, X]→ hoE∆op (1, X)

where [covn
E] is the filtered, essentially small diagram of simplicial homotopy classes of n-

covers of E. This map is bijective when X is a locally Kan object that satisfies the unique
Kan extension condition above degree n.

For the sake of completeness, let us include the classical case of ‘n =∞’ here:

Proposition 2.16. A Verdier cover or hypercover of a topos E is a simplicial object U ∈
E∆op

that has the weak homotopy type of 1 and is locally Kan in all degrees. For any
X ∈ E∆op

, there is a natural map

colim
[covE]

[−, X]→ hoE∆op (1, X)

where [covE] is the filtered, essentially small diagram of simplicial homotopy classes of hy-
percovers of E. This map is bijective when X is locally Kan.

3. Čech n-covers

This section describes how Thm. 2.15 specializes, for n = 1, to the traditional formalism
of ‘open covers and refinements’ and outlines the analogous version for n > 1.

Example 3.1. Let X be a topological space. For convenience, we make no notational
distinction between spaces étale over X and the sheaves on X they represent, and we talk
of ‘n-covers of Sh(X)’ as ‘n-covers of X’.

(1) Let {Ui | i ∈ I} be an open cover of X in the usual sense. Each Ui represents, as an
étale space over X, a subobject of the terminal object 1 of Sh(X). Set U to be the
coproduct of the Ui considered as objects of Sh(X) (equivalently, take their disjoint
union as spaces over X). U� 1 then, so cosk0(U) is a 1-cover of X.
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(2) Let C
p−→ X be a covering space of X in the usual sense. Then p is certainly étale

and surjective over X, so cosk0(C) is a 1-cover of X.
(3) One can have a mixture of (1) and (2): a different covering space over each element

of an open cover of X. These (and in fact all 1-covers of a space) are dominated by
trivializations, thus Čech covers as in (1).

Note that there is a proper class of non-isomorphic 1-covers of X, while there are certainly
no more open covers of X than collections of open subsets of X. Nonetheless, open covers
are cofinal among 1-covers. This is a general phenomenon, as we will see.

Let (C, J) be a site; assume C has a terminal object, which we will denote by 1 as well.1

Denote by ε the ‘canonical functor’ C y−→ Pre(C) L−→ Sh(C, J), the Yoneda embedding

followed by sheafification. Let {Ui
ui−→ 1 | i ∈ I1} be an arbitrary set of arrows in C with

common target 1. Set UI1 =
⊔

i∈I1
ε(Ui). For another such collection {Uk

uk−→ 1 | k ∈ I2},
a refinement from the latter to the former is a mapping Φ : I2 → I1 together with a
factorization Uk → UΦ(k) → 1 for each k ∈ I2. Φ then induces a map UI2 → UI1 . Refinements
can be composed in the obvious way.

Note that UI =
⊔

i∈I ε(Ui) � 1 in E iff the Ui
ui−→ 1 form a covering family; in that

case, cosk0(UI) is a 1-cover of E. (Here and hereafter, we write covering family to mean a
collection of arrows with common codomain generating a covering sieve for the topology J , to
ease somewhat on the multiple uses of the term ‘cover’.) Let cech1

C,J be the category whose

objects are covering families {Ui
ui−→ 1 | i ∈ I} and whose morphisms are refinements.

(It is a small category if (C, J) is a small site.) In line with the notation of Prop. 2.12,
write [cech1

C,J ] for the category with the same objects as cech1
C,J , but morphisms being (the

simplicial maps induced by) refinements, modulo simplicial homotopies.

Recall that a preorder is a reflexive, transitive relation; it can also be thought of as a
category whose every hom-set is either empty or a singleton.

Proposition 3.2. [cov1
E] is a preorder.

Proof. Quite generally in E∆op
, any two maps f, g : X → cosk0(Y ) into a 0-coskeletal object

are simplicially homotopic: the homotopy ∆[1]×X
h−→ cosk0(Y ) comes via adjunction from

its 0-truncation, which is X0 tX0
f0 t g0−−−→ Y . �

Lemma 3.3. Given {Ui
ui−→ 1 | i ∈ I1}, let {Uk

uk−→ 1 | k ∈ I2} be the sieve it generates.
Then cosk0(UI1) and cosk0(UI2) are simplicially homotopy equivalent.

Proof. By Prop. 3.2, it suffices to exhibit a refinement from I2 to I1, and one in the other
direction. Since each element of I2 must factor through an element of I1 (by definition), a

1 For the sake of exposition, this article is concerned only with derived functors of the global section
functor, meaning global homotopy classes with source the terminal object; that is the reason for limiting the
description to Čech covers of 1, though it leads to tautologous notation occasionally.
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choice of such for each uk ∈ I2 gives a refinement from I2 to I1. In the other direction one
has the inclusion I1 ⊆ I2. �

Let J(1) be the collection of J-sieves covering 1, ordered by inclusion; it is a cofiltered
poset.

Proposition 3.4. J(1) and [cech1
C,J ] are equivalent as categories.

Proof. By Prop. 3.2, [cech1
C,J ] is a preorder. Since each covering sieve is a covering family,

and each inclusion of sieves a refinement, one has a functor J(1) ↪→ [cech1
C,J ]. It is faithful

and full, and surjective on isomorphism types of objects by the above lemma. �

Since for any object T0 of global support, there exists a covering family {Ui
ui−→ 1} that

allows a map
⊔

ε(Ui)→ T0, and [cov1
E] is a preorder, one has

Corollary 3.5. The (faithful but not necessarily full) functor [cech1
C,J ]→ [cov1

E] induced by

sending {Ui
ui−→ 1} to cosk0

( ⊔
ε(Ui)

)
is cofinal. For any X ∈ E∆op

, one has a natural
bijection

colim
[cech1

C,J ]
[−, X]→ colim

[cov1
E]

[−, X]

For X = K(A, n), one can define Čech cohomology of the site (C, J) with coefficients in A as
Ȟn
C,J(A) = colim

[cech1
C,J ]

[−, K(A, n)]. If iterated products of the objects Ui that make up Čech cov-

ers exist in C, then the objects of higher-dimensional simplices of the cosk0

( ⊔
ε(Ui)

)
are rep-

resentable, hence Ȟn(A) can be computed by the usual recipe, i.e. as a filtered colimit of co-
homology of chain complexes. The map of Cor. 3.5 followed by colim

[cov1
E]

[−, X]→ hoE∆op (1, X)

specializes to the natural transformation Ȟn(A) → Hn(A) from Čech to derived functor
cohomology, and as a corollary of the main theorem, it is an isomorphism for n = 0, 1.

Remark 3.6. Čech covers can only be defined for a site, and are (covariantly) functorial for
site morphisms; here a site morphism from (D, K) to (C, J) (let us assume these have finite

limits) is a functor D F−→ C that preserves finite limits and takes K-covers to J-covers.
It induces a topos map Sh(C, J) → Sh(D, K). Recall that any category of sheaves can be
presented on a proper class of different sites, and it may happen that Sh(C, J) and Sh(D, K)
are equivalent as categories without there being any site map between (C, J) and (D, K).
(There will exist a zig-zag of site maps, though.) At any rate, in the absence of Cor. 3.5 it
would be far from obvious that the abelian group Ȟn

C,J(A) depends purely on the category
of sheaves Sh(C, J) and the object A in it.

Remark 3.7. Note that Prop. 2.7 was a purely formal consequence of Prop. 2.5; one of the
morals of this article is that a choice of (functorial) Postnikov sections, in any sheafifiable
homotopy model category, will amount to a theory of truncated hypercovers. The choice of
Postnikov functor matters, however. Suppose, for example, that in the proof of Prop. 2.7,
one used coskn+1 ◦ trn+1 in place of Duskin’s Pn to truncate both the hypercover T and



HIGHER ČECH THEORY 19

the target X. One will then reach the conclusion that global homotopy classes into the
n + 1-coskeletal object X (which is therefore an n-type) can be computed along n + 1-
coskeletal hypercovers.2 This (while certainly correct) is not the most economical statement.
Specializing to n = 1, for example, one thus obtains that derived functor H1 can be computed
along 2-coskeletal hypercovers, while Grothendieck’s theorem is that derived functor H1 can
already be computed along Čech covers, which are 0-coskeletal.

This ‘discrepancy of coskeletal dimension’ is due to the curious interaction of exact n-
types with coskeletal objects (see Prop 2.4 and Prop. 2.10) and is absent in the formulation
in terms of exact n-types, as in Thm. 2.15. This is really the only point where a bit of
geometry (the geometry of simplices) sneaks into a story that is mainly formal homotopy
theory.

Let us move to Čech 2-covers.

Example 3.8. Continuing with the setting of Ex. 3.1,

(0) set Vij = Ui∩Uj for each ordered pair i, j, and let V be the coproduct of the Vij. The
inclusions Vij ↪→ Ui resp. Vij ↪→ Uj together with Ui = Vii define a sheaf of (directed,

unit arrow-equipped) graphs V
s

⇒
t

U, the 1-coskeleton of which is a 2-cover of X.

But the graph V
s

⇒
t

U is nothing but the 1-truncation of the simplicial object

cosk0(U) constructed in Ex. 3.1(1), and cosk1(V
s

⇒
t

U) is canonically isomorphic to

cosk0(U). All this is just an instance of the tautology that an n-cover (considered as
a simplicial object) is also an m-cover for any m > n.

(1) Suppose, however, that the family V is only a refinement of the collection {Ui ∩
Uj | i, j ∈ I} in the following sense: for each ordered pair i, j ∈ I one has an index set
Kij, and for each k ∈ Kij an open subset Vk of Ui∩Uj such that

⋃
k∈Kij

Vk = Ui∩Uj,

and each original open Ui is included in the collection Kii (this is to ensure that the
unit condition can be satisfied). Let V be the coproduct of the Vk, k ∈ Kij, i, j ∈ I.

The inclusions Vk ↪→ Ui ∩ Uj ↪→ Ui (resp. Uj) give a sheaf of graphs V
s

⇒
t

U such

that V � U×U, and this is our first non-trivial example of a 2-cover. In short, in a
2-cover a second refinement occurs on double intersections.

(2) Let C
p−→ X be a covering space, with D

d−→ C ×X C another covering. C ×X C

contains a ‘marked’ copy of C, the diagonal C
∆−→ C ×X C. Assume d has a section

above ∆, so the unit condition is satisfied. The composite D
d−→ C ×X C ⇒ C, the

double arrows being the projections, is then a 2-cover of X. (Even if not a covering
space, D is certainly étale and surjective above C, and that is all that matters sheaf-
theoretically.)

2 This is indeed Prop. 8.9 of Dugger–Hollander–Isaksen [6].
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(3) Analogously to Ex. 3.1, one can have a mixture of (1) and (2), i.e. a different 2-tier
covering space system above each open, but any 2-cover of a space is dominated by
one of type (1).

For the case of any site (C, J) with products, one has

Definition 3.9. A Čech 2-cover (of the terminal object 1 of C) is a covering family {Ui
ui−→

1 | i ∈ I} together with covering families {Vk
vk−→ Ui × Uj | k ∈ Kij ; i, j ∈ I} such that

Kii, for each i ∈ I, contains Ui × Ui
id−→ Ui × Ui. The 2-cover associated to this data is

cosk1(VK

s

⇒
t

UI) where VK =
⊔

k∈Kij

i,j∈I

Vk and UI =
⊔

i∈I Ui; s has components Vk
vk−→ Ui×Uj

pr1−−→

Ui → UI , with the other projection for t, and a splitting UI → VK as assumed. A refinement
of Čech 2-covers VK2 ⇒ UI2  VK1 ⇒ UI1 is given by a function Φ : I2 → I1 together with
factorizations Ui → UΦ(i) → 1 for i ∈ I2, and a family of functions Ψij : Kij → KΦ(i)Φ(j)

together with maps Vk → VΨij(k) such that

Vk
//

vk

��

VΨij(k)

vΨij(k)

��

Ui × Uj
// UΦ(i) × UΦ(j)

commutes. This will induce a morphism of graphs from VK2

s

⇒
t

UI2 to VK1

s

⇒
t

UI1 , hence a

simplicial map between their 1-coskeleta.

Remark 3.10. If C does not have products, one can modify the definition appropriately:

instead of asking for a covering family {Vk
vk−→ U1 × U2 | k ∈ K}, ask for a set of pairs of

maps {Vk

vk,1−−→ U1, Vk

vk,2−−→ U2 | k ∈ K} such that
⊔

k∈K ε(Vk)
ε(vk,1)×ε(vk,2)
−−−−−−−−→ ε(U1) × ε(U2) is

epi in Sh(C, J), etc.

Write cech2
C,J for the category whose objects are Čech 2-covers, morphisms being refine-

ments, and [cech2
C,J ] for the category with the same objects, but morphisms the simplicial

maps induced by refinement modulo (the equivalence relation generated by) simplicial ho-
motopy. The cheap analogue of Prop. 3.2 fails for n-coskeletal objects with n > 0, and there
seems to be no way to construe a canonical poset (or even preorder) of Čech 2-covers on an
arbitrary site. The analogue of Cor. 3.5 does survive:

Proposition 3.11. [cech2
C,J ] is a cofiltered category. The functor [cech2

C,J ]→ [cov2
E] induced

by cosk1 is cofinal.

To prove the first statement, imitate the proof that [cov2
E] is cofiltered using (as Artin and

Mazur [2] in fact do) representable sheaves, products of objects of the site and refinements
along covering families instead of their intrinsic analogues in the topos E. To prove the
second statement, assume given a 2-cover T1 ⇒ T0 of E. Find a covering family {Ui

ui−→ 1},
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i ∈ I, that allows a map
⊔

ε(Ui)
u−→ T0, and for each pair of indices i, j ∈ I consider the

pullback in E

Vij
//

����

T1

s×t
����

ε(Ui × Uj) // T0 × T0

where the bottom horizontal arrow is

ε(Ui × Uj) ↪→
⊔

α,β∈I

ε(Uα × Uβ) = {
⊔
α∈I

ε(Uα)} × {
⊔
β∈I

ε(Uβ)} u×u−−→ T0 × T0

and find a covering family {Vk
vk−→ Ui×Uj | k ∈ Kij} that refines Vij, i.e. that allows a map⊔

k∈Kij
ε(Vk)→ Vij. Since [cech2

C,J ]→ [cov2
E] is not necessarily full, and [cov2

E] is no longer a

preorder, one also needs to verify that given a 2-cover T1 ⇒ T0 and Čech 2-covers {Ui, Vk},
{U ′

i , V
′
k} that map to it, there exists some Čech 2-cover {U ′′

i , V ′′
k } refining both {Ui, Vk} and

{U ′
i , V

′
k} that renders

V ′′K ⇒ U′′
I

//

��

VK ⇒ UI

��

V ′K ⇒ U′
I

// T1 ⇒ T0

after applying cosk1, commutative in [cov2
E]. But this is easy, and the above square can in

fact be made commutative on the nose: use, first on T0 then on T1, that the intersection of
two covering sieves is a common refinement of each. �

The pattern is now quite clear. A Čech 3-cover is the data for a Čech 2-cover V ⇒ U

together with a refinement of (i.e. epimorphism onto) the object of 2-simplices of cosk1(V ⇒
U). In more detail, let U be given by the covering family {Ui

ui−→ 1 | i ∈ I} and V by the

covering families {Vα
vα−→ Ui × Uj | α ∈ Kij ; i, j ∈ I}. 2-simplices of cosk1(V ⇒ U) are

triangles in the graph V ⇒ U, i.e. three edges compatible at the three corners. So consider
the set of triples of indices of the form {〈α, β, γ〉 |α ∈ Kij, β ∈ Kjk, γ ∈ Kik; i, j, k ∈ I}.
Let Tαβγ be defined as the subobject of Vα × Vβ × Vγ that is the intersection of three

equalizers; the first of these is the equalizer of Vα × Vβ × Vγ
pr1−→ Vα → Ui × Uj

pr1−→ Ui

and Vα × Vβ × Vγ
pr3−→ Vγ → Ui × Uk

pr1−→ Ui, and similarly for the other two corners. Now

give a covering family {Wλ
wλ−→ Tαβγ |λ ∈ Lαβγ} for each such triple 〈α, β, γ〉. (These data

are subject to the degeneracy conditions in the case of repeated indices.) One associates a
2-truncated simplicial sheaf to these data, whose 2-coskeleton will be a 3-cover of E. The
notion of refinement of Čech 3-covers and the properties of the category of Čech 3-covers
and refinements modulo simplicial homotopy can be formulated as expected.

The case of a topological space (or more generally localic topos) is quite visual, since
one can restrict attention to subobjects of the terminal object, which form a poset, hence
the equalizer conditions become vacuous: a Čech 3-cover is an open cover Ui, a refinement
{Vα |α ∈ Kij} of every (non-empty) double intersection Ui ∩ Uj, and a refinement of every
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(non-empty) triple intersection Vα ∩ Vβ ∩ Vγ with Vα ⊆ Ui ∩Uj, Vβ ⊆ Uj ∩Uk, Vγ ⊆ Ui ∩Uk,
some i, j, k;

k

i

γ
AA������� α

// j

β
^^<<<<<<<

and so on, indexed by boundaries of the standard n-simplex (‘cocycles’).

‘Abstract’ n-covers, as simplicial objects, are more convenient for most proofs, while Čech
n-covers are better adapted to representing actual data, as in the next section — though
mathematically, of course, the two formalisms are interchangeable.

4. Examples and counterexamples

Let us introduce the notation Ȟ∗
(n) for level n Čech cohomology; that is, by definition,

Ȟ i
(n)(E; A) = colim

[covn
E]

[−, K(A, i)]

for a topos E (in particular, for sheaves on a topological space). Under this convention, Ȟ∗
(1)

is ordinary Čech cohomology and Ȟ∗
(∞) means (formally) Verdier cohomology. For any i,

there is a direct system

Ȟ i
(1) → Ȟ i

(2) → Ȟ i
(3) → . . .→ Ȟ i

(n) → . . .

and the main theorem of this paper says that this system stabilizes for n > i, against
Ȟ i

(∞) = H i. Let us see by an example that this cannot be improved. To begin with, let us

construct a family of topological spaces whose Čech and derived functor cohomology differ.3

Start with an arbitrary space X. Let X+ be the topological space whose underlying set of
points is X together with an extra point, to be denoted ‘+’, and whose non-trivial opens are

simply the original open sets of X. X+ is contractible via the homotopy X+× [0, 1]
h−→ X+

defined as

h(x, t) =

{
x for t < 1

+ for t = 1.

If X is compact (as we will assume from now on), then by the proper homotopy invariance
of sheaf cohomology, H i(X+; A) = 0 for i > 0, for all constant coefficients A.

Let SX be the space whose underlying set of points is X together with two new points,
to be denoted ‘+’ and ‘−’, and whose non-trivial opens are the following: all the original

3 None of the standard texts on algebraic topology or sheaf theory seem to contain such examples, no doubt
leaving some students wondering whether the energy involved in proving that they coincide for paracompact
Hausdorff spaces is well-spent!
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open sets of X; X+ def
= X ∪ {+}; and X− def

= X ∪ {−}. From the Mayer–Vietoris sequence
of the pair of opens {X+, X−}, one gets

H i+1(SX; A) = H i(X; A)

canonically, for all i.

Since the points +, − are contained in unique minimal opens, whose union is all of SX,
there is an initial(!) open cover of SX under refinement, namely {X+, X−}. The Čech
cohomology of SX is therefore isomorphic to the cohomology of this single cover: two opens
with a non-empty intersection. The nerve of that is a one-simplex and one obtains

Ȟ i
(1)(SX; A) = 0

for all i > 0. If X has non-vanishing H1, SX is the required counterexample with i = 2,
since H2

(2)(SX; A) = H2(SX; A) = H1(X; A).

Remark. This example is far from ad hoc. Let S be the ‘Sierpiński space’, the topological
space with two points, one of which is open and the other closed (the closed point acting
as basepoint). One has a continuous map [0, 1]→ S that takes [0, 1) to the open point and
1 to the closed one. It has been pointed out by Joyal and Moerdijk [16] that S plays the
canonical role of ‘interval’ for a homotopy theory of toposes (canonical to the same extent
that ‘natural transformation’ is the canonical notion of homotopy between functors). Many
homotopy-theoretic constructions have a ‘toposophic’ analogue with the Sierpiński interval
replacing [0, 1]; X+ is the ‘Sierpiński cone’ on X, and SX is the ‘Sierpiński suspension’ of X.
(In fact, X+ is ‘Sierpiński contractible’, which implies that it has vanishing sheaf cohomology
with constant coefficients for all, not just compact, X.)

There is a pretty description of the level 2 cochains representing H2(SX; A). One has a
map from 1-covers of X to 2-covers of SX: it sends the open cover V = {Vλ} of X to the
open cover {X+, X−} of SX, with {Vλ} as refinement of the intersection X+ ∩ X− = X.
(Note that 2-covers of this type are cofinal among all 2-covers of SX.) This map extends to
a homomorphism

Ȟ1
(1)(X; A)

ι−→ Ȟ2
(2)(SX; A).

Indeed, a ‘level 1 Čech 1-cochain’ on X is the same as a map assigning an element of A
to each non-empty double intersection in V . A ‘level 2 Čech 2-cochain’ is the same as the
assignment of an element of A to each 2-simplex of some 2-cover cosk1(V ⇒ U). As we saw
in Example 3.8(1), such a 2-simplex consists of three elements U1, U2, U3 of the open cover
U together with elements Vij of the refined cover of Ui ∩ Uj (here i, j = 1, 2, 3, i < j) such
that V12 ∩ V13 ∩ V23 6= ∅.

In the case of the Sierpiński suspension SX, U = {X+, X−}, and (up to symmetry,
i.e. interchange of + and − and permutation of indices) all non-degenerate 2-simplices of
cosk1(V ⇒ U) are of the following type:

U1 = X+, U2 = X+, U3 = X−; V12 = X+, V13 is some element of the open cover
V of X, V23 is some element of the open cover V of X; such that V13 ∩ V23 6= ∅
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which is the same data as a non-empty double intersection in V . This being compatible
with coboundaries, one can think of the map ι on the cochain level as simply ‘keeping the
decorations on double intersections’. Finally, one has a commutative diagram

Ȟ1
(1)(X; A)

��

ι
// Ȟ2

(2)(SX; A)

��

H1(X; A) // H2(SX; A)

forcing ι to be an isomorphism, since the other maps are. �

One can concoct a great number of related pathologies for spaces with non-closed points.
Take, for example, a space containing n opens whose n-fold intersection can be refined as
U1 ∪ U2 but U1, U2 cannot themselves be written as n-fold intersections of opens (save
tautologously, i.e. by including themselves among the factors): the n − 1-covers of such a
space will not be cofinal among its n-covers. Phenomena of this type must be taken into
account when defining a supple enough pro-homotopy type for objects X equipped with a

Grothendieck topology such that the diagonal X
∆−→ X ×X is not closed. In fact, for each

n the inverse diagram of n-covers gives rise to a pro-homotopy type; for n = 1 one obtains
the classical Čech version and for n =∞, the étale homotopy type of Artin and Mazur.

On the ‘good’ side, for any paracompact Hausdorff space, ordinary open covers are cofinal
among n-covers for each n < ∞ (though not for n = ∞); this gives an alternative proof
of Grothendieck’s theorem (see Godement [12]) on the isomorphism of ordinary Čech and
derived functor cohomology for such spaces. The argument, being a purely combinatorial
one on opens and refinements, extends to other Grothendieck sites. Details will appear in
an upcoming paper.
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