
ZETA FUNCTIONS OF EQUIVALENCE RELATIONS OVER FINITE FIELDS

TIBOR BEKE

ABSTRACT. We prove the rationality of the generating function associated to the number of equiv-
alence classes of Fqk -points of a constructible equivalence relation defined over the finite field Fq .
This is a consequence of the rationality of Weil zeta functions and of first-order formulas, together
with the existence of a suitable parameter space for constructible families of constructible sets.

1. INTRODUCTION

The motivating problem in enumerative terms. Fix a prime power q, and let Fqk denote the finite
field with qk elements. Let x = x1, x2, . . . , xn and y = y1, y2, . . . , yn be tuples of variables, and
let S〈x〉 =

∨
i

∧
j pij(x)

?
= 0 and R〈x; y〉 =

∨
i

∧
j fij(x, y)

?
= 0 be finite boolean combinations

of polynomial conditions defined over Fq. (That is, pij(x) ∈ Fq[x] and fij(x, y) ∈ Fq[x, y] are
polynomials and ‘ ?

= ’ is meant to indicate that equalities and not-equalities are both allowed.) R
induces a relation on n-tuples from Fqk :

〈a1, a2, . . . , an〉 ∼R 〈b1, b2, . . . , bn〉 iff R〈a1, a2, . . . , an; b1, b2, . . . , bn〉 holds.

Assume that when restricted to tuples satisfying the condition S〈x〉, R is an equivalence relation
for each k. Write Nk for the cardinality of the set of R-equivalence classes of Fqk-points and
consider the generating function

z(S/R; t) =
∞∑
k=1

Nk t
k−1.

The symbol S/R is (for the time being) just a placeholder, while the letter ‘z’ is a reminder of
the formal analogy with the logarithmic derivative of the Weil zeta function of a variety. Their
relationship is summarized in

Theorem 1. There exist a polynomial p(t) with integer coefficients, together with finitely many
varietiesWi over Fq and coefficients ci ∈ Q such that

(1.1) z(S/R; t) = p(t) +
N∑
i=1

ci
d

dt
logZ(Wi, t)

where Z(Wi, t) is the Weil zeta function ofWi.

Date: March 11, 2010.

1



2 TIBOR BEKE

It follows that z(S/R; t) is rational, with partial fraction expansion of the form

z(S/R; t) = p(t) +
∑
i

ri
αi

1− αit

where ri ∈ Q and the αi are Weil q-numbers of various weights. (Indeed, as a consequence of
Deligne’s proof of the Weil conjectures, for anyW/Fq one has

d

dt
logZ(W , t) =

∞∑
k=1

card
{
W(Fqk)

}
tk−1 =

∑
j

nj
βj

1− βjt

for certain Weil q-numbers βj and integers nj .)

There are examples showing that neither the polynomial ‘correction’ p(t) nor the assumption
that the ci are non-integral can be omitted from (1.1) in general.

The proof of (1.1) depends on two facts: being able to form the quotient S/R as a geomet-
ric object, and being able to count rational points in it. Both of these have been known in the
logic community under the names of elimination of imaginaries for algebraically closed fields (cf.
Poizat [Poi83]) and rationality of the zeta function of a first-order formula in the language of rings
(cf. Kiefe [Kie76]). Let us state what elimination of imaginaries means in this case, in a direct
geometric language.

For a field k, let Constrk be the category whose objects are affine constructible sets defined
over k and whose morphisms are (set-theoretical) functions whose graph is constructible. (See the
next section for precise definitions.) Recall that for an equivalence relation R ⇒ S in a category,
the quotient S

q−→ Q is defined as the coequalizer of the two arrows. This quotient is said to be
effective if the canonical map R→ S ×Q S is an isomorphism.

Theorem 2. In Constrk, equivalence relations have quotients and are effective.

Applying this to the motivating situation (with k = Fq), the problem of counting R-equivalence
classes of Fqk-points of S becomes the problem of counting Fqk-points of the quotient Q = S/R
such that the point corresponds to a non-empty equivalence class of Fqk-points. This becomes
subsumed under the following problem: given a constructible subset C of affine space An+m over
Fq, let

Nk = card{x ∈ An(Fqk) | p−1(x) ∩ C has an Fqk-point}
where An+m p−→ An is the projection. The corresponding generating function

∑∞
k=1Nk t

k−1 is
known to be of the same type as the right-hand side of (1.1). In fact, that counting problem is a very
special case of the one for first-order formulas in the language of rings, i.e. ones whose explicit
affine form is

Nk = card{〈x1, x2, . . . , xn〉 ∈ (Fqk)n | (Q1y1 ∈ Fqk) (Q2y2 ∈ Fqk) · · · (Qmym ∈ Fqk)B〈x, y〉}
where each quantifier Qi is either the universal ∀ or the existential ∃ one, and B is a boolean
combination of polynomial conditions in the tuples of variables x and y. The rationality of the
associated generating function was first established by Kiefe [Kie76]; see Fried–Jarden [FJ05] for
a correction and complete proof.
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It is easy to extend these considerations to non-affine constructible sets; that is the subject of
Prop. 2.4.

Theorem 2 follows from

Theorem 3. Let X , Y be varieties over a field k, with X projective. Let C be a constructible
subset of X ×k Y . There exist a variety Z and a constructible morphism Y f−→ Z over k such that
for closed points y1, y2 of Y , the fibers Cy1 and Cy2 (i.e. their projections to X ) are the same if and
only if f(y1) = f(y2).

Applying Theorem 3 when X = Y and C is the graph of a constructible equivalence relation
(on a constructible subset S of X ), the constructible subset f(S) of Z furnishes a parametriza-
tion of C-equivalence classes, which is readily seen to be an effective quotient in the category
Constrk. Theorem 3 is thus also a proof of elimination of imaginaries, different from the ones by
Poizat [Poi83] and Holly [Hol93]. It is a stronger statement than just elimination of imaginaries
in that it shows the existence of a moduli space for constructible families of constructible sets.
Indeed, when C is a family of closed subvarieties of X indexed by Y then Theorem 3 is part of
the statement that the Hilbert scheme of X exists. Theorem 3 is proved by reducing the situation
to Hilbert schemes with the help of flat stratifications and by expressing C as a suitably canonical
and ‘fiberwise smoothly varying’ boolean combination of closed sets in X .

Since morphisms in the category Constrk are not necessarily continuous, quotients are much
easier to construct than in the delicate world of varieties or schemes. Quotients in Constrk being
effective can be thought of as expressing their being “geometric”; this suffices as far as the counting
of rational points is concerned. Sections 2 and 3 contain examples and further discussion. The rest
of this introduction is devoted to what is not contained in this article, esp. work on stacks and the
model theory of fields.

Related work and related questions. LetY
s

⇒
t
X be a groupoid object in the category of schemes

of finite type over Fq. (There are thus also structure maps X i−→ Y and Y ×X Y
m−→ Y and

diagrammatic conditions expressing that m is an associative multiplication with identity i etc.)

Two common ways for such groupoid-schemes to arise are as equivalence relationsR
s

⇒
t
X in the

category of schemes, and as ‘action groupoids’ G × X
a

⇒
pr2

X corresponding to an action a of the

group-scheme G on X . Let R be the image of Y in X ×Fq X along s, t. Then R is a constructible
equivalence relation on X . (Indeed, this is the most common way for constructible equivalence
relations to arise, but see the next section for more examples.)

For two Fqk-points of X to be R-related means that some point of Y (defined over, possibly, a
finite extension of Fqk) maps to them via s, t. Said slightly differently, let F be an algebraic closure

of Fq. Then Y(F)
s

⇒
t
X (F) is a groupoid (of sets), and the coefficient Nk of z(X/R; t) is the

number of connected components of Y(F)
s

⇒
t
X (F) that contain an Fqk-point.
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Two other — and in many ways, more natural — counting problems associated with a groupoid-

schemeY
s

⇒
t
X as above concern the following sequence of numbers and their generating series

(or formal zeta functions):

(1.2) µk := µ
{
Y(Fqk)

s

⇒
t
X (Fqk)

}
(1.3) ιk := π0

{
Y(Fqk)

s

⇒
t
X (Fqk)

}
Note that Y(Fqk)

s

⇒
t
X (Fqk) is a finite groupoid (of sets). The ‘measure’ µ (much better thought

of as an Euler characteristic!) associates to a finite groupoid G the rational number

µ{G} =
∑

ξ∈π0(G)

1

card{Aut(ξ)}

the sum of the reciprocals of the sizes of automorphism groups of objects representing the isomor-
phism classes ofG. π0{G} is the number of connected components (number of isomorphism types
of objects) of the groupoid G.

With suitable assumptions on X , Y and the structure maps, the groupoid represents — or is an
‘atlas’ of — a suitable generalized space (algebraic space, Deligne–Mumford stack, Artin stack,
in increasing generality). A beautiful result of Behrend [Beh93] asserts that

(1.4) µk = qdimS
∑
p>0

(−1)p tr Φq|Hp(Ssm,Ql)

whenever S = {Y ⇒ X} is a smooth stack over Fq, S its base extension to an algebraic closure of
Fq, Φq the algebraic Frobenius (note that this is responsible for the appearance of the normalizing
factor qdimS) and H∗(Ssm,Ql) denotes l-adic cohomology associated to the smooth site of S. He
proves that the associated zeta function is rational when S is a Deligne–Mumford stack.

Behrend’s proof of (1.4) proceeds by computing both sides separately, and observing that they
are equal. (This is done for quotient stacks in [Beh93], to which the general case is reduced in
[Beh03].) It is not clear what form a general Grothendieck–Lefschetz formula would take for
algebraic stacks. See, however, Kim [Kim95] for the topological case.

As regards (1.3), one could be more ambitious and consider the sequence

(φ/ψ)k = card
{
φ(Fqk) mod ψ(Fqk)

}
where φ is a first-order formula in the language of rings over Fq and ψ is a first-order definable
equivalence relation on φ. It is a safe guess that the corresponding generating function permits an
expression of ‘Weil type’, cf. (1.1). See Chatzidakis–van den Dries–Macintyre [CvdDM92] for
Lang–Weil type estimates on the quantities (φ/ψ)k. Chatzidakis and Hrushovski [CH99] prove
elimination of imaginaries over pseudofinite fields (subject to certain delicate conditions) and their
results should settle the rationality of the associated generating function as well.
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Kiefe’s proof of the rationality of the zeta function of a formula proceeds by establishing (for
large enough extensions of the base field Fq) a combinatorial bijection between a suitable integer
multiple of the number of tuples satisfying a formula and rational points of an associated variety.
Over pseudo-finite fields, the issue of ‘large enough’ disappears — equivalently, there is no cor-
rection term p(t) in (1.1) — and the work of Denef and Loeser provides a motivic interpretation
of the summands Z(Wi, t). (See Denef–Loeser [DL02] and also Hales [Hal05] for a wonderfully
illuminating discussion.) The problem of interpreting these counting problems directly in terms of
cohomological fixed-point formulas seems to be open.

That R be an equivalence relation is essential in all these considerations. One may surmise that
for a ‘generic’ constructible relation R on variety over Fq (so that no finite iteration of it is an
equivalence relation) the generating function associated to the number of Req-equivalence classes
of Fqk-points will not be rational. (Here Req is the smallest set-theoretic equivalence relation
containing R.) The easiest example to experiment with is probably x ∼R xn (for some fixed n),
but this will be done elsewhere.

Acknowledgements. I am indebted to Endre Szabó, Brian Conrad and Thomas Scanlon for
providing essential clues and references. This article would not exist without their help.

2. QUOTIENTS, CONSTRUCTIBLE SETS, ZETAS

Recollections on categorical quotients. Let C be a category. A relation on an object X is a

jointly monic pair of arrows R
r1
⇒
r2

X . It is a categorical equivalence relation if for all objects

Z of C, the pair r1, r2 induces an equivalence relation on homC(Z,X). If C has finite limits (i.e.
pullbacks and a terminal objects) then a relation on X amounts to a subobject R � X × X and
being an equivalence relation can be phrased by diagrammatic analogues of the usual notions of
reflexivity, symmetry and transitivity. (See e.g. Borceux [Bor94] vol.II. 2.5 for extensive discus-

sion.) A categorical quotient X
q−→ Q of an equivalence relation is a coequalizer of R

r1
⇒
r2

X ,

i.e. a morphism out of X that is initial among those with equal compositions with r1 and r2. This
quotient is said to be effective if the square

R
r1

//

r2
��

X

q
��

X
q

// Q

is a pullback.

When objects X of the category are equipped with ‘underlying sets’ whose elements biject
with morphisms from the terminal object into X , then the effectiveness condition implies that two
elements of X are identified in the quotient if and only if they are R-related; in general, it says the
same about Z-valued points.
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In the context of algebraic geometry, the data R
r1
⇒
r2

X (say, two maps between two varieties)

may have different categorical quotients (possibly none), depending on the category one works in;
see Knutson [Knu71] and Kollár [Kol09] for many examples. Even if a categorical quotient exists,
it may be ‘pathological’, which is often exhibited by the fact that it is not effective. (Consider, for
example, collapsing the complement of the origin in affine space to a point.) So it is quite a pleasant
surprise that the category Constrk of affine constructible sets and morphisms (see below) has
effective equivalence relations. Ultimately, this is due to the fact that given an equivalence relation

R
r1
⇒
r2

X in Constrk, the objectX can be Zariski-locally ‘taken apart’ and stratified into pieces over

which multi-valued choice functions (i.e. sections) of R exist. The existence of effective quotients
in Constrk seems to have few implications for the (much harder) problem of GIT quotients or
quotients of étale equivalence relations, but it suffices for counting points.

Definition 2.1. For a field k, let Constrk be the category whose objects are affine constructible
sets C ⊆ An

k (any n > 0) and where a morphism 〈C,An
k〉

f−→ 〈D,Am
k 〉 is a (set-theoretic) function

C
f−→ D whose graph is a constructible subset of An+m

k .

Remark on algebraic geometric vs. logic conventions. Readers of the model-theoretic liter-
ature may find the following definition more natural. Choose an algebraic closure k of k. Let
Constrgk be the category whose objects are pairs 〈S, n〉 where S is a subset of k

n
that is the set of

tuples satisfying a (finite) boolean combination of (quantifier-free) polynomial conditions, where
the polynomials have coefficients from k. Morphisms are set-theoretic functions whose graphs
belong to Constrgk.

The categories Constrk and Constrgk are equivalent, though of course their objects are not lit-
erally the same. (The functor of taking geometric, i.e. spec(k)-points of the former furnishes the
equivalence.) Since having effective quotients of equivalence relations is an ‘abstract’ categorical
property of Constrk, the proof of Theorem 2 (and much of this paper, in fact) could be cast in
either of these equivalent languages, and in this context there is scant reason for preferring one
over the other. We keep the language of algebraic geometry as ‘default’ for the last part of this
paper, since it is the natural environment for Hilbert schemes and notions such as flatness.

Under categorical product and coproduct, Constrk forms a distributive category. The isomor-
phism classes of its objects form a semiring, the Grothendieck ring of which is isomorphic to the
Grothendieck ring of varieties. But as the category Constrk itself is seldom used, we list some of
its properties. Any morphism 〈C,An

k〉
f−→ 〈D,Am

k 〉 can be represented by data Ci
fi−→ D where

Ci, i = 1, 2, . . . , n, is a decomposition of C into constructible subsets and fi is a regular morphism
with domain some neighborhood of Ci in An. Given objects Ci ⊆ Ani

k , i = 1, 2, . . . , n, choose n
closed points pi of Ak and let Ci 7→ Ci × pi be embeddings Ci → Ani

k × Ak with disjoint image.
Their union serves as a coproduct of the Ci. Any k-point of an affine space is a terminal object. To
compute the pullback of 〈Ci,Ani

k 〉
f−→ 〈D,Am

k 〉 (i = 1, 2), decompose the Ci into a disjoint union
of locally closed subvarieties, compute their pullback as varieties, and take their disjoint union.
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Thus finite limits exist in Constrk. If C
f−→ D is a morphism, note that fibers of f over closed

points of D can be computed set-theoretically.

For a constructible set S, let {S} denote its underlying set of points and |S| its underlying set of
closed points. A relation R ⇒ S in Constrk induces a relation on {S} and on |S| via the natural
map

{R} ↪→ {S ×k S}� {S} × {S}.
The following proposition will not be used in this paper; it is included for completeness.

Proposition 2.2. Let R⇒ S be a relation in Constrk. The following are equivalent:

(i) R is a categorical equivalence relation on S.
(ii) R induces an equivalence relation on {S}.

(iii) R induces an equivalence relation on |S|.

Proof. (i)⇒(ii)⇒(iii) are immediate. To show (iii)⇒(i), note that saying that R is a categorical
equivalence relation on S amounts to saying that ∆ ⊆ R, σ(R) ⊆ R and pr13(R) ⊆ R where
∆ ⊂ S×kS is the diagonal, S×kS

σ−→ S×kS swaps the factors, and S×kS×kS
pr13−−→ S×kS is

the projection. But (as computed in the category Constrk) these amount to inclusions of point-sets.
Now if C1, C2 are constructible subsets of An

k and for all closed points p of An
k , p ∈ C1 iff p ∈ C2,

then C1 = C2. (This is a consequence of the Nullstellensatz.) Therefore, whether a morphism in
Constrk is a monomorphism (resp. isomorphism) can be detected on closed points. �

Given the rationality of generating functions associated to existential formulas, Theorem 2 im-
plies Theorem 1 in a straightforward way. Below, the ground field will be k = Fq.

Proposition 2.3. Let R ⇒ S be an equivalence relation in Constrk with effective quotient S r−→
Q. Then there is a bijection{

S(Fqk)/R
} u−→

{
x ∈ Q(Fqk) | r−1(x) contains an Fqk-point.

}
Proof. u sends an Fqk-point x of S to r(x). Since r is defined over Fq and respects R, this results
in a well-defined map from

{
S(Fqk)/R

}
to Q(Fqk). Since R → S ×Q S is an isomorphism, two

points of S get identified if and only if they are R-related. Hence u is injective. The image of u is
(tautologously) the displayed set. �

At this point, as mentioned in the introduction, one can appeal to the theorem of Kiefe–Fried–
Jarden (see [FJ05] Theorem 31.3.7, and also the Notes at the end of Ch. 31).

One can introduce a ‘global’ version of Constrk whose objects are pairs 〈C,X〉 with C a con-
structible subject of the variety X over k, and where a morphism 〈C,X〉 → 〈D,Y〉 is a set-
theoretic map whose graph is a constructible subset of X ×k Y , and construct effective quotients.
As far as point-counting is concerned, however, the affine case already implies

Proposition 2.4. Let R be a constructible equivalence relation on the variety X . Then the gener-
ating function z(X/R; t) has the form of (1.1).
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Proof. Choose a cover of X by open affines Ui ↪→ X , i = 1, 2, . . . , N . That amounts to a
constructible equivalence relation Q ⇒ U on U = tNi=1Ui such that (on underlying points) X =
U/Q. The givenR restricts to a constructible equivalence relation on each Ui; the disjoint union of
these is a constructible equivalence relation on U that we will denote T . Let Q ∗ T be the smallest
(set-theoretical) equivalence relation on U containing both Q and T . Thus, for underlying points
x, y ∈ U, x ∼Q∗T y if and only if there exist xi ∈ U, i = 0, 1, . . . , n such that x = x0, y = xn and
for all 0 6 i < n, Qxixi+1 or Txixi+1.

Thinking of these xi as points of X , note that they are all R-related. Suppose there existed i, j
such that xi and xj both belong to Up for some 1 6 p 6 N . Since xi and xj are R-related (as
points of X ), they will then be T -related as points of U. Thence, in the chain x0, x1, . . . , xn, at
most two points from each piece Up of the cover need to be used. By the pigeonhole principle, it is
enough to consider chains of length at most 2N . This permits the description of Q∗T as the union
of finitely many relations, each of which is a finite composite of constructible relations. Q ∗ T is
therefore constructible.

As point-sets,
X/R =

(
U/Q

)
/T = U/Q ∗ T

Working over a finite field Fq, since all Q-identifications were gluing along open sets,

X (Fqk)/R = U(Fqk)/Q ∗ T
But Q ∗ T is a constructible equivalence relation on the affine U. If the relation R is only given on
a constructible subset S of X , extend it to a constructible equivalence relation on all of X by the
identity relation outside S. This finishes the reduction of the non-affine case to the affine one. �

We give some examples of equivalence relations whose zeta functions can be worked out ‘by
hand’.

Example 2.5. Let X/Fq be a variety and let ∼X be the full relation X ×k X . Then

z(X/ ∼X ; t) =
∞∑
k=1

Ek · tk−1

where

Ek =

{
1 if X (Fqk) is non-empty
0 if X (Fqk) is empty.

Decomposing X into absolutely irreducible subvarieties and using Lang-Weil, it follows that there
exist positive integers ni such that for large enough k, the setX (Fqk) is non-empty iff k is a multiple

of one of the ni. Thence z(X/ ∼X ; t) is a sum of rational functions of the form
tmi

1− tN
where N

is the least common multiple of the ni, minus a sum of monomials. (See also Example 2.8.)

Example 2.6. Fix some positive integer n and consider the equivalence relation on A1
Fq

defined (in
polynomial terms) by xn = yn. Setting e.g. n = 3 and with q ≡ −1 (mod 3),

Nk =

{
1 + qk−1

3
if k is even

qk if k is odd
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z(A1/x3 ∼ y3; t) =
1

3
· 1

1− t
− 1

3
· 1

1 + t
+

2

3
· q

1− qt
+

1

3
· q

1 + qt
Thus the coefficients ci in Theorem 1 will not be integral in general.

Example 2.7. Let X = An × Am with a distinguished constructible subset C ⊆ X , and let
pr : An×Am → An be the projection. Let us revert to logical notation (boldface symbols stand for
vectors of variables, and set-membership is shorthand for the evaluation of a boolean combination
of polynomial conditions) and consider the following equivalence relation R〈z1, z2〉 on X(

z1 = z2

)
or
(
z1 ∈ C and z2 ∈ C and pr(z1) = pr(z2)

)
Then card{X (Fqk)/R} =

= card
{

(X \ C)(Fqk)
}

+ card
{

x ∈ An(Fqk) | ∃y ∈ Am(Fqk) such that (x, y) ∈ C
}

= card
{

(X \ C)(Fqk)
}

+ card
{
An(Fqk)

}
− card

{
x ∈ An(Fqk) | ∀y ∈ Am(Fqk) , (x, y) 6∈ C

}
where (X \ C) is the complement of C in X . So the rationality of generating functions for X/R
imply those of counting problems involving one block of quantifiers over a finite field.

More generally, zeta functions of first-order formulas with n quantifier alternations and of first-
order equivalence relations defined by n − 1 quantifier alternations are mutually expressible. For
us, however, the case of a single block of existential quantifiers (and ultimately, the rationality of
Weil zeta functions) will serve as ‘black boxes’.

Example 2.8. Specialize Example 2.7 by taking m = 1 and C ⊂ An × A1 to be the complement
of the set defined by {

(x, y) ∈ An × A1 | x ∈ A and yq
N

= y
}

where A is a constructible subset of An and N some unspecified positive integer. Then

card{X (Fqk)/R} = card
{

(X \ C)(Fqk)
}

+ card
{
An(Fqk)

}
− ak

where

ak =

{
card

{
A(Fqk)

}
if k|N

0 otherwise.

Thus z(X/R; t) differs from d
dt

logZ(X \ C, t) + d
dt

logZ(An, t) by the polynomial p(t) =∑N
k=1 ak t

k. (In fact, any polynomial with non-negative integer coefficients can appear as the
‘error term’ in the zeta function of an equivalence relation.)

3. PARAMETRIZING AND QUOTIENTING CONSTRUCTIBLE SETS

For a field k and varieties X , Y , a constructible family of constructible subsets of X
parametrized by Y will simply mean a constructible subset C of X ×k Y . Suppose one could
find a variety Z and morphism Y f−→ Z over k such that for closed points y1, y2 of Y , the fibers
Sy1 and Sy2 (i.e. their projections to X ) are the same if and only if f(y1) = f(y2). This specializes
to the formation of quotients in the category Constrk: taking X = Y and C to be the graph of
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a constructible equivalence relation on a constructible subset S of X , the map S
f−→ f(S) will

serve as S/C.

When C is a family of closed subvarieties of X parametrized by Y , the object Z can be taken to
be the Hilbert scheme of X , equipped with a universal family such that any (proper, flat) family of
closed subschemes of X arises from it uniquely via pullback. Point-set theoretically, by definition,
any constructible set can be written as a boolean combination of Zariski-closed sets. A modicum
of care is needed to find an expression that varies suitably ‘continuously’ in flat families. This is
done in Prop. 3.4 and Lemma 3.5 below. Using flat stratifications, it is then easy to combine the
data into an object that is universal the way the Hilbert scheme is, but in the category Constrk.

The appearance of the Hilbert scheme would render this method of constructing quotients all
but hopeless for computations. Holly [Hol93] has given a beautifully direct proof of elimination of
imaginaries over algebraically closed fields that amounts to a stand-alone and constructive proof
of Theorem 2. For completeness and comparison, let us outline her argument here in a geometric
form, valid over any field k. It begins with the observation that though epimorphisms do not split
in Constrk, finitely multi-valued sections exists. More precisely, let S be a constructible subset of
An
k × Am

k . Then there exist a constructible subset s of An
k × Am

k and an integer N such that

(i) s ⊆ S
(ii) for all x ∈ An

k , sx is non-empty if Sx is
(iii) for all x ∈ An

k , card{sx} 6 N
(iv) if x1, x2 ∈ An

k are such that Sx1 = Sx2 then sx1 = sx2 .

(Here sx is shorthand for {y ∈ Am
k | 〈x, y〉 ∈ s} as usual.)

One can find an injective morphism t from the space of unordered tuples from Am
k of cardinality

at mostN , into AM
k for some suitableM . Composing swith t, one obtains a morphism An

k

f−→ AM
k

with the property that if x1, x2 are such that Sx1 = Sx2 then f(x1) = f(x2). Note that the converse
is not claimed (and does not necessarily hold!), i.e. in general the ‘code’ f does not separate the
fibers of S.

Suppose, however, that S is the graph of a constructible equivalence relation (on a constructible
subset of An

k = Am
k .) Then Sx1 and Sx2 are either the same or disjoint, so, by property (i) and

the injectivity of t, f(x1) = f(x2) will hold if and only if Sx1 = Sx2 . So being able to satisfy (i)
through (iv) suffices for the construction of quotients by equivalence relations.

Proposition 3.1. Let S be a constructible subset of An
k × Am

k . Then there exist a constructible set
s and an integer N with the properties (i) through (iv).

First, an easy

Lemma 3.2. Let X
f−→ Y be a map in Constrk. The locus {y ∈ Y | f−1(y) is infinite} is a

constructible subset of Y .

Proof. Let Xn be the n-fold deleted fiber product of X over Y ; that is to say, Xn is X ×Y X ×Y
· · ·×Y X from which one removes the ‘fat diagonal’, the locus of tuples some of whose coordinates
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are equal. The image of Xn in Y , which is a constructible subset of Y , is the locus of points above
which the fiber of f has at least cardinality n. By constructibility, there is a finite upper bound on
the cardinalities of the finite fibers of f , implying the claim. �

The proof of Prop. 3.1 is then by induction onm. Form = 1, let CfintCinf be the decomposition
of An

k into the loci of x such that Sx is finite resp. infinite. Over Cfin, let s be the full relation (all of
S). Over Cinf , by constructibility, the fibers are cofinite subsets of Ak; moreover, there is an upper
bound K on the cardinality of Ak − Sx for x ∈ Cinf . Now let W be a finite constructible subset of
Ak of cardinality greater than K and let s = {〈x, y〉 | y ∈ Sx ∩W} for x ∈ Cinf . The existence of
the uniform bound N again follows by constructibility of s.

Suppose now that the requisite s can be found wheneverm < M and let S ⊆ An
k×AM

k be given.
Write M = i+ j with 0 < i, j < M and write prn resp. prn+i for the projection from An

k ×AM
k to

An
k resp. An+i

k (remembering the first n resp. n+ i coordinates). Considering prn+i(S) as subset of
An
k × Ai

k, one has a multi-valued section s0 by the induction hypothesis. Considering S as subset
of An+i

k × Aj
k, again there is a multi-valued section s1 by the induction hypothesis. The relation s

on An
k × Ai+j

k defined by ‘〈x, y, z〉 such that s0(x, y) and s1(〈x, y〉, z)’ then does what is required.
(Here x, y, z belong to An

k , Ai
k, Aj

k respectively.) �

The tuple-coding function t exists by elementary invariant theory, starting from the fact that the
algebra of invariants under the action of ΣN on the polynomial ring

Z[x11, x12, . . . , x1m, . . . , . . . , xN1, xN2, . . . , xNm]

is finitely generated. (See Holly [Hol93] for a direct description.)

We now turn to the proof of Theorem 3 and constructible quotients via Hilbert schemes.

Good stratifications of constructible families. Let X be a variety over the field k and C ⊆
X constructible with closure Z0 = C. Let C1 be the set-theoretic difference Z0 − C. Then
C1 is constructible and as long as C 6= ∅, one has dimC1 < dimC. (The dimension of a
constructible set is defined to be that of its closure; the dimension of a Zariski-closed set will mean
its combinatorial dimension, i.e. the supremum of the lengths of its properly decreasing chains
of closed irreducible subsets.) Iterating, it follows that any constructible C possesses boolean
presentations of the form

C = Z0 − C1

= Z0 − (Z1 − C2)

= Z0 − (Z1 − (Z2 − C3))

. . .

= Z0 −
(
Z1 −

(
Z2 − (· · · − (Zi−1 − Ci)..

))
= . . .

where Zi = Ci, and the sequence of sets Ci is defined inductively by C0 = C, Ci+1 = Ci − Ci =
Zi − Ci. The Ci form a sequence of constructible subsets of X of decreasing dimension, hence
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terminating at the empty set. If Cn 6= ∅ but Cn+1 = ∅, we will refer to the boolean expression

Z0 −
(
Z1 −

(
Z2 − (· · · − (Zn−1 − Zn)..

))
thus obtained as the canonical presentation of C. It is uniquely determined by C ⊆ X .

Let C be a constructible subset of X ×k Y with canonical presentation C = Z0 −
(
Z1 −

(
Z2 −

(· · ·−(Zn−1−Zn)..
))

. Over a closed point y ofY , the fiberCy ofC is understood set-theoretically;
it is a constructible subset of Xy.

Definition 3.3. We will say that C ⊆ X×kY is good if for every closed point y of Y , the canonical
presentation of Cy in Xy equals

Z0, y −
(
Z1, y −

(
Z2, y − (· · · − (Zn−1, y − Zn, y) . . .

))
where Zi, y is the fiber of Zi over y.

Proposition 3.4. Given a constructible C ⊆ X ×k Y , there exists a stratification of Y into finitely
many locally closed subvarieties Yi such that for each i, the restriction of C to the ith stratum —
that is, Ci = C ∩ (X ×k Yi) considered as constructible subset of X ×k Yi — is good.

The proof follows by iterating

Lemma 3.5. Let W f−→ Y be a morphism of varieties over k and C a constructible subset of
W . For closed y ∈ Y , write cl(Cy) for the closure of C ∩ f−1(y) in f−1(y) and cl(C) for the
closure of C in W . There exists a non-empty open subset U of Y such that for y ∈ U , one has
cl(Cy) = cl(C)y.

Indeed, the lemma implies (by noetherian induction) that Y can be stratified into finitely many
locally closed subvarieties over each of which, closure of the fiber of C equals the fiber of its
closure. But this is the first stage of the construction of the canonical presentation of C; at the
second stage, one takes the difference of cl(C) and C and can apply the lemma again. (Note that
it does not follow that the canonical presentation has the same length over each member of the
stratification; only that over each stratum, taking the canonical presentation commutes with taking
the fiber.)

Proof of the lemma. Note that if the claim holds for constructible C1, C2 inW then it also holds
for their union. Decomposing C into a disjoint union of locally closed subvarieties, it thus suffices
to consider the case whenW is a variety and C equalsW minus a Zariski-closed set S. If S has
the same dimension asW then (sinceW is assumed irreducible) the statement is vacuously true;
so assume dim(S) < dim(W). Also without loss of generality, f is dominant and Y irreducible.
By generic flatness, there exists a non-empty open subset V1 of Y such that for y ∈ V1, f−1(y)
is non-empty and each of its irreducible components has dimension d = dim(W) − dim(Y).
On a non-empty open subset V2 of Y , the dimension of the fiber Sy of S is less than d. One
can now set U = V1 ∩ V2. Indeed, for y ∈ U , Cy = f−1(y) − Sy is an algebraic set each
of whose irreducible components has dimension d, minus a set of dimension less than d. Thus
cl(Cy) = f−1(y) = cl(C)y as required. �
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Suppose now that one has a good stratification for a family C ⊆ X ×kY . Consider the canonical
presentation of C restricted to the ith stratum:

Ci = Z0, i −
(
Z1, i −

(
Z2, i − (· · · − (Zni−1, i − Zni, i) . . .

))
For each of j = 1, 2, . . . , ni, there exists a flattening stratification of pr2(Zj, i) ⊆ Y , over the strata
of which Zj, i restricts to a flat family. These flattening stratifications have a common refinement;
so the following definition is non-vacuous:

Definition 3.6. A good and flat stratification for the constructible C ⊆ X ×k Y consists of a strat-
ification of Y into finitely many locally closed subvarieties Yi such that for each i, the restriction
Ci of C to X ×k Yi has canonical presentation

Ci = Z0, i −
(
Z1, i −

(
Z2, i − (· · · − (Zni−1, i − Zni, i) . . .

))
that is good and where each boolean summand Zj, i is flat over Yi.

Assume now X projective, so the Hilbert scheme Hilb(X ) exists. Since the individual Zj, i form
flat families over the respective bases Yi, they are classified by morphisms Yi

pij−→ Hilb(X ). The
morphisms fi with these as components

fi : Yi
〈pi1, pi2,..., pini

〉
−−−−−−−−−→ Hilb(X )ni

together comprise a constructible map Y f−→ Z into a finite disjoint union of products of com-
ponents of Hilb(X ). (Since Yi is quasi-compact, fi meets only finitely many components of
Hilb(X )ni , corresponding to certain tuples of Hilbert polynomials, suppressed from notation.)

Consider two closed points x, y of Y with, say, x ∈ Yi and y ∈ Yj . The fibers Cx and Cy
(thought of as constructible subsets of X ) are the same if and only if they have the same canonical
presentation within X . Since the Yi, Yj were part of a good stratification, that happens if and
only if the fibers over x (resp. over y) of the canonical presentation of C restricted to Yi (resp.
Yj) coincide, if and only if they are classified by the same tuple of points in Hilb(X), if and only
if f(x) = f(y) in Z . So f(Y) ⊆ Z — arising with the help of any good and flat stratification
for C ⊆ X ×k Y — is a constructible set parametrizing the isomorphism types of fibers of the
constructible family C.

One could now go further and exhibit a tautologous constructible familyU ⊆
⊔
i X×Hilb(X )ni

fitting into a diagram

C
��

��

//U
��

��

X × Y

����

//

⊔
i

X × Hilb(X )ni

����

Y //

⊔
i

Hilb(X )ni



14 TIBOR BEKE

where the first vertical arrow is an inclusion and the second one a projection. U is given, over the
image of each stratum Yi, by the canonical boolean expression whose summands are parametrized
by ni-tuples of points in Hilb(X ). The horizontal dotted arrows are constructible morphisms, i.e.
graphs of morphisms from a stratification of the domain to the target.

Note that choices have been made along the way. Though some of those could be eliminated
(for example, by making use of the — unique — coarsest flat stratification), the resulting diagram
becomes a pullback only in the category Constrk, taking the reduced structure on Hilb(X ).
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