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Abstract

We characterize those small categories with the property that flat (contravariant)
functors on them are coherently axiomatized in the language of presheaves on them.
They are exactly the categories with the property that every finite diagram into them
has a finite set of (weakly) initial cocones.

1 Introduction

Finitely accessible categories are precisely categories of flat presheaves Cop → Set on a small
category C. They always have a geometric axiomatization in the language of presheaves over
C. This language is many sorted and has objects of C as sorts and morphisms of C as unary
operation symbols. A geometric axiomatization means an axiomatization by sentences

∀x1, ...,∀xn(φ(x1, ..., xn)→ ψ(x1, ..., xn))

in the logic L∞,ω, where φ and ψ are positive - existential formulas (see [MP], [AR]).
A natural question is when φ and ψ can be taken in the usual first-order logic Lω,ω.

In this case a geometric axiomatization is called coherent. We will show that this happens
∗Supported by the Ministry of Education of the Czech Republic under the project MSM 143100009
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exactly when C has finite fc-colimits. The latter concept is a generalization of the existence
of finite colimits and corresponds to the passage from ∃!x to ∃x1, ...,∃xn. This idea is
present in [R] and the concept, present in [SGA4], has emerged recently in [B].

In the additive setting presheaves correspond to additive functors Cop → AbGr on a
small additive category C. In particular when C has a single object then it corresponds to a
ring R, presheaves on C are right R-modules and flat presheaves are flat modules. Therefore,
our question asks when flat right R-modules are coherently axiomatizable in R-modules.
The answer is well known: This happens precisely when R is left coherent ([SE], Thm.4).
We get this result as a consequence of our Theorem 3.3.

We present two proofs of Theorem 3.3 – one is category-theoretical and uses the ma-
chinery of classifying toposes and the second is model-theoretical and uses the compactness
theorem. The latter is used to prove Theorem 4.2 which is a generalization of Theorem 3.3
to more general embeddings than that of flat presheaves in presheaves.

2 Flat presheaves

Let C be a small category. A presheaf F : Cop → Set is called flat if its left Kan extension
LanyF : [C,Set]→ Set along the Yoneda embedding y: Cop → [C,Set] preserves finite limits.
This is equivalent to being a filtered colimit of representable functors (see [MP]). Thus
the category Flat(Cop) of flat presheaves is the free completion Ind(C) of C under filtered
colimits (see [SGA4]), Expose I, 8).

2.1 Definition. A diagram D: I→ C has an fc-limit if there exists a finite family of cones
for D which is weakly final, in the sense that every other cone for D factors through one in
that family. This is equivalent to saying that the (contravariant) cone functor cone(−,D)
is finitely generated in [Cop,Set]. An fc-colimit of D is defined dually.

2.2 Definition. Given an inclusion u: C ↪→ D we say that it is an fc-reflection if for every
D ∈ D there is a finite family {ri:D → u(Ci)| i = 1, ...n} such that every D → u(C) factors
through one of the ri’s.

2.3 Proposition. If C is a small category that has fc-limits over finite diagrams then a
functor into a Grothendieck topos, F : C → E, is flat if and only if it merges finite fc-limits,
in the sense that if {Pk| k = 1, ..., n} is an fc-limit for the finite diagram D: I→ C, then the
canonically induced

∐
k FPk → limF ◦D is epi.

Proof: Assume that F is flat. This is equivalent to being left filtering in the sense of
[MM], p. 394, i.e that it satisfies

• The family of all maps F (C)→ 1, for all C ∈ C, is epimorphic

• For any two objects C, C ′ ∈ C, the family of maps F (B) → F (C) × F (C ′), where B
runs over all the cones C ← B → C ′, is epimorphic.
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• For any pair of parallel arrows, u, v:C �
�

C ′ in C, the family of induced maps
F (B) → Eq(F (u), F (v)), from objects B that are vertices of cones (B, e) (e:B → C
with u ◦ e = v ◦ e) to the equalizer of F (u), F (v), is epimorphic.

By ([MM], Theorem VII.9.1) the conjunction of the above conditions is equivalent to the
left Kan extension of F along the Yoneda embedding y: C → [Cop,Set] being left exact. This
left Kan extension also has a right adjoint thus it preserves coproducts and epimorphisms.
Notice further that, since C has finite fc-limits, for every finite diagram D: I → C with
an fc-limit {Pk | k = 1, ...n}, we have (over C ∈ C) a pointwise epi

∐
k homC(C,Pk) →

cone(C,D) ∼= limihom(C,Di), thus the canonical arrow
∐

k yPk → lim(y ◦D) is an epi. But
since

∐

k

FPk
∼=

∐

k

(LanyF ◦ y)(Pk)

∼= (LanyF )(
∐

k

yPk)

while

lim(F ◦D) ∼= lim(LanyF ◦ y ◦D)
∼= (LanyF )(lim(y ◦D))

we conclude that F merges finite fc-limits.
Conversely assume that F merges finite fc-limits. Then, in order to verify, say, the third

clause in the definition of flatness given above, consider a pair of arrows

x, y:Eq(Fu,Fv) �
�
X

in E . Assume that whenever they are restricted along any F (w):FB → Eq((Fu,Fv), where
< B,w > is a cone for u, v:C �

�
C ′, they become equal. In particular they become

equal upon restriction to the image under F of the cones {Pk | k = 1, ..., n} of the fc-limit of
u, v:C �

�
C ′. But the canonical

∐
k FPk → lim(F ◦D) is epi thus x and y are already

equal.

3 The characterization theorem

In what follows colex(C) denotes the free completion of C under finite colimits.

3.1 Theorem. Let C be a small category. Then the following conditions are equivalent:

(i) C has fc-colimits for finite diagrams;

(ii) The inclusion η: C → colex(C) is fc-reflective;

(iii) There is a coherent theory T in the language of presheaves on C such that the category
ModE(T) of T-models in any Grothendieck topos E is equivalent to Flat(Cop, E), the
category of flat functors with values in E.
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Proof: (i) ⇒ (iii) According to the Proposition above the flat topos-valued functors out
of a category with finite fc-colimits are exactly those F : Cop → E that merge finite fc-
colimits, i.e whenever D: I→ Cop is a finite diagram with fc-colimit {Pk | k = 1, 2, ...n} then∐

k FPk → limFD is epi. From this follows that we can axiomatize flat functors by the
coherent sentences

∀x1 ... ∀xm (
∧

αlj

(D(αlj)(xl) = xj)→
∨

k

∃z
∧

l

(pkl(z) = xl)).

Here D: I→ C is a finite diagram in C, il, l = 1, ...,m, are the objects of I, αlj: il → ij are
arrows from an object il to an object ij and pkl:Pk → D(il) are arrows of the cone Pk over
D. The variables xl are of sort D(il) and the variable z is of sort Pk. Thus a model of such a
sentence in sets is a functor F : Cop → Set, such that, given a compatible family of elements
{xl ∈ F (D(il) | l = 1, ...,m} (thus an element of lim(F ◦D)), there is some k and an element
z ∈ F (Pk) (thus an element in

∐
k F (Pk)), such that F (pkl)(z) = xl. So the models of such

sentences in the category of sets are just the finite fc-colimit merging functors. Let us say
a few more words concerning the interpretation of such sentences in a more general topos:
In the one direction we want, assuming that F merges finite fc-colimits, that any E ∈ E
forces the above sentences. So, having given E-elements xl:E → F (D(il)) which satisfy the
hypothesis of the implication means that we have a cone (E, x:E → F ◦D), thus there is
a factorization E → lim(F ◦D). Pulling back the epimorphic family {FPk → lim(F ◦D)}
along E → lim(F ◦D) we obtain a cover {ek:Ek → E} and, for each k, an Ek-element of
FPk, zk:Ek → F (Pk) with the property that, for all l, F (Pkl) ◦ zk = xl ◦ ek, i.e such that,
for each k, Ek �

∧
l(pkl(z) = xl), as required.

Conversely assuming that F satisfies, in the internal logic of E , the above sentence we
will show that it merges finite fc-colimits, i.e that the canonical α:

∐
k FPk → limFD is epi.

Take x:E → lim(F ◦D), equivalently a cone < E,xl:E → FD(il) >. Then, since F satisfies
the sentences, there is a cover E′ ε �� �� E and, for some k, an E′-element zk:E′ → FPk

such that, for all l, xl ◦ ε = pkl ◦ zk. In other words we have an E′-element z:E′ →∐
k FPk

such that α ◦ z = x ◦ ε, i.e α is internally surjective.
(iii) ⇒ (ii) Assume that there is a coherent theory T in the language of presheaves on C

such that Flat(Cop, E) ∼= ModE(T). Let B[T] denote the classifying topos for the theory in
question. We have

ModE (T) ∼= Flat(Cop, E) ∼= GTop(E , [C,Set]),

where GTop(E ,F) denotes the category of geometric morphisms and natural transforma-
tions between the Grothendieck toposes E , F . Here the first equivalence holds by the
assumption while the second one is the content of Diaconescu’s theorem ([MM], VII.7.2).
Thus, by the universal property of the classifying topos, B[T] ∼= [C,Set].

This topos is a subtopos of the presheaf topos [colex(C),Set] because the latter topos
classifies the theory of presheaves on C. This is so because colexC can be identified with
the full subcategory of [Cop,Set] consisting of finite colimits of representables and the lat-
ter subcategory can be identified with the subcategory of finitely presentable objects of
[Cop,Set]. Then we may conclude from [El], D3.1.2. This inclusion is induced in such a way
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that its direct image is the direct image of the essential geometric morphism induced by the
inclusion η: C → colex(C):

W 	 − ◦ η 	 U : [C,Set] ∼= B[T] ↪→ [colex(C),Set]

Here W and U are the left and right Kan extensions, respectively, along η and they are both
fully faithful since η is such ([El], A4.2.12(b)). Since it classifies a coherent extension of the
theory of presheaves TC , [C,Set] can be identified with a sheaf subtopos of [colex(C),Set]
for a Grothendieck topology on colex(C)op generated by finite coverings ([El], D3.1.10). A
simple inspection of the ”double plus” construction of the associated sheaf functor shows
that in this case B[T] is closed in [colex(C),Set] under filtered colimits.

This, in particular, implies that, given X ∈ colex(C), the functor homcolex(C)(X, η(−))
is a finitely presentable object in [colex(C),Set]: homcolex(C)(X, η(−)) is is the image of
homC(X,−) under the functor −◦η, homC(X,−) is finitely presentable in [C,Set] and −◦η
has a right adjoint that preserves filtered colimits. Thus

homcolex(C)(X, η(−)) ∼= colimihomC(Ci,−)

for a finite diagram of representables in [C,Set]. The identity arrows idi:Ci → Ci are
represented under this isomorphism by arrows X → η(Ci) which form at X the fc-reflection
for η: C → colex(C): given any X → η(C) it has to factor through one of those X → η(Ci),
because of the above isomorphism.

(ii) ⇒ (i) Let D: I → C be a finite diagram into C and let X be the colimit of η ◦ D
in colex(C). Let further {X → η(Ci)| i = 1, ..., n} be an fc-reflection of X into C. Then
any cocone D ⇒ C for D in C induces a cocone η(D) ⇒ η(C) in colex(C) which factors
uniquely through X and then this factorization X → η(C) factors through the fc-reflection
{X → η(Ci)} and this manifests {Ci| i = 1, ..., n} as an fc-colimit for D in C.

3.2 Remark. In the above proof we could have derived (i) from (iii) directly once we
had identified the classifying topos for T as [C,Set]. Then we could have concluded using
Exercise 2.17(c) of Expose VI in [SGA4]. We include the full argument above for the sake
of completeness and hoping that we have exhibited a clearer picture of the interconnections
of the involved concepts.

Up to this point our arguments have been valid in the internal logic of any topos with
natural numbers object (so that the notion of classifying topos makes sense). Assuming now
the Prime Ideal Theorem (so that coherent toposes have enough points) we may improve
the above characterization as follows:

3.3 Theorem. Let C be a small category. Then the following conditions are equivalent:

(i) C has finite fc-colimits;

(ii) The inclusion η: C → colex(C) is fc-reflective;

(iii) Flat(Cop,Set) is axiomatized by a coherent theory in the language of presheaves on C.
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Proof: The extra difficulty now arises in showing that (iii) ⇒ (ii). So assume that
Flat(Cop,Set) is axiomatized by a coherent theory T in the language of presheaves on C.
Let B[T] denote the classifying topos for the theory in question. This topos is a subtopos
of the presheaf topos [colex(C),Set] that classifies the theory of presheaves on C. Since it
classifies a coherent extension of the theory of presheaves TC it is closed in [colex(C),Set]
under filtered colimits. We argue that B[T] is itself a presheaf topos: Take any T-model in
Set, in other words an object in Flat(Cop,Set). It is a filtered colimit of finitely presentable
objects in Flat(Cop,Set). The inclusion

Flat(Cop,Set) ↪→ Flat((colex(C))op,Set)

preserves filtered colimits and finitely presentable objects because it is induced by the
universal property of the inductive completion from the inclusion η: C → colex(C). This
means that the model in question is expressed, as an object in Flat((colex(C))op,Set) as a
filtered colimit in Mod(TC) of objects that are finitely presentable in Mod(TC). Thus the
condition of Theorem 1.1 in [B] is satisfied and using the fact that coherent toposes have
enough points, we obtain as a consequence that B[T] is a presheaf topos. Inspecting the
proof in [B] we see that it is equivalent to [C,Set] in such a way that the direct image of its
inclusion into [colex(C),Set] is the direct image of the essential geometric morphism induced
by the inclusion η: C → colex(C):

W 	 − ◦ η 	 U : [C,Set] ∼= B[T] ↪→ [colex(C),Set]

Then the rest of the above proof applies.

4 A generalization and applications

4.1 Definition. An object K of a category K is said to be injective with respect to a finite
cone (mi:A→ Ai)i=1,...,n provided that for each morphism f :A→ K there exists an index
i and a morphism f ′:Ai → K with f = f ′ ◦mi.

A full subcategory X of K is called an fc-injectivity class provided that there exists a
class M of finite cones such that X precisely consists of objects injective with respect to
each cone in M. X is called an ω-fc-injectivity class if all domains and codomain in cones
fromM are finitely presentable.

Following [AR] 5.33, any finite cone with finitely presentable domains and codomains
gives rise to a coherent sentence α such that, for an A in K, A |= α if and only if A is
injective to the cone.

We have mentioned that the category of flat presheaves on a small category C forms the
free completion Ind(C) of C under filtered colimits. The category [Cop,Set] of all presheaves
on C is the free completion of C under all colimits. One has the formula

[Cop,Set] = Ind(colex(C)),
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The inclusion IndC ↪→ [Cop,Set] is induced by the inclusion C ↪→ colexC. The inclusion
IndC ↪→ [Cop,Set] is induced by the inclusion C ↪→ colexC. In view of these remarks our
characterization theorem admits the following generalization:

4.2 Theorem. Let A be a small category with finite fc-colimits and k:B ↪→ A be the
inclusion of a full subcategory B in A. The following conditions are equivalent:

(i) B is fc-reflective in A;

(ii) IndB is axiomatized by a coherent theory in the language of presheaves on A;

(iii) IndB is axiomatized in the language of presheaves on A;

(iv) IndB is closed in IndA under ultraproducts;

(v) IndB is an ω-fc-injectivity class in IndA.

Proof: (i)⇒(v) Let M ∈ IndA be injective with respect to all fc-reflections of A ∈ A
in B (in the sense that if (mi:A → k(Bi))i=1,...,n is an fc-reflection of A then, for each
morphism f : η(A)→ M , there exists an index i and a morphism f ′: (η ◦ k)(Bi)→ M with
f = f ′◦η(mi). Then the comma category B ↓M is final inA ↓M and thusM ∈ IndB. Thus
IndB precisely consists of those objects from IndA which are injective to these fc-reflections.

The implications (v)⇒(ii)⇒(iii)⇒(iv) are evident.
(iv)⇒(i) Following Theorem 3.1 ((i)⇒(iii)), IndA is axiomatized in the language L

of presheaves on A and thus it is closed in [Aop,Set] under ultraproducts. Consequently
IndB is closed in [Aop,Set] under ultraproducts. Since IndB is closed in [Aop,Set] under
pure subobjects (see the proof of 2.32 in [AR]), it is closed in [Aop,Set] under elementary
subobjects (see [AR] 5.15). Following [CK] 6.1.15, 4.1.12 and 4.1.13 IndB is axiomatized in
L by a theory T. Let A ∈ A and extend L by a constant cA of the sort A. Models of the
resulting language LA are precisely the pairs (M,h) where h: hom(−, A) → M . Therefore
T−models in the language LA are precisely the pairs (M,h) with M ∈ IndB. The pairs
(hom(−, B),hom(−, f): hom(−, A) → hom(−, B)), where f :A → B, B ∈ B form a weakly
initial set in the category of these T−models. For each f , there is an LA sentence ϕf such
that

(M,h) |= ϕf ⇔ there is an LA-homomorphism (hom(−, B),hom(−, f))→ (M,h).

It follows that the theory T∪{¬ϕf | f :A→ B, B ∈ B} in the language LA is inconsistent. By
the compactness theorem there are finitely many morphisms fi:A→ Bi Bi ∈ B, i = 1, ..., n
such that the theory T ∪ {¬ϕfi

|i = 1, ..., n} is inconsistent. Thus fi:A → Bi, i = 1, ..., n
form an fc-reflection of A in B.

4.3 Remark. The argument just presented yields another proof of the implication (iii)⇒(i)
in Theorem 3.3 by taking B = C and A = colex(C). The use of classifying topos is now
replaced by the compactness theorem. The condition (ii) in Theorem 3.3 is specific for

7



the situation C ↪→ colex(C) because any object of colexC is a finite colimit of objects in
C. On the other hand the implication (iii)⇒(i) in the above theorem can be deduced from
Theorem 3.3 using the fact that flat presheaves on A are coherently axiomatizable and that
the classifying topos for that theory is [A,Set]. Then we can conclude using Remark 1.2,
following Theorem 1.1, in [B] using a similar argument like the one given in the proof of
Theorem 3.3.

Theorem 4.2 generalizes the following result (see [AR] and [BR]). Let us recall that an
ω-injectivity class is an ω-fc-injectivity class such that all cones in M consist of a single
morphism.

4.4 Theorem. Let A be a small category with weak finite colimits and B a full subcategory
of A. The following conditions are equivalent:

(i) B is weakly reflective in A;

(ii) IndB is axiomatized by a regular theory in IndA;

(iii) IndB is closed in IndA under products;

(iv) IndB is an ω-injectivity class in IndA;

(v) IndB is weakly reflective in IndA.

Of course we can further specialize Theorem 4.2 to the following classical fact (see [AR]).
In what follows orthogonality is a condition similar to injectivity with the extra requirement
that f ′ is unique.

4.5 Theorem. Let A be a small category with finite colimits and B a full subcategory of
A. The following conditions are equivalent:

(i) B is reflective in A;

(ii) IndB is axiomatized by a limit theory in IndA;

(iii) IndB is closed in IndA under limits;

(iv) IndB is an ω-orthogonality class in IndA;

(v) IndB is reflective in IndA.

4.6 Remark. In Theorem 4.2 one can not add the condition that IndB is fc-reflective in
IndA. Consider the language with unary relation symbols Ri and binary relation symbols
Si, i = 1, 2, .... Let T consist of the sentences

∀x (Ri(x)→ ∃y Si(x, y)) i = 1, 2, ...
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Since any finitely presentable T−model is finite and, for each element a ∈ A, there is only
finitely many i’s with A |= Ri[a], we have Mod(T) = IndB, Mod(L) = IndA, B is fc-
reflective in A and A has finite colimits. But IndB is not fc-reflective in IndA; it suffices to
consider the L -model A with a unique element a such that A |= Ri[a], for each i = 1, 2, ...
and A |= ¬Si(a, a), for each i = 1, 2, ... Then A does not have an fc-reflection to IndB.

4.7 Corollary. Let A be a small category with finite fc-colimits and finite products and B
a full subcategory of A closed under finite products. Then IndB is closed in IndA under
ultraproducts iff it is closed in IndA under products.

Proof: Sufficiency is evident because ultraproducts in IndB are filtered colimits of prod-
ucts (see [AR]). Conversely, let IndB be closed in IndA under ultraproducts. Following
Theorem 4.2, B is fc-reflective in A. Since A has finite products, B is weakly reflective in
A: having an fc-reflection ri:A → A∗

i , i = 1, ..., n of A in B we get the weak reflection
r =< r1, ..., rn >:A→ ∏n

i=1A
∗
i , of A in B. Following Theorem 4.4, IndB is closed in IndA

under products.

4.8 Remark. The proof of Corollary 4.7 shows that a small category with finite fc-colimits
and finite products has finite weak colimits. Hence we get the following consequence of
Proposition 24 in [BR]:

4.9 Proposition. If a small category A is finitely complete and finitely fc-cocomplete then
it is finitely cocomplete.

The equivalence of conditions (ii), (iii) and (iv) in Theorem 4.2 is a consequence of the
following result of Volger ([V], see [H] as well).

4.10 Theorem. Let L be a language and C a class of L−models. The following are equiv-
alent

(i) C can be axiomatized by a coherent theory;

(ii) C is closed under ultraproducts and pure subobjects;

(iii) C is closed under ultraproducts and directed colimits.

Since (ii) implies that C is axiomatizable (see the proof of Theorem 4.2), the equivalence
of (i) and (ii) is a standard preservation theorem which can be deduced using [CK] 3.2.1.
In order to apply [V], one uses the fact that f :A→ B is a pure monomorphism iff there is
a homomorphism g:B → C such that g ◦ f :A→ C is an elementary embedding (see [CK]);
Volger speaks of h-sandwiches.
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As a consequence of Theorem 4.2 we obtain the following result, extending [SE], Theorem
4, of Sabbagh and Eklof:

4.11 Theorem. Let R be a ring. Working in the category of right R-modules and with
the one-sorted language of R-modules (with each element of R serving as a unary function
symbol for multiplication), the following are equivalent:

(i) R is left coherent.

(ii) Any product of flat right R-modules is flat.

(iii) The category of flat right R-modules is a weakly reflective subcategory of all right R-
modules.

(iv) The category of finitely generated free right R-modules has weak cokernels.

(v) Flat right R-modules have a coherent axiomatization.

(vi) Flat right R-modules form a first-order axiomatizable class.

(vii) Flat right R-modules are closed under ultraproducts.

Proof: (i)⇔(ii) is a classical fact (see [C]). Since flat right R-modules are precisely filtered
colimits of finitely presentable projective right R-modules, they form the category Ind(P),
where P is the full subcategory of finitely presentable projective right R-modules. Since all
right R-modules form Ind(F), where F denotes the full subcategory of finitely presentable
right R-modules, the equivalence (ii)⇔(iii) follows from Theorem 4.4. Since every finitely
presentable right R-module is the cokernel of a homomorphism between finitely generated
free right R-modules, (iv) is equivalent to P being weakly reflective in F (modules from P
are precisely direct summands of finitely generated free right R-modules). Hence, following
again Theorem 4.4, (iv)⇔(iii). Moreover P is weakly reflective in F if and only if P is
fc-reflective in F . The latter happens because K is injective to a finite cone (mi:A →
Ai)i=1,...,n if and only if K is injective to the morphism < m1, ...,mn >:A → ⊕n

i=1Ai.
Thus, following Theorem 4.2, (iv)⇔(v)⇔(vi)⇔(vii). In more detail, Theorem 4.2 yields an
axiomatization in the language of presheaves over finitely presentable R-modules. But the
latter is first-order (even coherently) definable in our language of R-modules.
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