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ABSTRACT. In each characteristic, there is a canonical homomorphism from the Grothendieck ring
of varieties to the Grothendieck ring of sets definable in the theory of algebraically closed fields. We
prove that this homomorphism is an isomorphism in characteristic zero. In positive characteristics,
we exhibit specific elements in the kernel of the corresponding homomorphism of Grothendieck
semi rings. The comparison of these two Grothendieck rings in positive characteristics seems to be
an open question, related to the difficult problem of cancellativity of the Grothendieck semigroup of
varieties.

1. INTRODUCTION

Of the many occurrences of Grothendieck rings in algebraic geometry, there are two closely
related ones that are the subjects of this note. One is Grothendieck’s original definition: the gener-
ators are isomorphism classes of varieties, and the relations stem from open-closed decompositions
into subvarieties. See Bittner [Bit04] for a careful discussion and presentation in terms of smooth
varieties, and Looijenga [Loo02] for how localizations and completions of this ring give rise to
motivic measures. The other definition originates in geometric model theory, as an instance of the
Grothendieck ring of models of a first-order theory. Here, in line with the general aims of model
theory, the objects of study are formulas of first order logic, and the subsets of an ambient model
they define. The natural notion of morphism becomes a definable map, and in the Grothendieck
ring of definable sets, it is natural to permit as relations all definable decompositions. Let us
specialize to the theory of algebraically closed fields. Thanks to the existence of “elimination of
quantifiers” from first order formulas, definable sets coincide with the loci of points satisfying a
boolean combination of polynomial equalities in affine space, i.e. constructible sets. A morphism
between constructible sets is a point-map whose graph is constructible. In this approach, varieties
are seen as ‘point-clouds’ rather than as ringed spaces, and morphisms need not be continuous. See
Krajı́ček and Scanlon [KS00] for a very readable exposition of this Grothendieck ring and some of
its uses in logic.

There is a natural homomorphism from the algebraic geometer’s Grothendieck ring of varieties,
denoted K0(vark) in this paper, to the model theorist’s, that we denote K0(constrk). This ho-
momorphism is an isomorphism when k is algebraically closed of characteristic zero. This has
been known in the model theory community for quite some time, and (as the author has learned
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after this work was completed) it follows from Prop. 3.8, Cor. 3.11 and Prop. 3.13 of Nicaise–
Sebag [NS11]. It may still be useful to give a direct proof of this result, using only basic properties
of separated, quasi-finite morphisms. We actually prove the slightly stronger result that the canon-
ical comparison map from the Grothendieck semiring of varieties to the Grothendieck semiring of
algebraically closed fields, is an isomorphism in characteristic zero. (Recall that a semiring is a
ring-like structure without the requirement that additive inverses exist. In the Grothendieck semir-
ing of varieties resp. algebraically closed fields, any element can be represented as a formal linear
combination of objects with positive integer coefficients; hence, ultimately, as a single variety resp.
constructible set. The Grothendieck semiring determines the corresponding Grothendieck ring, but
not conversely.)

In positive characteristics, the situation is subtle. Conceptually, the reason for the difference
is the absence in positive characteristic of generic smoothness. That makes it difficult to ‘spread
out’ information given on the level of closed points, which is what is available in K0(constrk),
to open subsets, and hence make a conclusion about K0(vark) using noetherian induction. We
will prove that in positive characteristics, the canonical comparison map from the Grothendieck
semiring SK0(vark) of varieties to those of constructible sets, SK0(constrk), is surjective but not
injective. This leaves open the question whether K0(vark) and K0(constrk) are isomorphic in
positive characteristics too. A resolution of this problem seems to require a better understanding
of the canonical homomorphism SK0(vark)→ K0(vark) in positive characteristics.

Let us give precise definitions. For an algebraically closed field k, let k-variety mean separated,
reduced scheme of finite type over k. The Grothendieck semiring SK0(vark) is the commutative
monoid (i.e. set with associative, commutative binary operation, with unit) generated by symbols
[X], one for each k-variety X , subject to the relations

• [X] = [Y ] if X and Y are isomorphic over k
• [X] = [U ] + [X − U ] for any variety X with open subvariety U and closed complement
X − U .

The product of k-varieties induces a commutative semiring structure on SK0(vark). The
Grothendieck ring K0(vark) is defined analogously, based on the free abelian group generated
by the symbols [X].

A constructible subset of a scheme is one that can be written as a finite boolean combination
of Zariski-closed subsets, considered as point-sets. Let constrk be the category whose objects are
pairs 〈U,An〉 where U is a constructible subset of affine n-space An over k, and where a morphism
f : 〈U,An〉 → 〈V,Am〉 is a set-theoretic function U → V whose graph is a constructible subset of
An+m. The Grothendieck semiring SK0(constrk) of constructible sets is the commutative monoid
generated by symbols [〈U,An〉] corresponding to objects of constrk, subject to the relations

• [〈U,An〉] = [〈V,Am〉] if 〈U,An〉 and 〈V,Am〉 are isomorphic in constrk
• [〈U,An〉] = [〈V,An〉] + [〈U − V,An〉] whenever V ⊆ U .

For a scheme X , write |X| for the set of points of its underlying topological space. Recall that
there is a canonical (surjective) map |X ×k Y |

p−→ |X| × |Y |. For constructible subsets U ⊆ An,
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V ⊆ Am, p−1(U ×V ) is a constructible subset of An+m. This turns SK0(constrk) into a semiring.
The Grothendieck ring K0(constrk) is the commutative ring defined by the same generators and
relations.

Given a finite decomposition of a variety X into pairwise disjoint affine constructible sets Ci ⊆
Adi , i ∈ I , define

(1.1) αS(X, I) =
∑
i∈I

[ 〈
Ci, Adi

〉 ]
as an element of SK0(constrk).

Proposition 1.1. αS(X, I) yields a well-defined homomorphism SK0(vark)
αS−→ SK0(constrk).

Indeed, such a decomposition exists for every variety X: choose an affine atlas {Ui}16i6n and
for 1 6 i 6 n let

Ci = Ui −
( ⋃
16j<i

Uj
)

Then X =
⊔

16i6nCi with embeddings Ci ⊆ Adim(X).

The class of αS(X,−) is independent of the decomposition chosen. Indeed, if Ci, i ∈ I and Dj ,
j ∈ J are two such decompositions of X then {Ci ∩Dj | (i, j) ∈ I × J} refines both of them, and
it easily follows that

αS(X, I) = αS(X, I × J) = αS(X, J)

in SK0(constrk). That αS respects the relation [X] = [U ]+[X−U ] in SK0(vark) follows similarly,
by intersecting a decomposition of X with U resp. X − U . �

There exists a functorial homomorphism φ from any Grothendieck semiring to the correspond-
ing Grothendieck ring, yielding a commutative diagram

SK0(vark)
αS //

φvar
��

SK0(constrk)

φconstr
��

K0(vark)
α // K0(constrk)

Since any affine constructible set can be decomposed as a finite disjoint union of locally closed
subsets that are (the underlying point-sets of) varieties, both αS and α are surjective. Working
in characteristic zero, recent preprints of Karzhemanov [Kar14] and Borisov [Bor15] give ex-
plicit varieties X , Y whose classes are different in SK0(vark) but equal in K0(vark), while Liu–
Sebag [LS10] give sufficient conditions onX , Y such that if [X] = [Y ] inK0(vark) then [X] = [Y ]
in SK0(vark) (that is, X and Y are “cut-and-paste equivalent” or “piecewise isomorphic”).

The main results of this paper are

Theorem 2.9. If char(k) = 0 then αS is an isomorphism.

By functoriality, this implies that so is α. The proof occupies the next section.
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Theorem 3.2. If char(k) > 0 then αS is not injective.

The proof of this uses the simple

Lemma 1.2. Suppose the morphism V
f−→ W of varieties induces a bijection V (k) → W (k) on

k-points. Then αS[V ] = αS[W ] in SK0(constrk).

Indeed, let {Ai} be an affine atlas of V and {Bj} an affine atlas ofW . Let {Ci} be a decomposi-
tion of V into constructible subsets that refines both {Ai} and {f−1(Bj)}. Since k-points are dense,
the collection {f(Ci)} must be a decomposition of W into constructible subsets. Since each Ci
resp. f(Ci) is affine constructible and f induces a bijection between their k-points, αS[V ] = αS[W ]
follows. �

In section 3, we give an example of a morphism of varieties V
f−→ W in any positive char-

acteristic such that [V ] 6= [W ] in SK0(vark) but f induces a bijection on k-points. If it were
true that [V ] 6= [W ] in K0(vark) as well, then one could conclude that α is not injective either.
However, even though V and W can be taken to be curves, the positive characteristic assumption
prevents one from applying the results of Liu and Sebag. It seems natural to conjecture that α
is not injective in positive characteristics. To prove that, one should probably combine the type
of counterexamples constructed here, involving Frobenius twists, with a study of cohomological
invariants in positive characteristics that descend to the Grothendieck ring of varieties.

Acknowledgments. I am indebted to the referee of an earlier version of this paper for his careful
guide to the literature.

2. THE SEPARABLE CASE

In this section, we continue to assume that k is algebraically closed and work in the category of
varieties over k.

Lemma 2.1. Let V
f−→ W be a separable morphism that induces a bijection V (k) → W (k) on

k-points. Then there exist stratifications of V and W into locally closed subvarieties

V =
n⊔
i=1

Vi resp. W =
n⊔
i=1

Wi

such that f restricts to an isomorphism Vi → Wi for i = 1, 2, . . . , n. Hence [V ] = [W ] in
SK0(vark).

Proof. Let U be a top-dimensional irreducible component of V and let Z be the Zariski closure of
f(U) in W . Then Z is irreducible too. Since the fibers of f have dimension dim(U) − dim(Z)

generically over Z and f is bijective, dim(U) = dim(Z). Since U
f−→ Z is dominating, k(U) is

a finite extension of k(Z). Let n be the separable degree of k(U) over k(Z); since the fibers of f
have cardinality n generically over Z, n = 1. By the assumption that f is separable, k(U) = k(Z).
Thus f restricts to an isomorphism on an open subset of U . Noetherian induction now gives the
conclusion. �
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There are many variants of this basic lemma. For example, additional hypotheses yield the
conclusion that f itself is an isomorphism:

Proposition 2.2. Let V , W be irreducible varieties and V
f−→ W a separable morphism that

induces a bijection on k-points. Assume W is normal. Then f is an isomorphism.

Cf. Milne [Mil14] Theorem 8.40 and the surrounding discussion about the necessity of the
hypotheses.

Alternatively, in the presence of smoothness, one can conclude that f is étale and, eventually, an
open immersion:

Proposition 2.3. Assume char(k) = 0 and let V
f−→ W be a morphism of varieties that induces

a bijection on k-points and is smooth at some point x ∈ V . Then on an open neighborhood U of
x, f |U is an isomorphism.

Indeed, by the structure theorem for smooth morphisms, there exists an open neighborhood U
of x such that f(U) is an open neighborhood of f(x), and f |U can be factored as

U
q−→ f(U)×k Ad pr−→ f(U)

where q is étale, pr is projection on the first factor, and d = dim(U) − dim
(
f(U)

)
. Since f

is bijective on k-points, d = 0; so f |U is étale. By EGA IV4, Théorème 17.9.1, an étale mor-
phism is an open immersion if and only if it is radicial, that is, injective on underlying points with
purely inseparable residue field extensions. Because of the characteristic zero assumption, this last
condition is tautologous (the residue field extensions being the identity).

Corollary 2.4. Assume char(k) = 0 and V
f−→ W is a morphism of varieties that induces a

bijection on k-points. Then [V ] = [W ] in SK0(vark).

This follows from Lemma 2.1 since the char(k) = 0 assumption guarantees separability; or,
from Prop. 2.2 by noetherian induction on the smooth locus of the base; or, from Prop. 2.3 by
generic smoothness for morphisms and noetherian induction.

Remark 2.5. It is well-known that in the absence of additional assumptions, one cannot conclude
in the situation of the corollary that f itself is an isomorphism. The canonical example of a finite,
bijective morphism that is not an isomorphism is the regular map A1 f−→ C given by t → (t2, t3)
where C is the cuspidal affine cubic defined by X3 − Y 2 = 0. Though not an isomorphism, f
is a birational equivalence inducing a bijection A1(k) → C(k) for all fields k. This is running
‘Example O’ in Mumford [Mum99], Chapters I and II.

For the rest of this section, we keep the assumption that char(k) = 0. The first theorem of the
introduction follows by easy (though aggravating) bookkeeping.
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Lemma 2.6. Suppose 〈U,Au〉 and 〈V,Av〉 are isomorphic in constrk. Let {Ui | i ∈ I} resp.
{Vi | i ∈ J} be arbitrary decompositions of U (resp. V ) into finitely many locally closed subvari-
eties of Au (resp. Av). Then ∑

i∈I

[Ui] =
∑
i∈J

[Vi]

in SK0(vark).

The assumption that 〈U,Au〉 and 〈V,Av〉 are isomorphic in constrk means that there exists a
constructible subset Γ ⊂ Au+v such that the projection Au+v pr1−−→ Au induces a bijection between
the k-points of Γ and U , and similarly for Au+v pr2−−→ Av between Γ(k) and V (k). pr−11 (Ui),
i ∈ I and pr−12 (Vi), i ∈ J , are decompositions of Γ into constructible subsets. Find a finite
decomposition {Wq | q ∈ Q} of Γ into locally closed subvarieties of Au+v that refines both. Take
now the coproduct of the Wq or, more concretely, choose distinct points tq ∈ A1 for q ∈ Q, and let
Γ+ =

⊔
q∈QWq × {tq} ⊂ Au+v+1. Consider the map p1 : Γ+ ↪→ Au+v+1 pr−→ Au. Apply Cor. 2.4

to the restriction of p1 to Γ+ ∩ p−11 (Ui)→ Ui, for each i, and sum over i ∈ I to obtain∑
i∈I

[Ui] =
∑
q∈Q

[Wq]

in SK0(vark). The same argument for the other projection establishes∑
q∈Q

[Wq] =
∑
i∈J

[Vi]

as desired. �

The following corollary is not necessary for the main result, but worth pointing out.

Corollary 2.7. Suppose 〈U,Au〉 and 〈V,Av〉 are isomorphic in constrk. Then there exist decom-
positions U =

⊔n
i=1W

(0)
i and V =

⊔n
i=1W

(1)
i into locally closed subvarieties such that W (0)

i and
W

(1)
i are isomorphic as k-varieties, for each i = 1, 2, . . . , n.

Indeed, whenever
∑

i∈I [Ui] =
∑

i∈J [Vi] in SK0(vark) then the collections {Ui} and {Vi} are
“scissors equivalent”. That is, there exist a finite set of varieties Wp, p ∈ P , and maps f : P → I ,
g : P → J so that for each i ∈ I , Ui can be decomposed into subvarieties isomorphic to the
collection

{
Wp | p ∈ f−1(i)

}
and for each j ∈ J , Vj can be decomposed into subvarieties

isomorphic to the collection
{
Wp | p ∈ g−1(j)

}
. To see this, use induction on the number of

relations needed to change
∑

i∈I [Ui] into
∑

i∈J [Vi] in SK0(vark) and use the fact that any two
stratifications of a variety into locally closed subvarieties have a common refinement.

Proposition 2.8. Suppose
∑

i∈I [〈Ui,Aui〉] =
∑

i∈J [〈Vi,Avi〉] in SK0(constrk). For each i, let Ui
be decomposed into finitely many locally closed subvarieties {U (0)

i,j | j ∈ Ii} of Aui , and similarly
for the Vi into {V (0)

i,j | j ∈ Ji}. Then∑
i∈I

∑
j∈Ii

[U0
i,j] =

∑
i∈J

∑
j∈Ji

[V
(0)
i,j ]

in SK0(vark).
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To see this, use induction on the number of relations needed to change
∑

i∈I [〈Ui,Aui〉] into∑
i∈J [〈Vi,Avi〉]. If the formal expressions are the same (up to rearrangement), the claim follows

from Lemma 2.6 applied to the identity. If the relation being used is of the form [〈U,Au〉] =
[〈V,Av〉] for isomorphic constructible sets, apply Lemma 2.6. If the relation being used is of
the form [〈U,An〉] = [〈V,An〉] + [〈U − V,An〉], Lemma 2.6 applies again, since the union of
decompositions of V and U − V into locally closed subvarieties of An is such a decomposition of
U .

Theorem 2.9. If char(k) = 0 then SK0(vark)
αS−→ SK0(constrk) is an isomorphism.

Proof. One only needs to prove that αS is injective. Note that we defined variety to mean separated,
reduced scheme of finite type over k; in particular, we work freely with non-connected varieties.
Thus any element of SK0(vark) can be represented by the class [X] of a variety X . Suppose

αS[X] =
∑
i∈I

[〈Ui,Aui〉] =
∑
i∈J

[〈Vi,Avi〉] = αS[Y ]

with {Ui | i ∈ I} and {Vi | i ∈ J} constructible decompositions of X resp. Y . The conclusion of
Prop. 2.8 now implies that [X] = [Y ] in SK0(vark). �

3. POSITIVE CHARACTERISTIC

Lemma 2.1 hints that the failure of αS to be an isomorphism will be due to inseparable mor-
phisms, such as the Frobenius. Since we work over algebraically closed fields, we need the relative
Frobenius.

Let p be a prime. Recall that the absolute Frobenius Frp is a functorial self-map X
Frp(X)−−−−→ X in

Schemes/Fp that acts as the identity on the underlying topological space of X and as pth power on
its structure sheaf. Stated differently, Frp acts as the Frobenius endomorphism x 7→ xp for x ∈ A
on an Fp-algebra A, and this extends from affine to all Fp-schemes via patching.

Let f : X → S be a morphism in Schemes/Fp. Apply Frp to it; let X(p) be its pullback along
Frp(S) and let the relative Frobenius FrS be the canonical map X → X(p) into the pullback:

X

f

##

Frp(X)

%%FrS
!!

X(p)

��

// X

f
��

S
Frp(S) // S

X 7→ X(p) gives a functor and X FrS−−→ X(p) a natural transformation on Schemes/S.

Example 3.1. Let k be an Fp-algebra, x̄ = {xi | i ∈ I} a set of variables, I an ideal in k[x̄]. For

f(x̄) =
∑

ai1,i2,...,imx
n1
i1
xn2
i2
. . . xnm

im
∈ k[x̄]
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write
f(x̄)(p) =

∑
api1,i2,...,imx

n1
i1
xn2
i2
. . . xnm

im
∈ k[x̄] .

Let S = spec(k), X = spec k[x̄]/I and I(p) = {f(x̄)(p) | f(x̄) ∈ I}. Then X(p) = spec k[x̄]/I(p).
The relative Frobenius FrS : X → X(p) is generated by xi 7→ xpi .

When k is a field of characteristic p, we will write Frk for Frspec(k). (Note that the absolute
Frobenius Frp is identical with the relative Frobenius Frk over k = Fp; our notation is meant to
reflect this. The notation FrX/S is common for what we denote FrS : X → X(p) here.)

For any scheme X over a field k of characteristic p, X(k)
Frk−−→ X(p)(k) is injective, since

X(k)
Frp−−→ X(k) is so. If k is perfect, then X(k)

Frk−−→ X(p)(k) is surjective, since X(k)
Frp−−→

X(k) is so and X(p)(k) → X(k), being a pullback of Frp, is injective. From now on, assume k
algebraically closed. Then X(k) and X(p)(k) will biject through Frk, implying αS[X] = αS[X(p)]
by Lemma 1.2.

Via the j-invariant, k-isomorphism classes of elliptic curves biject with k. Let a ∈ k be such
that ap 6= a (i.e. a does not belong to the prime field) and let E be an elliptic curve with j-invariant
a. Since the j-invariant is a rational function of the coefficients of the Weierstrass form of E (see
e.g. Silverman [Sil09] for explicit formulas), the Frobenius twist E(p) has j-invariant ap. That is,
E and E(p) are not isomorphic over k.

It is easy to see that [E] 6= [E(p)] in SK0(vark). Indeed (working now in arbitrary characteristic)
if C1 and C2 are smooth, irreducible, complete curves such that [C1] = [C2] in SK0(vark) then
there must exist decompositions C1 = C0

1

⋃
{p1, p2, . . . , pn} and C2 = C0

2

⋃
{q1, q2, . . . , qm}

where pi, qi are points, such that C0
1 and C0

2 are isomorphic (since these are the only possible forms
of relations that apply to irreducible curves in SK0(vark).) But then C1 and C2 are isomorphic too,
being the completions of C0

1 resp. C0
2 (and hence n = m).

To sum up:

Theorem 3.2. If k is algebraically closed of positive characteristic, then there exist curves V , W
such that [V ] 6= [W ] in SK0(vark) but αS[V ] = αS[W ] in SK0(constrk).

Note that Proposition 6 of Liu–Sebag [LS10] states that for varieties V , W of dimension 1, if
[V ] = [W ] in K0(vark) where k is algebraically closed of characteristic zero then (in the termi-
nology of Liu and Sebag) “V and W are piecewise isomorphic”, that is, [V ] = [W ] in SK0(vark).
The removal of the characteristic zero assumption there would also extend Theorem 3.2 from the
Grothendieck semiring to the usual Grothendieck ring.
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