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THEORIES OF PRESHEAF TYPE

TIBOR BEKE

Introduction. Let us say that a geometric theoryT is of presheaf type if its classify-
ing toposB[T ] is (equivalent to) a presheaf topos. (We adhere to the convention that
geometric logic allows arbitrary disjunctions, while coherent logic means geometric
and finitary.) WriteMod(T ) for the category ofSet-models and homomorphisms of
T . The next proposition is well known; see, for example, MacLane–Moerdijk [13],
pp. 381-386, and the textbook of Adámek–Rosický [1] for additional information:

Proposition 0.1. For a categoryM , the following properties are equivalent:

(i) M is a finitely accessible category in the sense of Makkai–Paré [14], i.e., it has
filtered colimits and a small dense subcategory C of finitely presentable objects

(ii) M is equivalent to Pts(SetC ), the category of points of some presheaf topos
(iii) M is equivalent to the free filtered cocompletion (also known as Ind-C ) of a

small category C .
(iv) M is equivalent toMod(T ) for some geometric theory of presheaf type.

Moreover, if these are satisfied for a givenM , then the C—in any of (i), (ii) and (iii)—
can be taken to be the full subcategory ofM consisting of finitely presentable objects.
(There may be inequivalent choices of C , as it is in general only determined up to
idempotent completion; this will not concern us.)

This seems to completely solve the problem of identifying when T is of presheaf
type: check whether Mod(T ) is finitely accessible and if so, recover the presheaf
topos as Set-functors on the full subcategory of finitely presentable models. There
is a subtlety here, however, as pointed out (probably for the first time) by John-
stone [10]. It is exemplified by the word some in (iv) above. Namely, the presheaf
topos one recovers this way (which indeed has M as its category of Set-models)
need not coincide with the sought-for toposB[T ]. Take, for example, any axiomati-
zationT1 of the theory of fields by coherent sentences. (We take this merely to mean
that Mod(T1) is equivalent to the category of fields and homomorphisms.) That
category is finitely accessible, so there are geometric theories T2 of presheaf type
such that Mod(T2) is the category of fields. But T1 is not one of them; there exists
no coherent presheaf type axiomatization of fields. (See Cor. 2.2 below.) Such a T1
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and T2—while their categories of Set-models are equivalent1—can be thought of
as distinct formulations of the notion of ‘variable field’; and, of course, it was their
desire to do commutative algebra in a topos that led Mulvey, Johnstone, Kock and
others to investigate these notions in the 1970’s.
In a different line of research, in the 1980’s, finitely accessible categories were
isolated by Lair and (independently) Makkai and Paré as the ones possessing the
simplest structure, after locally presentable categories, among categories of models
andhomomorphismsof first-order theories. (From this point of view, fromexample,
Hodges’s [7] functorial approach to the Ehrenfeucht-Mostowski construction is
madepossible by the fact that the category of linear orders and strictmonotonemaps
is finitely accessible, hence completely determined by its subcategory of finite linear
orders.) The author’s interest in theories of presheaf type is primarily through their
link to classical model theory, a link that will be explored elsewhere. The present
article serves mainly as a depository of many examples, some open questions and
three theorems concerning theories of presheaf type. The first theorem, a gem of
an argument due to Joyal and Wraith and appearing (slightly disguised) in [12]
amounts to a recognition criterion for theories of presheaf type. The second one is
a necessary and sufficient condition for a presheaf topos to be coherent; it yields a
sufficient (but not necessary) condition for a finitely accessible category to be the
category of models of a coherent theory. This has implications for the first-order
axiomatizability of categories of ind-objects, which is our third theorem.
We note that a different recognition criterion appears in an unpublished note of
Moerdijk [16] giving an example of a theory whose classifying topos is Connes’
category of cyclic sets, and also that Johnstone [10] provides a close parallel of our
discussion for the related case of disjunctive theories.

Acknowledgements. I am indebted to Ieke Moerdijk, TomGoodwillie, Jiřı́ Rosický,
and especially to Andreas Blass for several exchanges on the subject matters of this
article.

§1. Given a theory, decide if it is classified by a presheaf topos. One should begin
by noting that it seems impossible to identify theories of presheaf type from any of
the known direct constructions of the classifying topos: that ofMakkai–Reyes [15],
exhibiting B[T ] as the formal completion (under coproducts and coequalizers of
equivalence relations) of a coherent category Def[T ] constructed out of T ; that
of sheaves on Def[T ] for a certain (syntactic) Grothendieck topology (see e.g.,
MacLane–Moerdijk [13]); and the ‘forcing’ approach of Tierney [17], giving B[T ]
as the category of sheaves on an underlying site of finitely presentable models. So
the following argument, hidden as a small part of the beautiful article of Joyal and
Wraith [12], is especially welcome.

Theorem 1.1. Let T be a finite limit theory and T+ a geometric extension of T in
the same language. Assume that T+ has enough models in Set and that

1Note that this coincidence of models over Set, in case both theories are finitary, is necessarily
‘unnatural’ in the sense that it is not induced by an interpretation of one theory in the other. Indeed,

if E
f−→ F is a coherent morphism between coherent toposes that induces an equivalence of categories

Pts(E) → Pts(F) then, by the conceptual completeness theorem of Makkai and Reyes [15], f itself is
an equivalence. This unnaturality need not hold if one of T1 and T2 is infinitary.
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(F∞) Every T+-model in Set, as an object of Mod(T ), is a filtered colimit of
T+-models finitely presentable as objects ofMod(T ).

Then B[T+] is the category of Set-functors on CT+ , the full subcategory ofMod(T )
consisting of finitely presentable objects that are models of T+.
Proof. Recall thatMod(T ) is a locally finitely presentable category. Write CT for
its full subcategory of finitely presentable objects. ThenSetCT is the classifying topos
B[T ], and B[T+] is a subtopos of B[T ]; let v denote the inclusion. The inclusion
functor CT+ ↪→ CT induces an essential morphism SetCT+

u−→ SetCT that is also
a topos inclusion. SetCT+ carries a tautologous T+-model, given (as a diagram of
T+-models) by the identity functor on CT+. Let SetCT+

w−→ B[T+] classify this.
One then has a commutative diagram

SetCT+
w ��

u
�����

���
���

B[T+]

v
����������

SetCT

Since u, v are inclusions, so isw. Now take any pointSet
p−→ B[T+], corresponding

to the T+-model P in Set, and express P as a colimit of some D d−→ CT+, D a
filtered diagram. d , thought of as a filtered colimit of representables, gives a point

Set d−→ SetCT+ and p∗ is (naturally isomorphic to) d∗w∗ since they both classify P.
Take now a morphism f ∈ B[T+], and suppose w∗(f) is an isomorphism. A
fortiori p∗(f) is an isomorphism for any point p of B[T+]. Since the latter was
supposed to have enough points, f is iso. So w∗ reflects isomorphisms. But as
SetCT+ is a subtopos of B[T+], w must be an equivalence. �
Remark 1.2. The argument works, unchanged, under the weaker assumption
that T is of presheaf type; what it really does is to characterize certain extensions
of presheaf theories as still being of presheaf type. One uses the case of finite
limit theories and the Gabriel–Ulmer theorem (that the classifying toposes of finite
limit theories are precisely the presheaf toposes Pre(C ) where C has finite limits) as
starting point.

Remark 1.3. Since the classifying topos of a theory is determined up to equiv-
alence, whether or not a theory T is of presheaf type is well-defined, but the C
s.t. B[T ] = SetC is only defined up to idempotent completion. (Recall that SetC is
equivalent to SetD if and only if C andD have equivalent idempotent completions.)
The indexing category CT+ produced by Thm. 1.1 will always be complete under
retracts.

Remark 1.4. Let T , T+ be as in Thm. 1.1. Then there is some cardinal κ such
that T+ satisfies (F∞) iff it satisfies
(Fκ) Every T+-model of size less than κ is a filtered colimit of T+-models finitely

presentable as objects of Mod(T ).

This is due to the downwardLöwenheim-Skolem theorem, i.e., that for someκ, every
T+-model is the directed union of its elementary submodels of size less than κ. The
least such cardinal κ depends on the size of the language, the size of the disjunctions
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and of the quantifications occurring in the theory (in the case of infinitary logics).
In the case that concerns us the most, a geometric theory in a countable language
(possibly with countable disjunctions) κ = ℵ1 will work.
One cannot change the filtered colimit of condition (Fκ) to directed unionwithout
losing generality; that is to say, for Thm. 1.1 to apply, it need not be the case that
every T+-model is a directed union of elementary T+-submodels that are finitely
presentable as models of T . See Remark 3.7.

Remark 1.5. As discussed above, whether or not T+ is of presheaf type is not
determined by the abstract categoryMod(T+) alone; so any categorical recognition
method must employ some auxiliary device. In the Joyal–Wraith theorem, this is
the full inclusion Mod(T+) ↪→Mod(T ).
Question 1.6. Does Thm. 1.1 present a necessary condition in the following
sense: if T+ is a theory of presheaf type, then there exists a finite limit theory T in
the same language to which the assumptions apply?

A natural guess for such a T is what Coste [4] calls the lim-part of T+, i.e., the
set of finite limit sentences implied by T+.
To be sure, Thm. 1.1 gives a necessary condition in the following sense: for any
finitely accessible category M , there exists a pair (T,T+) to which the theorem
applies such that M = Mod(T+). Such a T can be chosen to be the theory of
presheaves, and T+ that of flat presheaves on an appropriate subcategory ofM ; see
below.

Remark 1.7. Wraith [18] surmises that a theory is of presheaf type iff any of its
models in any topos E is an E-filtered E-colimit of constant models that are finitely
presentable (in Set). As stated, this is hardly (meant to be) a practical recognition
theorem, since it involves quantification over all Grothendieck toposes. Note that
there is no obvious intersection with Thm. 1.1, which assumes (in addition to
enough Set-models, which is certainly necessary) only that every Set-model is a
filtered colimit of ‘finitely presentable’ models—but finitely presentable in a weaker
theory.

§2. Given a presheaf topos, find a theory it classifies. Any site (C , J ) of definition
for a toposE allows one to specify a theorywhose classifying toposE is; in particular,
for any presheaf topos Pre(C ), one can write down a canonical geometric theory T ,
that of flat functors on C , such that B[T ] = Pre(C ). This theory employs infinite
disjunctions in general. However, one often wishes to know whether there is a
finitary theory classified by Pre(C ). Thm. 2.1 below gives a necessary and sufficient
condition for that in terms of the combinatorics of C .
Flat functors and coherence. Let C be a category. The theory of flat functors
on C has a sort for every object of C , and a function symbol for every arrow; the
axioms express that the category of elements of the functor is filtered. (See e.g.,
p. 386 of MacLane–Moerdijk [13].) For readability, we use the symbol “x ∈ X” to
express that x is a variable of sort X , and omit parentheses around some function
arguments.

∀x ∈ X (idX (x) = x)(2.1)
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∀x ∈ X ((gf)x = g(fx))(2.2)
∨

X∈ob C
∃x ∈ X(2.3)

∀x ∈ X ∀y ∈ Y ( ∨

X
f←−Z g−→Y

∃z ∈ Z (fz = x ∧ gz = y))(2.4)

∀x ∈ X (
fx = gx=⇒

∨

Z
h−→X

f
⇒
g
Y

∃z ∈ Z (hz = x))(2.5)

Some elaboration: in (2.2), there is one sentence for each composable pair

X
f−→ Y

g−→ Z of arrows. Thus the first two sets of sentences state that one
has a functor C → Set. In the axiom scheme (2.4), there is one sentence for each
pair X , Y of objects; the disjunction is over all diagrams X ← • → Y that exist
in C. The last axiom scheme contains one sentence for each pair of parallel arrows

X
f

⇒
g Y in C , and the disjunction is over all h that equalize them.
Thus the theory employs infinitary disjunctions for infinite C ; but if Pre(C )
happens to be a coherent topos, there must exist a coherent theory classified by
Pre(C ). There is a practical recognition criterion for when a presheaf topos is
coherent; minus the logical aspect, it is stated as Exercise 2.17 of SGA4, Tome 2,
Expose VI. First, some terminology. A category C is said to have fc (for ‘finite
cone’) terminals if it possesses a finite set T of objects s.t. any X ∈ obC permits
some map X → T to some T ∈ T. (Neither the map nor T is assumed to be

unique.) The empty category (tautologously) has fc terminals. Let D F−→ C be a
functor; F is said to have an fc limit if the category of cones in C over F possesses
fc terminals. The concept of fc colimit is defined dually.
Terminological aside. The nomenclature for various weakenings of the notion of
(co)limit is not completely standard. A weakly terminal object is one that receives
a map (not necessarily unique) from any object. Multi-terminals for a category
mean a set of objects such that any object permits a map to a unique one of them,
and that map is unique. The term cone-terminal, when both senses of uniqueness
are dropped (but a restriction remains on the cardinality of the terminating set of
objects) was suggested by Jiřı́ Rosický.
Theorem 2.1. Let C be a small category. The following are equivalent:
(i) Pre(C ) is a coherent topos.
(ii) C has all fc finite limits. (That is, any functorD F−→ C withD a finite diagram
has an fc limit in C .)

(iii) C has fc terminal objects, fc products, and fc equalizers.
Proof. (i)=⇒ (ii): letG be the set of (representatives of isomorphism classes of)
coherent objects of Pre(C ). By the assumption that Pre(C ) is coherent, G is a set
of generators, and is closed under finite limits in Pre(C ). Let X be a representable
object of Pre(C ). The set of all maps from coherent objects to X is collectively
epi, by the assumption that G generates. X is finitely presentable, a fortiori quasi-
compact,2 so a finite subset of these maps already covers it. A finite coproduct of

2We use the terminology of SGA4; Johnstone [9] Def. 7.31 employs compact for the same concept.
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coherent objects is coherent, so we have found a coherent Y and an epi Y � X .
But X is projective, so a retract of Y , so itself coherent. The upshot we need is that
a finite limit of representables in Pre(C ) is quasi-compact (coherent, in fact).

Let now D F−→ C be a functor with D finite, and L the limit of the composite
D

F−→ C y−→ Pre(C ) with the Yoneda embedding. For a coneK on F in C , let VK
denote its vertex. Since L is the presheaf that sends X ∈ obC to the set of cones
on F with vertex X , precomposition ofK with arrowsX → V gives a natural map
y(VK ) → L. As K ranges over all cones on F , this set of maps is collectively epi.
Since L is quasi-compact, a finite subset y(VKi ) → L already covers L. But this
means precisely that theKi provide fc limits for F .
(ii)=⇒ (iii): takeD to be the empty diagram resp. • • resp. • ⇒ •.
(iii)=⇒ (i): under these conditions, the axioms (2.3)-(2.4)-(2.5) can be replaced
by (intuitionistically) equivalent finitary ones, by replacing the set of cones indexing
the disjunctions by their respective fc terminal subsets. Let us call the theory thus
obtained that of “coherent flat functors”. (It is not defined canonically, unless some
systematic choice of the terminating cones can be made.) �
Corollary 2.2. There exists no coherent axiomatization of fields that is of presheaf
type.
If there were, its classifying toposwould have to be SetF, where F is spanned by fields
that are finitely presentable as objects of the category of fields and homomorphisms.
But SetF is not a coherent topos, since F has infinitely many components—to wit,
each of the prime fieldsFp aswell as the rationalsQ are finitely presentable as objects
of fields(!), and no two of them are connected by a zig-zag of homomorphisms—
whereas for a coherent SetF, F has to have fc initial objects, a fortiori a finite number
of connected components.

Remark 2.3. Note that Thm. 1.1—taking T to be the theory of rings and T+

that of fields—does not apply since e.g., Q is not a filtered colimit of fields that are
finitely presentable even as rings.
There do exist (infinitary) geometric axiomatizations of presheaf type for fields,
in enriched languages of rings. See Johnstone [10] who, in a slightly different set-up,
also observes Cor. 2.2.

Remark 2.4. The argument given for the implication (iii)=⇒ (i) in Thm. 2.1 is
brief to state, but conceptually perhaps indirect. It amounts to the fact that the
finite limit completion of C in Pre(C ) under the Yoneda embedding consists of
quasi-compact objects, hence (via Giraud’s theorem) provides a coherent site of
definition for Pre(C ).

Remark 2.5. Note that even under the assumption that Pre(C ) is coherent, the
language employed in (iii) has the size of C . Finding a finite theory classified by
a given Pre(C ), with C countable and Pre(C ) coherent, is more of an art than a
science. One typically tries to decode a candidate from the explicit combinatorial
definition of C .

As an immediate consequence of Prop. 0.1 and Thm. 2.1:
Corollary 2.6. For a categoryM , the following properties are equivalent:
(i) M is a finitely accessible category some (equivalently, all ) of whose dense sub-
categories consisting of finitely presentable objects possess fc finite colimits
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(ii) M is equivalent to Pts(SetC ), i.e., the free filtered cocompletion of a small
category C that has all fc finite colimits

(iii) M is equivalent toMod(T ) for some coherent theory of presheaf type.

Moreover, if these are satisfied for a givenM , then the C in (ii) can be taken to be the
full subcategory of M consisting of finitely presentable objects, and the theory T of
(iii) can be taken to be that of coherent flat functors.

Remark 2.7. One, then, has intrinsic characterizations of those categories that are
equivalent to Mod(T ) for some geometric T of presheaf type, resp. some coherent
T of presheaf type. No such characterization is known if T is allowed to run
through the entire class of geometric resp. coherent theories. One should mention
that for a coherent theory T (even with just one axiom) Mod(T ) may fail to be
finitely accessible (see Remark 2.59 of Adámek–Rosický [1]), though it will always
be ℵ1-accessible. More generally, for a geometric T , little is known of Mod(T )
besides that it is accessible and has filtered colimits, and that these two properties
do not characterize the categories thus arising.

Axiomatizing ind-objects. The same argument, from a slightly different point of
view, can be used to produce (not necessarily finitary, but first-order) axioms for
certain categories of ind-objects. This describes, at the same time, the ‘generic situ-
ation’ underlying Thm. 1.1. Recall that ind-objects are formal filtered diagrams of
objects; such devices are often useful in commutative algebra or algebraic geometry
as replacements for infinitary constructions that would lead one outside of one’s
category of interest. In the theorem below, the reader may as well keep simple
examples such as flat modules (see 3.5) in mind.

Theorem 2.8. Let K be a locally finitely presentable category, and G a full sub-
category ofK such that objects ofG are finitely presentable inK . LetA be the closure
of G in K under filtered colimits, i.e., the full subcategory ofK with all objects that
can be written as colimits of a filtered diagram in G. Then A is a finitely accessible
category, equivalent to Ind-G.
Assume moreoverK = Mod(T ), where T is a finite limit theory. Then there exists,
in the language ofT , a geometric theoryT+ of presheaf type such thatA = Mod(T+).
If G has fc finite colimits, then T+ can be chosen coherent.

Proof. A inherits filtered colimits from K and G becomes a small dense sub-
category of finitely presentable objects forA ; soA is finitely accessible. Cf. Prop. 0.1.
Let nowK = Mod(T ) as assumed. Let G be any finitely presentable object, and
X any object of K . Choose any finite presentation 〈c; Φ〉 for G . Recall that this
will be a finite set c of new constants (in the sorts of G) and a finite set Φ of atomic
formulas in the language ofT (which we always assume has equality for all its sorts)
without free variables, but using the constants c. T -homomorphisms G → X then
biject with those interpretations of the constants c in the structure underlying X
that satisfy X |= φ for all φ ∈ Φ.
An object X ∈ Mod (T ) belongs to A if and only if the category of elements of
the presheaf represented by X on the category G is filtered, meaning if and only if
the comma category G ↓ X is filtered. That means

• there exists G ∈ G that allows a map G → X ,
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• for each pair G1, G2 ∈ G and each pair of maps Gi
xi−→ X , there exists G3 ∈ G

with maps Gi
gi−→ G3 and map G3

x3−→ X such that x3gi = xi (i = 1, 2
throughout),

• for each pair g1, g2 : G1 ⇒ G2 of parallel arrows between objects of G and each
G2

x−→ X such that xg1 = xg2, there exists G3 ∈ G with maps G2
g−→ G3 and

G3
z−→ X such that gg1 = gg2 and zg = x.

By the above remark on presentations, each of these axioms can be phrased as a
geometric sentence in the language of T . (For the second axiom, for each pair
G1, G2, fix finite presentations 〈c1; Φ1〉 resp. 〈c2; Φ2〉. If G3 is such that Gi gi−→ G3
exist, then without loss of generality we may assume that G3 has a presentation
〈c3; Φ3〉 where c3 contains both the constant symbols c1 and the c2, and gi is
induced by the inclusion of generators ci ↪→ c3. Quantification over maps from
explicitly finitely presented models into X is then first-order. A similar trick works
with the third axiom. Cf. formulas (2.3)–(2.5).)
Thus the theory of flat G-functors becomes a geometric theoryT+ in the language
ofT such that the pairA ⊆K gets identified withMod(T+) ⊆Mod(T ). Thm. 1.1
applies by construction. The size of the disjunctions needed in T+ can be bounded
by the cardinality of any cone-initial set of diagrams of the requisite shape in G. If
G has fc finite colimits, then finite cone-initial sets exist. �

§3. A bestiary. Most of our examples are organized into infinite (logical or
algebraic) families. Some of the infinite logical families are of a ‘relative’ nature: if
some theory is of presheaf type, so is a modification of it. Of course, one can always
start with finite limit theories; the modifications produced will not be such.

Example 3.1 (Negated positive sentences). Let T be any theory of presheaf type
and Φ a set of sentences, each of which is a positive-existential combination of
atomic formulas in the language of T . The validity of such sentences is preserved
by homomorphisms of structures. Set T+ to be T together with the negations of
these sentences: φ=⇒⊥ for each φ ∈ Φ.
Any modelX of T can be written as the colimit of a filtered diagramD of finitely
presentable T -models. If X happens to be a model of T+ then, to be sure, all of
the models employed in D must be models of T+ as well (since they map to X ,
they cannot satisfy φ!). But that means precisely that the condition of Thm. 1.1 is
satisfied. (See also Remark 1.2.)
With this device, one can sometimes ‘exclude’ certain models (and, necessarily,
what they map to) from a theory; for example, by demanding 0 �= 1 in the theory
of rings (where 0 stands for the additive and 1 for the multiplicative unit). Or one
can deny solutions to equations. Let T be any axiomatization of presheaf type for
the theory of fields in a language containing that of rings. Add the axioms

∃x1, x2, . . . , xn (x21 + x22 + · · ·+ x2n = −1)=⇒⊥
for each n. This is the theory of formally real fields, which then must be of presheaf
type as well.

Example 3.2 (Non-empty domains). Let T be any theory of presheaf type, and
let T+ contain in addition, for a finite collection of sorts, that their exists an element
in that domain (much as classical model theory demands). Writing, as usual, any
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model X of T+ as a filtered colimit of finitely presentable T -models, each of the
chosen sorts must have an element in it eventually; since finitely many sorts were
chosen, one can still write X as a filtered colimit of T+-models finitely presentable
as T -models.

Example 3.3 (Universal relational theories). Consider a language with only re-
lation symbols and constants; we take T to be the theory of this signature (no
axioms). Any first order theory T+ axiomatized in such a language by sentences
of the form ∀x φ(x), φ quantifier-free, has the property that any substructure of a
model of T+ is still a model. A fortiori, any model of T+ is a directed union of
its submodels that contain finitely many elements besides the constants, hence are
finitely presentable as models of T , and (when T+ is geometric) Thm. 1.1 applies.
Theories of (partially) ordered structures are often of this type:
• Cosimplicial sets
Let T+ state that≺ is a linear order on a non-empty domain (cf. Example 3.2). The
category of totally ordered, non-empty finite sets and order-preserving maps is, by
definition, (equivalent to) the cosimplicial indexing category ∆; so B[T+] = Set∆.
• Simplicial sets
Add two constants b, t to the theory of the previous example, and let T+ say that
≺ is a linear order with distinct bottom element b and top element t. Write Order
for the category CT+; its objects are linearly ordered finite sets of cardinality at
least 2, with morphisms maps that preserve the order and the maximal andminimal
elements. There are contravariant equivalences

Order
homOrder(−,{b,t})−−−−−−−−−−→ ∆(3.1)

Order
hom∆(−,∆[1])←−−−−−−−− ∆(3.2)

where 0 ≺ 1 is (in the guise of {b, t}) the initial object of Order and (in the guise of
∆[1]) an object of ∆. Thus simplicial sets classify linear orders with distinct, named
endpoints.

Remark 3.4. The above equivalences are of “Isbell type”, with {b, t} = ∆[1]
as “schizophrenic object”. (See MacLane–Moerdijk [13] p. 480 for a brief, and
Johnstone [11] VI.4 for a thorough discussion of similar dualities.) The case of
(3.1) and (3.2) is but the first level of the order-disk duality of Joyal, leading to his
definition of “bundle of orders” and the category Θ.

• Preserving and reflecting formulas
Let T be any theory in (infinitary) first-order logic, and φ any formula in its
language. Add a new predicate Φ (of the same arity as φ) to the language and the
axiom

∀x(φ ⇐⇒ Φ).

Call the resulting theory TΦ. Or add a new predicate Φ and the axioms

∀x(φ ∨Φ),
∀x(φ ∧Φ=⇒⊥).

Call the resulting theory TΦ. Models of these extended theories will be exactly the
same as T -models, but homomorphisms X → Y will be those T -homomorphisms
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that satisfy: if X |= φ(a) for some tuple of elements then Y |= φ(a) (in the case of
TΦ) resp. if Y |= φ(a) thenX |= φ(a) (in the case of TΦ). If T and φ are geometric
and universal relational, TΦ and TΦ will be of presheaf type. This applies e.g., to
posets and monotone maps, posets and injective monotone maps, posets and em-
beddings of posets, to the analogues of these notions for linear and cyclic orders. . . .

Example 3.5 (Flat modules). Consider a (left, say) R-moduleM over a ring R.
There are several characterizations of whenM is flat; the equivalence of the follow-
ing three is highly non-trivial:
(i) The functor −⊗R M preserves exactness.
(ii) Let R be a row vector of length n with entries in R and X a column vector of
size n with entries in M such that RX = [0]. Then there exist some positive
integer m, column vector B of size m with entries in M and matrix C of size
n ×m with entries in R such that CB = X and RC = [0, 0, . . . , 0] (this being a
row vector of length n).

(iii) M can be written as a filtered colimit of free modules.
It is amusing to observe that (i), the textbook definition, is the key to the useful-
ness of flatness in homological algebra; property (ii)—which is, morally, that “any
linear dependence among the variables X is due to linear dependence among their
coefficients C, when expressed with respect to some basis B”—shows that this no-
tion is definable in the language of modules, via geometric sentences with countable
disjunctions; and Lazard’s theorem, the equivalence of (iii) with (ii), shows that
Thm. 1.1 applies, by taking T to be the theory of R-modules. (Any free module is
a filtered union of finitely generated free, hence finitely presented modules.)
If one knows that (iii) implies (ii), there is an obvious way to prove it: given R,

X as above, all elements of X must exist together at some stage of the colimit, and
it suffices to prove the desired statement for free modules, where it is easy. What is
surprising a priori is that the highly transfinitary characterization, (iii), should be
equivalent to any set of axioms in first-order logic at all. One explanation for this
is Thm. 2.8—it applies whenever one closes, within all modules, or indeed within a
fixed variety of universal algebras, any subcategory consisting of finitely presentable
objects (for example those that are free on a finite set).
Specialize Example 3.5 to R = Z. A flat Z-module is precisely the same as a
torsion-free abelian group. Now the axiomatization of torsion-free abelian groups
as a theory of presheaf type, in the spirit of 3.5(ii), would employ a unary function
symbol n(−) (“multiplication by n”) for each natural number n, and countable
disjunctions. But the obvious axiomatization of torsion-free by the sentences (one
for each iterated sum)

x + x + · · ·+ x = 0=⇒x = 0
in the language of abelian groups is also of presheaf type and coherent. The
explanation for this is again Thm. 2.8; in fact, flat R-modules possess a first-
order axiomatization (in the language of R-modules) if and only if they possess a
coherent axiomatization if and only if R is a coherent ring. Details of this theorem
will appear elsewhere.

The next family comes from commutative algebra too; the reason is that the
property exploited, ‘finitely generated implies finitely presented’, is quite rare.
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Example 3.6 (Hereditary module properties over noetherian rings). LetPbeany
property of modules that is inherited by submodules and preserved by filtered
colimits. (Typical examples of such properties are being torsion and being torsion-
free. ‘Property’ here is to be understood in its everyday meaning, independent of
any notion of logical syntax.) Fix a noetherian ring R, and take T to be the theory
of R-modules. Any module (with property P) is a directed union of its finitely gen-
erated submodules (with property P, by assumption of heredity), which are finitely
presented as R-modules, by the noetherian assumption. By Thm. 2.8, there exists
a geometric theory T+ of R-modules with property P, and Thm. 1.1 applies.

Remark 3.7. Hereditary noetherian module conditions and universal relational
theories share the following property: any finitely generated submodel of a T+-
model is finitely presentable even as aT -model; therefore condition (F∞) is satisfied
through a directed union of submodels. In Thm. 1.1, however, one cannot change
‘filtered colimit’ to ‘directed union’ without losing generality, as the example of
coherent modules shows. By a theorem of Jensen [8], for any cardinal κ there exists
a ring R and a flatR-moduleM such thatM is not the union of its κ-generated flat
submodules—a fortiori, there exists a flat module that is not the union of its finitely
presented flat submodules.

In closing, we should mention what is probably the most surprising example of
Thm. 2.8 (coming, as it does, from combinatorial homotopy, whose interaction with
model theory proper has been quite limited). It is due to Joyal andWraith [12], and is
the key part of their proof of Wraith’s conjecture on the cohomology of Eilenberg–
MacLane toposes. (It is fair to say that one of the author’s chief motivations
for the present article was the desire to understand that proof.) The category K
underlying that example is simplicial sets. (See e.g., Goerss–Jardine [6] for a detailed
introduction to simplicial homotopy theory.) Take the distinguished set G of finitely
presentable objects to be those simplicial sets that have finitely many non-degenerate
simplices (this means precisely that they are finitely presentable as objects of SSet)
and whose geometric realization is a contractible topological space.
From results of Gabriel–Zisman [5] it follows that the completion of G under
filtered colimits in SSet is precisely the class of simplicial sets whose geometric real-
ization is a contractible topological space. This property can therefore be phrased in
first-order terms in the signature of simplicial sets, which is quite surprising. (There
is another known proof, which involves analyzing the syntax of the statement “all

homotopy groups of Ex∞(X ) are trivial”, where SSet Ex∞−−→ SSet is Kan’s simplicial
fibrant replacement functor, using Kan’s definition of the nth homotopy group of a
fibrant simplicial set as a certain subquotient of its collection of n-simplices.)
It would be valuable to perform such analyses of other situations in homotopical
algebra, for example of the cofibrant-weakly contractible objects in the homotopy
theories of Bousfield and Kan [3] on the functor category SSetD (or more generally
on simplicial objects in a Grothendieck topos) or of acyclic groups (Baumslag–
Dyer–Heller [2]).
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