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ABSTRACT. An axiomatization of a finitary, equational universal algebra by a convergent term
rewrite system gives rise to a finite, coherent categorification of the algebra.

INTRODUCTION

MacLane’s notion of a (symmetric) monoidal category forms a paradigm of categorification: the
notion of a certain universal algebra — that of (commutative) monoid — is lifted to the category
of small categories where, instead of equational axioms, a finite set of coherence diagrams specify
the structure. However, those coherence diagrams are not “translations” or “categorifications” of
the axioms of monoids. Where do the MacLane pentagon and hexagon come from? Notice that the
associative axiom x(yz) = (xy)z made asymmetric — occurrences of x(yz) are permitted to be
replaced by (xy)z, but not the other way around — is what is called a self-normalizing rewrite rule:
by re-parenthesizing to the left, in any order but going as long as one can, any fully parenthesized
expression becomes transformed into a normal form; and normal forms biject with equivalence
classes of terms under associativity. However, this still does not explain MacLane coherence. If
one thinks of re-association as a natural transformation, why is it that as a consequence of the
pentagon axiom, any two re-association paths between the same source and target will compose to
the same natural transformation?

The answer is that the directed associativity axiom x(yz)⇒ (xy)z is an example of a convergent
rewrite system, and the MacLane pentagon consists of the two rewrite paths leading from the so-
called critical pair of this system to their common normal form. MacLane’s coherence theorem
follows automatically from these two facts.

Thankfully, monoids are not the only example of universal algebras axiomatizable by conver-
gent rewrite systems. The latter are extensively researched in computer science, due to their role in
automated proof theory and algebraic decision problems. This link was discovered in the ground-
breaking paper of Knuth–Bendix [KB70] that also introduced the notion of critical pair and the
semi-decision algorithm now known as the Knuth–Bendix procedure. The connection to recursion
theory plays no direct role in this paper, but Knuth’s fundamental discoveries on the combinatorics
of terms do.

We start with a rapid overview of term rewriting, aimed at the reader who knows little or nothing
about the subject. (The material is standard — see for example Baader and Nipkow [BN98] —
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and included mainly to make the discussion self-contained and to establish notation.) The next
two sections develop the formalism of axiomatizations of algebraic theories in categories via gen-
erators (functors and natural transformations) and relations (commutative diagrams), and define
coherence for an axiomatization. This is gruesomely formal material that, unfortunately, seems to
be unavailable elsewhere in the literature.

Section 4 contains the main result. An interesting case study is that of groups, a detailed in-
vestigation of which occupies much of Knuth–Bendix [KB70]; note that this example is already
beyond operadic techniques. Other examples include lax homomorphisms and diagrams of vari-
ous shapes, such as monoids and groups with convergent presentations, and Reedy diagrams. The
closing section is devoted to discussion and open questions.

Family resemblances. Since the subject matter lies at the crossroads of several well-researched
areas, it may be worthwhile to point out differences and similarities.

• Term rewriting is concerned with a set equipped with a relation; the set is that of terms well-
formed from variables and function symbols, and the relation is that of ‘elementary rewriting’, a
formal string-replacement operation that imitates the application of an equational identity. Elemen-
tary rewriting generates a preorder on terms, and the main concern is understanding that preorder
— which term can be generated from which one.

In 2-algebras such as monoidal categories, terms are interpreted by functors and rewrites by nat-
ural transformations. Each sequence of elementary rewrites corresponds, potentially, to a different
natural transformation. In fact, such ambiguity may be present already for elementary rewrites: as
in Malcev algebras, let f be a tertiary operation subject to the rewrite rules

fxxy⇒ y
and

fxyy⇒ x
Then fxxx can be rewritten into x for two reasons that, at the level of natural transformations,
better be kept apart. Similarly, terms can have non-trivial rewrites into themselves (interpreted by
natural endomorphisms of objects). Syntactically, terms and rewrites form a graph, and the main
concern is understanding that graph — how terms can be transformed into each other.

• The flourishing area of higher-order categorical rewriting is part of the theory of n-categories,
and is concerned with the combinatorics of concatenation of (higher) arrows. The geometric ob-
jects (n-graphs) thus generated have applications in homological algebra, chiefly in building reso-
lutions of groups and monoids. The 0-dimensional version would be string rewriting (also called
word rewriting), where the underlying symbols are interpreted as generators of a free monoid.
String rewriting can be thought of as a special case of term rewriting — namely, term rewriting
with only unary functions present — while the converse is not true. It seems that the full arsenal
of term rewriting is needed to handle categorical coherence.

It is possible to embed term rewriting for universal algebras into a theory of higher-dimensional
graphical rewriting; see Burroni [Bur93], Lafont [Laf95]. That formalism seems to be very differ-
ent from the one employed in this paper, particularly as regards the role of convergent presentations
and categorification.
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• Proof-nets, originating in the work of Girard, can be thought of as categories with structure as-
sociated to term rewrite systems modeling proofs in propositional logic and its various extensions,
such as linear logic; cf. Schneck [Sch99]. They are similar to the graph of terms introduced here,
but without the explicit link to universal algebras, equational logic and categorification.

• Homotopical algebra, originating in the theories of Boardman–Vogt and May, provides well-
known machines for defining ‘up to coherent homotopy’ replacements of operadic algebras. Those
machines, by default, produce homotopical algebras with infinitely many sorts, generated by count-
ably many operations subject to a (recursive, or at least recursively enumerable) set of identities.
Categorification — in the sense of passage from a set-based to a groupoid-based universal algebra
— can certainly be thought of as a case of homotopical universal algebra, whose general notions
(Quillen model categories, cofibrant replacement etc.) are applicable here as well. But the empha-
sis in this paper is on the much more delicate and combinatorial issue of finite axiomatization of
categorical algebras.

• The work on categorical coherence in the 70’s is close in spirit, if not in notation and underly-
ing mathematics, to the present one; research on coherence inevitably becomes research on word
problems. It should probably be pointed out that the work by Knuth and Bendix on term rewriting
and by MacLane and his students on categorical coherence occurred independently right around
the same time, and the ensuing separation of mathematical cultures has a lot to do with the fact
that it’s not been recognized just how close they are.

The article [Bek99] asked which axiomatizations of universal algebras (in terms of functions
and equational identities) allows a categorification. So, an answer — a sufficient but not necessary
condition — is that the axiomatization be convergent; more precisely, that it can be embedded in a
convergent term rewrite system.

Remark. After this paper was completed, it came to my attention that the unpublished 2008
Ph.D. thesis of Jon Cohen [Coh08] contains a very similar (though not identical) development of
rewriting, 2-theories, coherence and categorification. The syntactic details and proof of the main
theorem are different enough, I believe, for both works to warrant attention.

1. TERM REWRITING

Well-formed terms. We assume given a finite set S of sorts. (S should be thought of as indexing
the types of ingredients out of which our universal algebra is built. For example, a vector space
involves two sorts of things: scalars and vectors.) For each sort s ∈ S, there is to exist an infinite
set of variables x(s)

i of that sort. There is a finite set of function symbols, each of which carries
a sort (the sort of the ‘output’ the function produces) and an arity, which is an n-tuple of sorts,
specifying the sorts of the respective inputs. Here n is any natural number; function symbols with
a 0-tuple as input are called constants. The set of well-formed terms (or just terms for brevity) and
their sorts is defined inductively. A variable symbol x(s)

i is a term of sort s. If t1, t2, . . . , tn are
terms respectively of sorts si, and f is a function symbol of sort s with arity 〈s1, s2, . . . , sn〉, then
the string f t1t2 . . . tn is a term of sort s. Note that constants are well-formed terms on their own.
Terms should be thought of as names of composite functions.
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A subterm of a term t is a substring of t that is a well-formed term as a string itself.

Example 1.1. Thinking of ‘+’ and ‘×’ as binary function symbols in a one-sorted universal alge-
bra, x, y, z as variables,

+× z + x y ×+x y y

is a well-formed term. Three of its subterms are ‘×z + x y’ and ‘+xy’ and ‘y’.

Remark. Though we defined terms using parenthesis-free prefix (also called ‘Polish’) notation,
what is essential is only that they be specified by an unambiguous context-free grammar. Fully
parenthesized infix notation

((z × (x+ y)) + ((x+ y)× y))
or representation of terms as partially ordered sets of strings (the ‘derivation trees’ of computer
science, the ‘rooted planar trees’, decorated with variables, familiar from the topological literature)

+
nnnnnnn

PPPPPPP

×
��� AA ×

}} ??

z +
}}}

+
AAA

y

x y x y

would do as well. What would be the “pruning and grafting of (sub)trees” in the tree notation,
becomes in prefix notation the replacement of subterms by well-formed terms.

Replacement. If u is a subterm of sort s of the term t, then replacing the substring u in t by another
term of sort s results in a well-formed term. In particular, one can replace every occurrence of a
variable x(si)

i in t by a term ti of the corresponding sort si. We write the result of several such
global replacements performed independently as t[x

(s1)
1 7→ t1, x

(s2)
2 7→ t2, . . . , x

(sk)
k 7→ tk]. For

the sake of brevity, we often pretend that the formal variables are equipped with a conventional
ordering, and use function-composition notation t(t1, t2, . . . , tk). Note that replacements allow for
empty occurrences.

Term rewriting can be thought of as the application of equational axioms in a given direction only.

Definition 1.2. A rewrite rule is an ordered pair 〈u, v〉 of terms of the same sort. (We
will often typeset rewrite rules as u ⇒ v.) A substitution instance (or just instance) of
a rewrite rule results from making an identical substitution into variables on both sides:
〈u(t1, t2, . . . , tk), v(t1, t2, . . . , tk)〉. Let 〈U,V〉 be an instance of a rewrite rule, and let the term
t contain an occurrence of U; say, t = t1Ut2. Then t permits to be rewritten into r = t1Vt2.

In the literature, the condition is often added that any variable occurring on the right-hand side v
of a rewrite rule 〈u, v〉 should also occur in the left-hand term u. Indeed, this condition is necessary
for the rewrite rule to be noetherian (see below). All our examples will satisfy this condition.
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Convergence. A rewrite system is given by a finite set of rewrite rules. Within this section, let us
observe the computer science tradition by denoting by an arrow the relation between terms induced
by rewriting; so x→ y denotes the fact that some rewrite of x results in y. The transitive-reflexive
closure of the relation → is denoted →∗. That is, x →∗ y means that there exist some (possibly
zero) terms ti such that x→ t1 → t2 → . . .→ tk → y, or that x = y.

A rewrite system is noetherian if there do not exist infinitely many terms ti such that

t0 → t1 → t2 → . . .→ ti → . . .

It is confluent if, whenever w, t1 and t2 are terms such that w →∗ t1 and w →∗ t2, then a term z
exists such that t1 →∗ z and t2 →∗ z. A rewrite system that is both noetherian and confluent is
called convergent.

In a convergent rewrite system, the equivalence class of any term t under the equivalence relation
generated by→ contains a canonical representative nf(t). It is the only term in its equivalence class
that is in ‘normal form’, i.e. rewrites no further: there exists no w such that nf(t)→ w. By applying
rewrite rules (any that applies, in any order, as long as any applies), every term is transformed into
its normal form in finitely many steps. In particular, in a convergent rewrite system the ‘word
problem’, or equivalence problem under the equivalence relation generated by →, is recursively
solvable.

Convergent presentations of equational universal algebras. An equational universal algebra U

is one axiomatized by finitely many universal axioms that state the equality of two terms of the
same sort, for all values of the variables:

∀x1∀x2 . . . ∀xk u = v

A rewrite system, that is, set of pairs 〈u, v〉 of terms of like sort, gives rise to equational ax-
ioms, simply by replacing the arrow by equality and preceding it by universal quantification. It
is the converse problem that motivated Knuth and Bendix in [KB70]: whether, given a finite set
of equational axioms, these could be ‘oriented’ (i.e. endowed with a preferred rewrite direction)
and possibly augmented by finitely many more rewrite rules that are (when thought of as formulas)
consequences of the original axioms, such that a convergent rewrite system results. If a conver-
gent axiomatization exists for the theory, then it is decidable whether a given universal-equational
formula is a consequence of the axioms; and the word problem in a free algebra on a finite set is
also decidable. To be sure, that is not always the case, so not all equational universal algebras have
convergent presentations. The Knuth-Bendix procedure is a deterministic algorithm that takes as
input finitely many equational axioms and a suitable well-ordering of terms. The algorithm may
or may not terminate. If it does, it yields a convergent presentation of the corresponding universal
algebra. The dependence on the initial well-ordering and sufficient and necessary conditions for
termination are difficult questions that, within this article, we do not need to be concerned with.

Example 1.3. Formalize the notion of group as one-sorted structure with a constant symbol 1, a
binary function · and a unary function symbol (−)−1. The following ten rules give a convergent
presentation of the axioms of groups (in the usual infix notation):
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1 · x ⇒ x

x · 1 ⇒ x

x−1 · x ⇒ 1
x · x−1 ⇒ 1

(x · y) · z ⇒ x · (y · z)

1−1 ⇒ 1
(x−1)−1 ⇒ x

(x · y)−1 ⇒ y−1 · x−1

x−1 · (x · y) ⇒ y

x · (x−1 · y) ⇒ y

The left-hand column contains the usual axioms of groups, oriented appropriately. If one consid-
ered the unoriented (i.e. equational) versions of these, the right-hand column would be redundant
(and in fact, either the third or the fourth axiom could also be omitted from the left-hand col-
umn). As a rewrite system, however, this collection is not redundant. (At the same time, it is not
the only minimal convergent presentation of the group axioms.) This example is due to Knuth-
Bendix [KB70] and was historically also the first example of Knuth–Bendix completion.

2. PRESENTING A 2-THEORY

2-theories are a categorification of equational universal algebras. They are axiomatized by a set
of generating functors, a set of generating natural transformations between composites of these
functors, and commutativity diagrams whose arrows are well-formed composites of the generating
natural transformations with each other and with the generating functors. The goal is to exploit
the obvious idea: composites of functors will be thought of as terms; the generating natural trans-
formations as rewrite rules; composable sequences of natural transformations formed from the
generating ones, as rewrites; and commutativity axioms become commuting pairs of rewrites. As
mentioned in the introduction, slightly more complicated bookkeeping is called for than in the case
of set-based term rewriting.

Given a set of sorts S, set of sorted variables, and set F of sorted function symbols, the set T
of well-formed terms is defined as before. Let R be a labelled set of pairs of terms, i.e. a function
I

R−→ T × T from some index set I to pairs of terms of the same sort. Rewrite data with source
x and target y consist of an element i ∈ I , a substitution instance 〈U,V〉 of the rule 〈u, v〉 = R(i),
and an occurrence of U in x, say x = x1Ux2 such that y = x1Vx2.

Definition 2.1. The graph of terms corresponding to 〈S, F,R〉 is the directed graph whose vertices
are the well-formed terms, and whose edges from vertex x to vertex y are the rewrite data with
source x and target y.

Definition 2.2. A presentation of a 2-theory is a tuple 〈S, F,R,C〉 where S is a set of sorts, F a
set of sorted function symbols, R a labelled set of pairs of terms of the same sort, and C a set of
(unordered) pairs of paths in the graph of terms of 〈S, F,R〉. Each such pair is to contain two paths
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with the same initial and terminal vertex.

t1 // t2 // . . . // ti

  
BBBB

v

>>~~~~

  
@@@@ w

u1 // . . . // uj−1 // uj

>>||||

For ease of language, we will refer to such pairs of edge paths as cycles.

Some clarifying remarks:

• In the graph of terms, note that edges can only occur between terms of the same sort, but
there may be both multiple edges between terms and ‘loops’ on a vertex. For readability,
we will often suppress the edge-labels.
• In the definition of rewrite data, the actual variable substitutions that take 〈u, v〉 to 〈U,V〉

are not part of the data. (It turns out that substitutions taking a given term into another,
if they exist at all, are uniquely determined by those variables that actually occur in the
source term.)
• The edge paths, of course, may repeat vertices or edges. For any vertex t, there is, by

definition, a unique path of length 0 beginning and ending at t.

An interpretation of the data 〈S, F 〉 is a category Cs of ‘objects of sort s’ for each s ∈ S, and a
functor f : Cs1 × Cs2 × · · · × Csn → Cs of the appropriate arity for each f ∈ F . This induces an
interpretation of well-formed terms as follows. Let

∏
x
(s)
i
Cs be the product, over all the variables,

of the categories corresponding to their sorts. A term t of sort r will be interpreted as a certain
functor

∏
x
(s)
i
Cs → Cr. Now if x(sk)

k , k ∈ K, is the (finite) set of variables that actually occur
in t, then the interpretation will factor as

∏
x
(s)
i
Cs →

∏
k∈K Csk

→ Cr where the first functor is
projection; thus we will only indicate the second part of the interpretation. A variable of sort s
is to be interpreted as the identity Cs

id−→ Cs. A constant symbol of sort s is to be interpreted as
a functor from the terminal category to Cs, that is to say, as an object of Cs. The interpretation
of terms f t1t2 . . . tk is then defined inductively, composing the functor f with the products of the
interpretations of the ti and diagonal functors for the variables.

An interpretation of the rewrite rules is to assign to each i ∈ I , say with R(i) = 〈u, v〉, a
natural transformation from the functor corresponding to u to the functor corresponding to v. This
induces an interpretation for each substitution instance 〈U,V〉 of 〈u, v〉 as the natural transformation
obtained by precomposing u

i⇒ v with the functors interpreting the terms occurring in the variable
substitutions xi 7→ ti. Rewrite data from x = x1Ux2 to y = x1Vx2, that is, an edge from x to y, will
be interpreted by a natural transformation too; obtained this time by postcomposing, at the location
x, the natural isomorphism from U to V by the functor corresponding to x1xx2. (Here x is just a
place-marker variable of the same sort as U and V.)

The interpretation of the path of length 0 at t is the identity natural transformation on t.
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The entire graph of terms therefore becomes interpreted by functors
∏

x
(s)
i
Cs → Cr and natural

transformations. If each cycle commutes (that is, the composites of the natural transformations
assigned to the edges are equal within each of the pairs of paths contained in C) then the interpre-
tation is said to be a model of (or algebra for) the axioms 〈S, F,R,C〉.

Remark. The reason for having
∏

x
(s)
i
Cs, the product of the category-sorts over all the variables,

as the domain of interpretation for terms is that not necessarily the same variables are present
in the source and target of a rewrite rule; consider, for example, x · x−1 ⇒ 1. The desire to
interpret each term as a specific functor and each rewrite as a natural transformation then pretty
much forces the selection of a ‘universal domain’. Another solution, much more in the spirit of
categorical logic, is to consider a well-formed term to be a term t together with a context, i.e. a
tuple of variables 〈xi1 , xi2 , . . . , xik〉 that contain all the variables of t (see e.g. Definition D.1.1.4.
of Johnstone [Joh02]). One could then demand that rewrites only act between terms with the
same context, but one would have to equip the graph of terms with operations of omitting and
introducing variables into contexts, increasing its complexity quite a bit. Nonetheless, rewrite
rules, hence edges, preserve the set of free variables quite often in practice.

Example 2.3. A monad structure is an example of a 2-theory. In the above terms, it is one-sorted
with one unary function symbol f and two rewrite rules: x η⇒ fx and ffx µ⇒ fx. The set C of
commutative cycles contains two pairs of paths,{

fffx fµ−→ ffx µ−→ fx ; fffx µf−→ ffx µ−→ fx
}

and {
fx fη−→ ffx µ−→ fx ; fx ηf−→ ffx µ−→ fx

}
where fµ is shorthand for rewrite data consisting of the function symbol f being applied to the
rewrite rule µ etc.

Discussion. The 2-dimensional syntax of functors and natural transformations is richer than that
of rewrites, so a word must be said why Def. 2.2 (which is stated with a view towards the proof of
our main theorem) has sufficient expressive power. To wit, when ‘defining a structured category
via functors and natural transformations’, one can (i) make free use of products, projections from
products, and diagonal functors into products of categories (including the identity functor) (ii) pre-
compose a functor of n variables with up to n functors (iii) precompose a functor of n variables
with up to n natural transformations (iv) precompose a natural transformation with functors (v)

compose natural transformations (2-cells) F
η−→ G, G

ξ−→ H horizontally F
η·ξ−→ H (vi) com-

pose natural transformations ‘vertically’, e.g. F1
η−→ F2 and G1

ξ−→ G2 to G1 ◦ F1
η?ξ−−→ G2 ◦ F2

(where Gi is assumed composable with Fi) and (vii) take the inverse of natural isomorphisms.

Of these, (i), (ii) and (iv) are built into Def. 2.2. That definition also permits the precomposition
of a functor by a single natural transformation but any instance of (iii) is expressible, by naturality,
as a horizontal composition of natural transformations of one variable only, hence as a chain of
rewrites, i.e. a path in the graph of terms. By naturality, (vi) is also expressible via (iii), (iv) and
(v). Finally, identity morphisms and hence, natural isomorphisms and inverses can be enforced via
the convention on paths of lengths zero.



CATEGORIFICATION, TERM REWRITING AND THE KNUTH–BENDIX PROCEDURE 9

The upshot is that the commutativity of any two-dimensional ‘pasting diagram’ of functors and
natural transformations can be equivalently expressed by the commutativity of a set of pairs of
paths in the corresponding graph of terms. Such an equivalent expression is far from unique in
general.

3. COHERENCE AND CATEGORIFICATION

Recall that an interpretation of the data 〈S, F,R〉 assigns to each term a functor
∏

x
(s)
i
Cs → Cr

and to each edge of the graph of terms a natural transformation. If C is a collection of pairs of
paths with the same initial and terminal vertices, an interpretation is called a model of C if each
cycle commutes.

Definition 3.1. The axioms 〈S, F,R,C〉 are coherent in the sense of MacLane if, within any model,
for any two vertices v, w, the composites of the natural transformations along any two edge-paths
p1 : v→ t1 → . . . ti → w, p1 : v→ u1 → . . . uj → w are equal.

Coherence in this sense is a strong requirement (as commutativity is required to hold even when
the path p1 or p2 has length 0!) but seems to be in the spirit of MacLane’s dictum [Mac71] that
coherence theorems state that all diagrams well-formed from the data commute — provided the
diagrammatic axioms do.

Definition 3.2. Let U be an equational universal algebra with sorts S and set of function symbols
F . The 2-theory 〈S, F,R,C〉 is a categorification of U if

(i) two terms u, v belong to the same connected component of the graph of terms if and only
if u = v in the universal algebra U and

(ii) in any model of 〈S, F,R,C〉, all edges are interpreted by natural transformations that are
natural isomorphisms.

In other words, in models of 〈S, F,R,C〉 the identities that hold between terms in U are replaced
by natural isomorphisms between the corresponding functors; the equivalence relation between
terms generated by these natural isomorphisms coincides with equational identity. A universal
algebra has infinitely many categorifications in this sense (indeed, every equational axiomatization
can be turned into one). The categorification being coherent is the same as saying that the graph
of terms, in any model of 〈S, F,R,C〉, is interpreted by a groupoid whose components are trivial
(i.e. by a groupoid each of whose hom-sets is either empty or contains precisely one arrow). Any
equational universal algebra has coherent categorifications; but the problem that motivated this
paper is: given a finitary equational universal algebra, find a finitary coherent categorification.

Def. 3.1 is semantic in nature in that it contains quantification over the class of all models. It is
possible to give an equivalent syntactic definition expressed directly in terms of the graph of terms,
but we shall not need to do so here. Prior to stating and proving the main theorem, though, we need
to identify two families of cycles in the graph of terms. The ones from the first family (denoted
D0) are commutative in any interpretation of 〈S, F,R〉 purely by virtue of category theory. Cycles
from the second family (denoted D1) are commutative in any model of the axioms C.
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(D0) Consequences of the functoriality of natural transformations. Let t be any term, and z a
variable of sort s that occurs at least once in t. Let x→ y be an edge between terms of sort s. Then
let

t[z 7→ x] //___ t[z 7→ y]

denote any directed edge path from t[z 7→ x] to t[z 7→ y] that results from replacing, one by one
but in any order, each occurrence of z in t by y instead of x. By convention, if z does not occur in
t, let t[z 7→ x] //___ t[z 7→ y] stand for the path of length 0 that consists of the term t.

Example 3.3. If t = t1z t2z t3z t4, with no other occurrence of z in t, then t[z 7→ x] //___ t[z 7→ y]

may stand for the path

t1x t2x t3x t4 → t1y t2x t3x t4 → t1y t2x t3y t4 → t1y t2y t3y t4

or
t1x t2x t3x t4 → t1x t2y t3x t4 → t1y t2y t3x t4 → t1y t2y t3y t4

etc. Each of the above edges arises as postcomposition of x→ y.

Let now u1 → u2 be an edge, x a variable of sort s, and v1 → v2 an edge between terms of sort
s. That gives rise to cycles of the form

u1[x 7→ v1] //______

��

u1[x 7→ v2]

��

u2[x 7→ v1] //______ u2[x 7→ v2]

(More precisely, that shape corresponds to x occurring both in u1 and u2; if x occurs in u1 but not
in u2, the cycle ‘looks like’

u1[x 7→ v1] //_______

%%KKKKKKKKK
u1[x 7→ v2]

yysssssssss

u2

and dually when x occurs in u2 but not in u1. If x occurs in neither u1 nor u2, the rectangle reduces
to a parallel pair of identical edges.)

Let D0 be the collection of all cycles in the graph of terms arising in this fashion.

Example 3.4. Consider a one-sorted structure with a single binary operation C × C −~−−−−→ C.
Assume it is equipped with a natural transformation of the form (X~Y )~Z

ηXY Z−−−→ X~ (Y ~Z).
Then the diagram

(((X ~ Y )~ Z)~ V )~W //

��

(X ~ (Y ~ Z))~ V )~W

��

((X ~ Y )~ Z)~ (V ~W ) // (X ~ (Y ~ Z))~ (V ~W )
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commutes. It is the case of the above rectangle when u1 → u2 = (U ~ V )~W → U ~ (V ~W ),
v1 → v2 = (X ~ Y )~ Z → X ~ (Y ~ Z), and the role of x is played by U . In prefix notation, U
would be replaced in the literal sense of strings, without the need for occasional extra parentheses.

This quadrangle is one of the faces of the Stasheff polytope K5. It commutes in the absence of
any assumptions about the Stasheff pentagon K4. There are two more quadrilateral faces in K5,
both of which are naturally commutative; they correspond to analogous replacements of V and W .

(D1) The commutativities entailed by the paths in C under pre- and post-compositions with terms.
First, let us define these operations:

(precomposition) If x→ y is an edge and xi 7→ ti are variable substitutions, then

x[xi 7→ ti]→ y[xi 7→ ti]

is also an edge. Indeed, let x → y arise as x1Ux2 → y1Vy2 where 〈U,V〉 is a substitution instance
of a rewrite rule 〈u, v〉. Then the above edge amounts to performing the substitutions xi 7→ ti in
each of x1, x2, y1, y2, U and V. (Note that any substitution instance of 〈U,V〉 is also an instance of
〈u, v〉.)

(postcomposition) If x → y is an edge between terms of sort s and w1zw2 is a well-formed
term with z a variable of sort s, then

w1xw2 → w1yw2

is also an edge. Indeed, with x, y as above, this edge arises as w1x1Ux2w2 → w1x1Vx2w2.

For a tuple of edges between terms all of the same sort (such as an edge path), pre- resp. post-
composition with a term is defined by performing these actions for each edge. Close the set of
cycles in C under arbitrary precomposition, then under postcomposition to generate a collection
of diagrams (necessarily closed under both pre- and post-composition) that we will denote D1.

To sum up, any interpretation of 〈S, F,R〉 makes the diagrams in D0 commute; any model of
〈S, F,R,C〉 makes in addition the diagrams in D1 commute. Pasting diagrams of these types side
by side, we will be able to deduce the coherence of 2-theory axioms stemming from convergent
rewrite systems.

4. COHERENCE OF CONVERGENT PRESENTATIONS

Let us first recall Knuth’s critical pair lemma that plays a key role in both the Knuth-Bendix
algorithm and our coherence proof. A span is a diagram r1 ← t → r2 in the graph of terms,
i.e. a term with two distinct rewritings. The critical pair lemma says that spans come in one of
three types. The first two of these, it turns out, are harmless from the viewpoint of functoriality,
since they can be completed by diagrams belonging to the family D0; and the third one possesses
‘templates’ which we will use for coherence conditions.

We say that a span r1 ← t→ r2 extends r′1 ← t′ → r′2 if r1 ← t→ r2 arises from r′1 ← t′ → r′2 by
a pre- followed by a post-composition, in the sense of composition of edges by terms introduced
above.



12 TIBOR BEKE

Lemma 4.1. (Knuth) Let a finite set of sorts, function symbols and rewrite rules be given. From this
data one can effectively compute a finite set of spans, called critical pairs, such that if r1 ← t→ r2
is any span, then either

(1) t permits a decomposition t = t1U1t2U2t3 and there exist instances 〈U1,V1〉, 〈U2,V2〉 of
rewrite rules such that one of t→ r1 and t→ r2 is

t1U1t2U2t3 → t1V1t2U2t3

and the other one is
t1U1t2U2t3 → t1U1t2V2t3,

or
(2) there exist edges u1 → u2, v1 → v2, a variable x occurring at least once in u1 and

an occurrence of v1 in u1[x 7→ v1] (corresponding to a replacement instance of x) say,
u1[x 7→ v1] = w1v1w2, such that one edge of the span can be written

t = u1[x 7→ v1]→ u2[x 7→ v1]

while the other one arises as

t = u1[x 7→ v1] = w1v1w2 → w1v2w2

or
(3) r1 ← t→ r2 extends a critical pair.

Sketch of proof. By definition, there exist instances 〈U1,V1〉, 〈U2,V2〉 of rewrite rules 〈u1, v1〉,
〈u2, v2〉 such that t → r1 is t1U1t2 → t1V1t2 and t → r2 is t′1U2t

′
2 → t′1V2t

′
2. The three cases

now depend on the relative position of U1 and U2 in t. Case (1) is when they are disjoint. If they
overlap as substrings then (since they are subterms) one of them, say U1, must contain the other.
Case (2) is when U2 is substring of a trivial replacement instance of u1 (U2 is subterm of a term
that is substituted into a variable occurring in u1). In the remaining case (3), the overlap is non-
trivial; under some variable substitution, u2 becomes a subterm of u1. That substitution must then
factor through the most general unifier of u2 and the corresponding subterm of u1. The critical
pairs are thus computed as follows: take all pairs 〈u1, v1〉, 〈u2, v2〉 of rules; take all subterms u′1
of u1; if u′1 and u2 are unifiable, use their most general unifier to define a substitution instance of
〈u1, v1〉 resp. post-composition of a substitution instance of 〈u2, v2〉 with identical left-hand sides.
See Knuth–Bendix [KB70] or Baader and Nipkow [BN98] for details.

Remark. Knuth stated his lemma for term rewrite systems in the classical sense of section 1, and
that is all we will need. It remains valid for labeled rewrite systems in the sense of section 2, but
critical pairs can then also have the form r

α←− t
β−→ r that would be tautologous for an algebraic

term rewrite system.

Now we can state the main result.

Theorem 4.2. Let 〈S, F,R〉 be a finite convergent axiomatization of an equational universal alge-
bra U, with set of critical pairs P . For each z1 ← w→ z2 in P , choose some sequence of rewrites
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that transforms z1 into the normal form nf(w) of w, and choose some such sequence of rewrites
from z2 to nf(w) too. This defines a cycle in the graph of terms:

z1 // . . . // • // •
""FFFFF

w

??�����

��
>>>>> nf(w)

z2 // • // . . . // •

<<xxxxx

TakeC to be the set of cycles obtained in this fashion (one for each critical pair). Then the 2-theory
presented by 〈S, F,R+ ∪R−, C ∪ I〉 is a finite, MacLane-coherent categorification of U. Here R+

is the same as R, the original set of rewrite axioms; R− is a formal inverse v → u for each rule
u → v present in R; and I contains the cycles {v → u → v; v}, {u → v → u; u} for each rule in
R.

Proof. Recall from Def. 3.2 that in a categorified algebra, the edges between terms are to be in-
terpreted by natural isomorphisms; that is the reason for adding a formal converse to each rewrite
rule and the additional diagrams in I . A model of 〈S, F,R+ ∪ R−, C ∪ I〉 is exactly the same as
a model of 〈S, F,R,C〉 where all rewrites are interpreted by natural isomorphisms. For much of
the proof, we will actually work with a model of 〈S, F,R,C〉 and exploit convergence; it is only
at the last step that we use the assumption on isomorphisms.

So, fix an arbitrary model of 〈S, F,R,C〉. The key is the following lemma, the only one, in fact,
that directly exploits the diagrams in C.

Lemma 4.3. Let r1 ← t → r2 be any span. There exist a term z and edge-paths r1  z, r2  z
such that

r1

&&LLLL

t

??����

��
>>>> z

r2

88rrrr

commutes.

Proof. By Knuth’s theorem, the span r1 ← t→ r2 is one of three types. For each of those, we will
find a way to appropriately complete the diagram. We retain the notation of Lemma 4.1.

(1) Choose z = t1V1t2V2t3 and note that the square

t1V1t2U2t3

((RRRRRRR

t1U1t2U2t3

66lllllll

((RRRRRRR
t1V1t2V2t3

t1U1t2V2t3

66lllllll

completes the span as desired. It commutes since it is an element of D0.
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(2) Assume that x occurs in u2. There are commutative rectangles belonging to the family D0

u1[x 7→ v1] //______

��

u1[x 7→ v2]

��

u2[x 7→ v1] //______ u2[x 7→ v2]

Choose such a sequence of edges for the top row that the first instance of v1 to be replaced
is at the location w1v1w2, creating a diagram

u1[x 7→ v1] //

��

w1v2w2 //______ u1[x 7→ v2]

��

u2[x 7→ v1] //____________ u2[x 7→ v2]

Set z = u2[x 7→ v2] to obtain a suitable completion of the span. The case when x does not
occur in u2 is similar; the bottom row is replaced by the term u2, yielding a commutative
‘triangle’.

(3) If r1 ← t→ r2 extends the critical pair z1 ← w→ z2, then the diagram
z1 // . . . // • // •

""FFFFF

w

??�����

��
>>>>> nf(w)

z2 // • // . . . // •

<<xxxxx

corresponding to the latter in C will, under the same pre- and post-compositions, extend to
a diagram

r1 // . . . // • // •
��

====

t

??����

��
>>>> z

r2 // • // . . . // •

@@����

contained in the family D1.

�

Proposition 4.4. Let t be any term, and consider any two chains of rewrites that convert t into its
normal form nf(t):

r1 // . . . // • // •
""DDDDD

t

AA�����

��
<<<<< nf(t)

r2 // • // . . . // •

<<zzzzz

The above diagram commutes.

Proof. The following observation follows from the contrapositive of König’s lemma on infinite
trees, but we include the proof for completeness.
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Lemma 4.5. In a noetherian rewrite system, there exist only finitely many rewrite chains

t0 → t1 → t2 → . . .→ tk

starting at any given term t0.

Proof. By contradiction. Suppose that infinitely many rewrite chains have t0 as their starting term.
There are only finitely many terms u such that t0 → u; say, these are u1, u2, . . . , uk. It must be
that for some i, ui is the starting term of infinitely many rewrite chains. Define t1 = ui for some
such i. Continue this way building a non-terminating rewrite chain t0 → t1 → t2 → . . . . But that
contradicts the assumption the rewrite system is noetherian. �

Definition 4.6. In a noetherian rewrite system, define the depth of a term t by

depth(t) = max
{
k | there exists a rewrite chain t→ t1 → t2 → . . .→ tk

}
setting depth(t) = 0 if t permits no rewrites.

The proof of Prop. 4.4 is by induction on depth(t). When depth(t) = 0, the statement is
vacuously true. We may assume that the edges t → r1 and t → r2 are different, otherwise apply
the induction hypothesis to the diagram starting at r1 = r2. Now use Lemma 4.3 to find a term z
and paths of arrows r1  z, r2  z that make the left-hand diamond in

r1 //

((QQQQQQ . . . // • // •
""DDDDD

t

AA�����

��
<<<<< z //_____ nf(t)

r2 //

66nnnnnn • // . . . // •

<<zzzzz

commute. The normal form of z must be nf(t) as well, so there exists a chain of rewrites from z
to nf(t). Apply the induction hypothesis to the parts of the diagram starting at r1 resp. r2, noting
that depth(r1) < depth(t) and depth(r2) < depth(t), to conclude that the outer cycle commutes
as well. �

Now we can finish the proof of Thm. 4.2. The desired conclusion is that in any model of
〈S, F,R+ ∪R−, C ∪ I〉, all cycles commute in the graph of terms:

t1 // . . . // ti

  AAAA

u

>>~~~~

  
@@@@ w

v1 // . . . // vj

>>}}}}

A model of 〈S, F,R+ ∪ R−, C ∪ I〉 is the same as a model of 〈S, F,R,C〉 where all R-rewrites
happen to be interpreted by natural isomorphisms. All the terms in this diagram belong to the same
class modulo the equivalence relation generated byR-rewrites, so must have the same normal form
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nf. For each vertex, choose some sequence of R-rewrites to nf:

t1 //

!!C
C

. . . // ti

��
@@@@@

}}| | |

u

��
?????

??����
//_____ nf woo_ _ _ _ _

v1 //

=={
{

. . . // vj

??����
aaB

B

Any arrow between adjacent vertices of the original cycle is either an R-rewrite or the inverse of
an R-rewrite. Either way, all the interior triangles commute by Prop. 4.4. But this means the outer
cycle commutes as well, since all morphisms are isomorphisms. �

5. EXAMPLES AND COMPLEMENTS

Much of the work in this paper was spent setting up a graphical calculus of commutative di-
agrams where the notion of critical pair was applicable. (That is the reason, for example, for
permitting only single instances of rewrites to serve as edges in the graph of terms; if the transitive
closure→∗ of elementary rewrites served as edges, the classification of spans would be much more
cumbersome.) Having done that work, there are satisfying instances of the main theorem, but also
many ways in which it should be extended; we finish with their discussion.

Example 5.1. Take either orientation of the sole axiom x(yz) = (xy)z of semigroups, say,
x(yz) ⇒ (xy)z. There is one critical pair for this system, stemming from the unification of
the subterm yz of the left-hand side with the left-hand side itself. The critical pair generated by the
most general unifier is

(5.1) x((yz)u)← x(y(zu))→ (xy)(zu).

There is a unique chain of rewrites both from x((yz)u) and from (xy)(zu) to ((xy)z)u. The
rewrite system is noetherian as well and hence convergent (without any completion needed). In
the notation of Thm. 4.2, the set C of coherence conditions consists of the MacLane pentagon

x((yz)u) // (x(yz))u

$$JJJJJJJJJ

x(y(zu))

::ttttttttt

**TTTTTTTTTTTTTTTT
((xy)z)u

(xy)(zu)

44jjjjjjjjjjjjjjjj

as advertised in the introduction. The associated 2-theory is that of MacLane monoidal categories
(without unit).
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Example 5.2. To get from semigroups to monoids, add the rewrite rules 1x ⇒ x and x1 ⇒ x.
There are five critical pairs: in addition to (5.1), also

(x1)z ← x(1z)→ xz(5.2)

(xy)1← x(y1)→ xy(5.3)

(1y)z ← 1(yz)→ yz(5.4)
1← 1 · 1→ 1(5.5)

Just as in the previous example, each of these critical pairs can be completed to their normal
form uniquely, and the rewrite system is noetherian, so convergent; the associated 2-theory is
unital MacLane monoidal categories. Moreover, the five diagrams arising from the application of
Thm. 4.2 are exactly the ones originally listed by MacLane [Mac63], predating the discovery of
convergent rewrite systems.

Kelly [Kel64] subsequently showed that this set of coherence conditions is redundant: the
MacLane pentagon together with the diagram arising from (5.2),

x(1z)
zzttttt

""FFFFF

(x1)z // xz

imply the other three. (MacLane [Mac71] and many references continue to list the diagrammatic
form of (5.5), i.e. that the right and left unit transformations from 1 · 1 to 1 are equal, as an axiom.)
Kelly’s proof is ingenious and makes heavy use of the assumption that the associativity and unit
transformations are natural isomorphisms. This shows that the output of Thm. 4.2 need not be a
minimal set of coherence conditions. (I am indebted to the referee for this remark.)

Example 5.3. Any convergent axiomatization of groups — cf. Example 1.3 — gives rise to a
2-theory whose models are coherent categorical groups. (Not group objects in categories, but
categories with multiplication, unit and inverse functors that are coherent in the sense of MacLane,
cf. Def. 3.1.)

A coherent categorical group is necessarily a coherent categorical monoid, so it could equiva-
lently be called a MacLane monoidal category with a coherent inverse for multiplication, at least as
long as the underlying signature is the usual (one constant, one binary product, one unary function
for the inverse).

Note that Ulbrich [Ulb81], Solian [Sol81] and Laplaza [Lap83] have all introduced notions of
coherent categorical groups.

Example 5.4. A homomorphism f : M → N between semigroups can be considered as a uni-
versal algebra with two sorts: source and target, which are semigroups with operation ? and ·,
respectively, and the function symbol f(−) satisfying f(x ? y) = f(x) · f(y). Besides the as-
sociativity rewrite rules x ? (y ? z) ⇒ (x ? y) ? z and x · (y · z) ⇒ (x · y) · z, include the rule
f(x) · f(y)⇒ f(x ? y). This rewrite system is noetherian, as one easily sees by a suitable term or-
der keeping track of occurrences of f and left parentheses. There are several critical pairs but they
are all confluent; so this is a convergent axiomatization. The associated 2-theory is that of coherent
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monoidal functors (sometimes called ‘strong monoidal transformations’ since the homomorphism
comparison maps were required to be natural isomorphisms). Similarly with units.

Question 5.5. If the universal algebra U possesses a convergent axiomatization, does the universal
algebra hom(U) possess one too? (hom(U) has twice as many sorts as U, and its algebras are a
pair of U-algebras connected by a U-homomorphism.)

Example 5.6. Coherent monoidal actions. Convergent presentations of monoids M have been
extensively investigated, chiefly due to their interaction with properties of the homology groups
Hn(M,Z), cf. Squier et al [SOK94]. A monoid presentation

〈g1, g2, . . . , gn | u1 ⇒ v1, . . . , uk ⇒ vk〉
(where the ui, vi are words in the generators gj) with directed rules is, essentially by definition, a
string rewrite system. But it can be considered as an axiomatization of a single-sorted universal al-
gebra where each gj is a unary function symbol, and the relations ui ⇒ vi express equational iden-
tities between composites of these functions (with the single dummy variable suppressed). Models
of the associated 2-theory are categories C equipped with an endofunctor for each of g1, g2, . . . , gn
and natural isomorphisms between the corresponding composites. If one starts with a convergent
presentation of the monoid M then Thm. 4.2 applies: a finite number of critical pairs of words and
hence coherence diagrams can be found whose validity guarantees (thanks also to the existence
of normal forms) that to each element of M one can associate a well-defined endofunctor of C,
getting a coherent pseudo-action of M on C in the usual sense.

Groups with convergent presentations also exist. The case of ‘monoids with several objects’,
i.e. edge rewriting as a case of string rewriting, recalls Jardine’s coherent pseudo-simplicial objects
[Jar91] and other Reedy diagrams.

Discussion. Permutative identities. A severe shortcoming of categorification via convergent
rewriting is that it is inapplicable to any universal algebra that contains a permutative (or more
precisely variable-permuting) axiom. A permutative axiom asserts the equality of the terms t and
t[xi 7→ xσ(i)], where σ is a non-trivial permutation of variables occurring in t. The best-known
example is certainly

x · y = y · x
but middle-self-interchange (

(a ? b) ? (c ? d)
)

=
(
(a ? c) ? (b ? d)

)
is likewise permutative, as is, say,

(x� y)� (x~ x) = (y � x)� (y ~ y).

The Knuth–Bendix procedure attempts to ‘orient’ each of the given axioms, hence to include ei-
ther a rewrite t ⇒ t[xi 7→ xσ(i)] or a rewrite t[xi 7→ xσ(i)] ⇒ t in the system. But some power of
σ is the identity, so either option violates the noetherian property. So no noetherian rewrite sys-
tem could include, say, the usual axioms of commutative monoids, much less produce MacLane’s
coherence diagrams for symmetric monoidal categories from them. Moreover, satisfying a per-
mutative identity is an intrinsic property of a universal algebra, independent of its presentation,
and one can show that a universal algebra satisfying a non-degenerate permutative identity cannot
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have a convergent axiomatization. For example, Thm. 4.2 cannot produce any categorification of
commutative monoids — not even in a signature or axiomatization different from the usual one.

Knuth was aware of the problem with commutativity already in [KB70], and there soon appeared
an extensive research effort to develop a theory of rewriting modulo a congruence on terms — such
as equivalence induced by a subset of the axioms, for example, by the permutative axioms. See
Baader–Nipkow [BN98] for a good overview of the case of theories with commutative-associative
operations. The relation between that and categorical coherence — such as symmetric monoidal
categories and coherent monoidal functors — has yet to be established. From the viewpoint of
category theory, symmetric or braided monoidal axioms arise from the action of an operad on
the entire rewrite system. From the viewpoint of term rewriting, what coherence axioms define
is a congruence between proofs with respect to which any equational identity possesses a unique
equivalence class of equational proofs (i.e. sequence of rewrites from left-hand to right-hand side).

Coherence for natural transformations. Given that the rewrite relation u → v can have no
symmetric instance in a noetherian system, it is quite ironic that the main result, Thm. 4.2, is
applicable only to noetherian systems whose rewrites are interpreted by natural isomorphisms.
If one starts with any convergent rewrite system, the proof of Thm. 4.2 remains valid up to and
including Prop. 4.4. However, as pointed out above, that proposition would no longer imply the
conclusion of Thm. 4.2. Said slightly differently: to go from the fact that all paths from a term t
to its normal form nf(t) commute, to the conclusion that all paths from t to a common target w
commute

t
  t _ J

>>J _ t
w //___ nf(t)

is automatic if all arrows are isomorphisms (or at least monos), but not in general.

Nonetheless, Laplaza [Lap72] proves that there is a coherent notion of monoidal category whose
associator is just a natural transformation; the MacLane pentagon is the only axiom needed. The
reason is that in that case, one can sidestep the last part of the proof of Thm. 4.2: given two paths
from t to w, some term z and path from z to w can always be found to form a diagram

• //

((RRRRRR . . . // • // •
  

@@@@

t

@@����

��
>>>> z //_____ w

• //

66llllll • // . . . // •

>>~~~~

where the inner diamond commutes (by virtue of belonging to D0 or D1, as in the proof of
Lemma 4.3). The commutativity of the outer diamonds can be assumed by noetherian induction,
finishing the proof.

In other words, for the semigroup example 5.1, a finite set of parallel pairs of rewrite paths can
be found that (together with the ones commuting by naturality, cf. D0 above) generate, under pre-
and postcomposition and pasting, all parallel pairs of rewrite paths. I do not know if that holds in
all convergent rewrite systems.

Though Laplaza does not include units in his analysis, I suspect that MacLane’s five original
axioms for unital monoidal categories — corresponding to the five critical pairs (5.1)–(5.5) —
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form a minimal set of coherence conditions for unital monoidal categories where associativity and
left and right units are only natural transformations (not necessarily isomorphisms).

2-theories and Lawvere theories. A (finitely presentable) 2-theory in the sense of this paper
can be seen to be the same as a (finitely presentable) Lawvere 2-theory over Cat , or the category
of models of a finite product sketch enriched over small categories. See Power [Pow99] and Co-
hen [Coh08]. Hence, models of a 2-theory are algebras of a 2-monad over the category of small
categories. These notions may well diverge on the level of morphisms of models (strict vs. pseudo
vs. lax homomorphisms of 2-algebras). Analyzing functors between theories (i.e. interpretations of
one theory in another) is also likely to be interesting; in particular, developing a notion of coherent
equivalence between two coherent categorifications of the same universal algebra.
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