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Abstract. We exhibit a parallel between Lawvere’s algebraic theories and op-
erads; there is a common ancestor of both notions whose syntax is described

by labeled trees, dummy variables corresponding to special labels. Operads,

cyclic and braided operads alike arise as group objects in the category of com-
positional structures. Laplaza’s coherence theorem for “associativity not an

isomorphism” is seen to correspond geometrically to the 1-skeleton of a variant

of the Stasheff polytope. Several questions are raised concerning the extent
of the above-mentioned parallel; applications to higher categories remain for

future work.

The purpose of this note is to locate operads within the realm of classical
universal algebra, using a uniform language to describe both, and to sketch how they
may be used to construct structures in category theory analogous to ones in Set – in
the sense in which MacLane monoidal categories are analogous to monoids. There
are many more pieces to be fitted within this picture, such as symmetric and braided
monoidal categories, “lax” functor categories, tensor products and abelianizations
of structures, that will not be touched upon here; the chosen application is to
Laplaza’s coherence theorem.

The thrust of the first section, mainly a review, is that what sets operads
apart is not their describing structures via n-ary operations and identities between
composites. (That is the very essence of universal algebra, and goes back at least
to the 40’s, to the notion of clone or “closed set of operations”; see [12].) Rather,
it is the fact that operads cannot identify or skip inputs, only permute them. Being
of such limited syntax allows operadic theories to extend to enriched categories
more readily than the rest of universal algebra, and makes features common to all
algebraic theories – such as free models, coequalizers, tripleability and cohomology
– explicitly constructible. It also lets them extend from Set-based structures to ones
in Cat (small categories) in a way that non-operadic structures do not; an aspect
of this is captured, perhaps, in our notion of “relaxation”. The ultimate goal of
any formalism of its kind would be an analogous development for n-categories –
an area where presenting algebraic structures in terms of generators and relations
(commutative and “pasting” diagrams, that is) has been notoriously cumbersome.
Correspondingly, the operads encountered in this article have diverse combinatorial
structures (categories, graphs, posets) rather than topological or graded algebraic
objects as coefficients. Finally, the essay is punctuated with (perhaps too many)
questions.
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1. A glance at universal algebra

Birkhoff defines a variety, or equational class of (finitary) universal algebras by
starting from a set of symbols {Ωn|n ∈ N} of n-ary operations, introducing terms
involving variables as a logician would, and imposing a set of identities to hold
between formal composites of these function symbols; the notion of model is that of
interpretation familiar from set-based model theory. In Lawvere’s reformulation of
universal algebra, all possible composites of operations defining an algebraic theory
are collected as morphisms in a category whose objects are enumerated by the
natural numbers, the nth object being the nth categorical power of the first. A
model of such a theory is a product-preserving functor into the category Set (or
some other suitable category). The role of ‘dummy variables’ is in fact played by
the canonical projections into the product. (See [12] or [2] for a smooth transition
from Birkhoff’s formulation to Lawvere’s.)

En route to operads, we describe Lawvere theories via trees. To quickly get
through the botany:

Definition 1.1. An undirected graph is given by a set V of vertices and
a subset E ⊆ {{v, w}|v, w ∈ V } of the unordered pairs of vertices, the edges.
A rooted tree is a finite, loop-free, connected graph with a distinguished vertex
called root. A vertex other than the root is called terminal if there is a unique
edge incident to it. By definition, the root is also terminal in the tree containing a
sole vertex and no edges.

It follows that there is a unique path from each vertex to the root. (Paths
are meant not to repeat any vertex; so this may also be thought of as assigning a
direction to each edge.)

There is to be an ordering of the incident edges at each vertex, assumed such
that the edge contained in the path to the root is the first in the order. (This
condition is vacuous for the case of the root vertex.) The valence of a vertex v,
denoted |v|, is the number of incident edges for v = the root, and that number
minus one otherwise.

Let Trees denote the set of (isomorphism classes of) rooted trees with local
edge-ordering as above.

It follows that one can define an ordering of the vertices on τ ∈ Trees, by
lexicographic ordering of all the possible paths originating at the root. The root is
always initial in this ordering.

In the figures that follow the root is usually emphasized by a double boundary,
and edge ordering at a vertex is counterclockwise.

Let SetN be the category of graded sets (with functions levelwise as morphisms).

For X∗ ∈ SetN, think of elements of Xn as labels of n-ary operations (so elements of
X0 are the constants of the theory). Our families of structures – defined as algebras
over a free structure triple – are distinguished by the syntax permitted for inputs.
First, consider

Definition 1.2. A Lawvere tree decorated by X∗ ∈ SetN and n ∈ N+ is a
τ ∈ Trees in which to each vertex v there is assigned an element of X|v|, or, but
only for a terminal vertex v, one of the symbols “prni ”, some 1 ≤ i ≤ n. (The n is
to be the same for the whole tree.)
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The formal symbol prni is to be thought of as the operation that takes an n-
tuple and selects its ith element. The degree of a Lawvere tree τ , denoted deg(τ),
is the n decorating it – if indeed any prni appears as label – and zero otherwise.

Define a functor L : SetN → SetN as follows: let (LX)n be the set of Lawvere

trees decorated by X∗, of degree n. A morphism in SetN induces a mapping between
Lawvere trees by effecting the labels other than the prni .

L is part of a monad (L, η, µ). The natural transformation η : IdX → L is
given by sending f ∈ Xn, n > 0 to the tree

(1.1) prn1 prn2 prn3 ... prnn

f

and a ∈ X0 to a .

Ψ ∈ (LLX)N is a tree decorated by X∗-trees and “prNi ” (if any). Leave the
latter intact. For a typical tree-vertex

τ1 τ2 τ3 ... τn

τ

(suppressing the edge – if any – leading to the root of Ψ from τ ) (i) “graft in the
tree τ”, i.e. identify the vertex τ of Ψ with the root of τ , replacing its label as
well (ii) for each occurrence of a label prni in τ replace that vertex by the root of τi
– “graft in τi”. (This also involves removing an edge of Ψ. For terminal vertices of
Ψ, only (i) is needed.) Starting from the vertices of Ψ and recursing down to the
root, one arrives at a tree Ψ decorated by X∗, i.e. an element of LX.1

Note that no prni labels internal to some tree-vertex τ of Ψ survive to Ψ, only
the former’s terminal “prNi ” (if any). So Ψ is of the same degree as Ψ, and one

checks that this is a natural transformation L
µ−→ LL.

Checking the monad identities is rather similar to the case of the free monoid
on a set, save for the more tedious indexing.

Let the category of L-algebras in SetN be denoted by SetL. It is just the
category of Lawvere theories mentioned in the introduction in disguise:

Given (X∗,LX∗
ξ−→ X∗) ∈ SetL, define a category CL(X∗, ξ) as follows. Its ob-

jects are [n] for n ∈ N, and a morphism from [n] to [m] is an m-tuple 〈f1, f2, . . . , fm〉
of elements of Xn. Also add (formally) a unique morphism from [n] to [0].

Given a morphism p = 〈f1, f2, . . . , fm〉 from [n] to [m], and q = 〈g1, g2, . . . , gk〉
from [m] to [k], consider the tree τi (i = 1, 2, . . . , k)

η(f1) η(f2) η(f3) ... η(fm)

gi

1It is intuitive that this leads to a unique, well-defined result. Handling operations of infinite

arity is no harder; however, for trees of infinite height – i.e. transfinite computations – note that
some principle of well-founded induction is needed. We will not consider such extensions of the

formalism here.
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where ηfj is like the tree defined in (1.1).2 The composite morphism [n]
p−→ [m]

q−→
[k] is defined to be 〈ξ(τ1), ξ(τ2), . . . , ξ(τk)〉.3

The identity on [n] is 〈ξ( pr11 ), ξ( pr11 ), . . . , ξ( pr11 )〉. The axioms for a cat-

egory follow from (X∗, ξ) being a L-algebra. More importantly,

Proposition 1.3. In CL(X∗, ξ), the object [0] is terminal, and [n] is the nth

categorical power of [1], with projections 〈ξ( prni )〉, i = 1, 2, . . . , n.

The proof is formal.
A morphism (X∗, ξ)→ (Y∗, ζ) in SetL induces a functor CL(X∗, ξ)→ CL(Y∗, ζ)

preserving products, and actually taking 〈ξ( prni )〉 to 〈ζ( prni )〉. One can show

that there is a 2-categorical equivalence between SetL and Lawvere theories and
product-preserving functors; the weak inverse requires choosing the preferred pro-
jections prni .

Operads. Recall definition 1.2 and add an extra condition:

Definition 1.4. An operadic tree is a Lawvere tree in which, if any symbol
prni occurs at all, then it occurs exactly once for each i = 1, 2, . . . , n.

Recall that the n (the degree) is to be fixed for the whole tree. A Lawvere tree
of degree 0 – i.e. with no prni appearing – is tautologously operadic.

Define the functor S : SetN → SetN as follows: let (SX)n be the set of operadic
trees decorated by X∗, of degree n. S is part of a monad (S, η, µ) where the defini-
tions of η and µ are formally identical to those for L. (Indeed, S is, in an obvious

sense, a sub-monad of L.) Denote the category of S-algebras in SetN by SetS. As
L-algebras led to Lawvere’s algebraic theories, so do S-algebras to special PROP’s:

Given (X∗, SX∗
ξ−→ X∗) ∈ SetS, define a category CS(X∗, ξ) with ob-

jects [n], n ∈ N. A morphism from [n] to [m] is to be an m-tuple of pairs
〈f1, A1, f2, A2, . . . , fm, Am〉 with fi ∈ X|Ai| where |Ai| is the cardinality of Ai.
Moreover, Ai (to be thought of as the arguments to fi) is a subset of {1, 2, . . . , n},
subject to the condition that {Ai|i = 1, 2, . . . , k} is a partition of the set
{1, 2, . . . , n}. By definition, there is a unique morphism from [n] to [0].

Given a morphism 〈f1, A1, f2, A2, . . . , fm, Am〉 from [n] to [m], and 〈g1, B1, g2, B2,
. . . , gk, Bk〉 from [m] to [k], their composite is 〈ξ(τ1), C1, ξ(τ2), C2, . . . , ξ(τk), Ck〉
where Ci =

⋃
j∈Bi

Aj and τi is defined as follows: consider the tree

fj1 fj2 fj3 ... fjt

gi

where j1 < j2 < j3 < · · · < jt are the elements of Bi, gi ∈ Xt. Write w for the
cardinality of Ci, and say fjl ∈ Xtl . Add a top row of prwi labels in increasing order

2This circumlocution is merely for convenience – it allowed the author to avoid typesetting

a three-storey tree.
3The case m = 0 or k = 0 is obvious.
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to make this tree operadic: prw1 to prwt1 go above and are connected to fj1 , prwt1+1

to prwt2 above fj2 and so on. τi is the resulting operadic tree.

The identity on [n] is 〈ξ( pr11 ), {1}, ξ( pr11 ), {2}, . . . , ξ( pr11 ), {n}〉, and the

axioms for a category follow as before.

In addition, define a functor CS(X∗, ξ) × CS(X∗, ξ)
⊗−→ CS(X∗, ξ) by [n] ⊗

[m] = [n + m] and, for a morphism p = 〈f1, A1, f2, A2, . . . , fN , AN 〉 from [n]
to [N ] and q = 〈g1, B1, g2, B2, . . . , gM , BM 〉 from [m] to [M ], letting p ⊗ q =
〈f1, A1, f2, A2, . . . , fN , AN , g1, n+B1, g2, n+B2, . . . , gM , n+BM 〉.

Proposition 1.5. CS(X∗, ξ) is a tensor category with unit [0], the re-

association natural transformation being the identity and symmetry [n] ⊗ [m]
σ−→

[m]⊗ [n] given by

〈ξ( pr11 ), {n+ 1}, ξ( pr11 ), {n+ 2}, . . . , ξ( pr11 ), {n+m},

ξ( pr1
1 ), {1}, ξ( pr1

1 ), {2}, . . . , ξ( pr1
1 ), {n}〉.

A morphism (X∗, ξ) → (Y∗, ζ) in SetS induces a strict monoidal functor
CS(X∗, ξ)→ CS(Y∗, ζ).

One could check the MacLane pentagonal and hexagonal conditions4 but
CS(X∗, ξ) is, at any rate, a strict symmetric monoidal category, and the statement
amounts to checking the symmetric group action, which can be done by hand.

Compositional structures. These are May’s “operads without a symmetric
group action”; equivalently, they may be thought of as varieties of algebras that
can be defined without recourse to variables – being allowed to prescribe only that
certain composites of the generating operations be identically equal. The reason
for singling this class out is that various n-categories are naturally algebras over
them, and operads – unsurprisingly – allow a simple description in the category of
compositional structures.

Recall, first of all, that since trees are connected, loop-free with a distinguished
vertex and possess an ordering of edges at each vertex, there is a natural ordering
of all the vertices. In particular, there is a linear ordering of the terminal vertices,
some of which (in a Lawvere tree) may be decorated with a symbol prni .

Definition 1.6. An operadic tree is compositional if the symbols prni occur
in the order i = 1, 2, . . . , n.

4In some sense, that would be putting the cart before the horse: one of the very goals of this
paper is to understand, in uniform terms, how such conditions arise for algebraic constructions over
Cat (or higher categories), and how can infinitely many commutativity conditions be enforced by a
finite number of axioms. Since MacLane monoidal structures live in the cartesian closed category

of small categories, where the diagrams asserted to commute by the coherence theorem do so by
universal properties in the first place, “bootstrapping” is possible.



6 TIBOR BEKE

An operadic tree of degree 0 is, tautologously, compositional.

pr43

pr41 c0 d0 f1 pr44

f2 pr42 g3

f3

Fig.1. A compositional tree of degree 4. (Subscripts on letters indicate their valence.)

Define the functor C : SetN → SetN as follows: let (CX)n be the set of compositional
trees decorated by X∗, of degree n. The monad (S, η, µ) restricts to one (C, η, µ).

Denote the category of C-algebras in SetN by SetC. As before, one associates a

category CC(X∗, ξ) with objects [n] to (X∗,CX∗
ξ−→ X∗) ∈ SetC; a morphism from

[n] to [m] is an m-tuple 〈f1, f2, . . . , fm〉 with fi ∈ Xdi , subject to the condition that∑m
i=1 di = n. The composition of the morphism 〈f1, f2, . . . , fm〉 from [n] to [m],

and 〈g1, g2, . . . , gk〉 from [m] to [k] is 〈ξ(τ1), ξ(τ2), . . . , ξ(τk)〉 where τi is defined as
in the operadic case, save that g1 picks up, by default, the first deg(g1) arguments,
g2 the next deg(g2), and so on. Note that the labeling ends up with an unpermuted
sequence of “prwi ”, i.e. a compositional tree.

Proposition 1.7. With ⊗ defined by [n]⊗ [m] = [n+m] on objects and acting
by juxtaposition on morphisms, CC(X∗, ξ) becomes a strict monoidal category, and

SetC-morphisms induce strict monoidal functors.

The group object Σ. To specify an element of SetC, it suffices to give the
value of the composition on two-stage trees

...

... fn ...

fm

(the omitted labels are prni whose location is prescribed), subject to associativity
for every tree with 3 non-prni vertices (such trees come in two shapes) and the value

of pr11 is to act as the identity.

Consider Σ ∈ SetN having the symmetric group Σn in degree n. For σn ∈ Σn
and σm ∈ Σm, there is an obvious sense of

...

... σn ...

σm
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as a permutation of m+n−1 objects; note that when n = 0 – we take Σ0 to be the
singleton – this amounts to the restriction of a permutation. The associativity and
unit conditions satisfied, Σ becomes an object in SetC. Σ is also a group object in
SetN (i.e. a group levelwise) and the composition maps are equivariant, whence Σ

becomes a group object in SetC.

Proposition 1.8. SetS is isomorphic to SetΣ, the category SetC-objects
equipped with a Σ-action, and Σ-equivariant maps between them.

This is instantaneous from the definitions; the Σ-action supplies (and is supplied
by) the requisite shuffling of prni labels.

Remark 1.9. Σ can also be thought of as a monad (Σ, ι, ◦) on SetN: SetN
Σ−→

SetN is given by Xn 7→ Σ × Xn, ι by the inclusion of the identities in Σn, and
◦ is induced by multiplications. The monads C and Σ interact well: there is a

natural transformation CΣ
`−→ ΣC satisfying the identities for what Beck calls a

distributive law of Σ over C (see [1] p.120). The action of ` is best described in
words: an element of (CΣX)n is a compositional tree of degree n whose vertices
of valence k are decorated by pairs consisting of a function symbol from Xk and a
permutation of k objects. Perform that permutation of valence edges (i.e. the edges
save the one that goes towards the root – the root itself having only valence edges).
This results in a tree whose prni labels have become permuted, i.e. an operadic
tree of degree n decorated by X∗. But that can be identified with an element of
(ΣCX)n.

It is a purely formal consequence of this distributivity that SetS can be equiva-
lently defined as Σ-objects in SetC, as algebras over a certain composite triple with
functor part ΣC, or as a lifting of the monad C into the category of Σ-algebras (the
lifting uses the natural transformation `). One way or another, these tautologies
are reflected in any definition of operads.

Cyclic operads. This important class was introduced by Getzler and Kapra-
nov in [4], and has been aptly described by Voronov as “operads that cannot tell
input from output”. It amounts to dropping the criterion that the ordering around
each vertex have the edge emerging towards the path as the first ; also, for book-
keeping, it is best to add an extra edge to the root – its output.

More precisely, recall the definition of a rooted tree as a finite, loop-free, con-
nected graph with a distinguished vertex. Add to each rooted tree another edge,
one endpoint of which is the root and the other one a new vertex which we name
the exceptional vertex. Also, assign an ordering to the edges around each vertex.
This defines the set of cyclic trees. (This concept of tree will not be used after this
subsection. Note, in particular, that the tree consisting of a single vertex – the root
– is not cyclic.)

A cyclic tree of order n decorated by X∗ ∈ SetN is a cyclic tree whose vertices
have been assigned labels as follows:

(i) The exceptional vertex receives a unique label, prn0 .
(ii) Exactly n vertices are assigned labels of the form “prni ”; they must be

terminal vertices. Each such label occurs exactly once for i = 1, 2, . . . , n.
(iii) Other than those of type (i) and (ii), a vertex with k adjacent edges must

be assigned an element of Xk.
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One could now define an endofunctor O : SetN → SetN as usual and show it to
be part of a monad – the point being that a cyclic-tree-of-cyclic-trees “unpacks” to
a cyclic tree. But we prefer to give a description that does not change the notion
of tree and is in line with the previous points about Σ.

The group object Σ+. Let Σ+ ∈ SetN have Σn+1 – thought of as permuta-
tions of {0, 1, . . . , n} – in degree n. Σ+ is a compositional algebra; the structure

map CΣ+
ξ−→ Σ+ is defined as follows: given a compositional tree τ decorated by

Σ+, adjoin a new edge to the root – that edge is to precede all the others, leav-
ing the rest of the ordering of edges around the root intact – and label the other
endpoint of the new edge (the “exceptional vertex”) with the symbol prn0 .

Ignoring vertices labeled with “prni ”, any vertex where k edges meet is decorated
by an element σk of Σk. Label the edges 0, 1, . . . , (k − 1) in their given order (0
therefore emerges towards the exceptional vertex) and perform σk on the names,
i.e. re-label the edges.

Repeat this, locally, about each vertex. (Most edges possess two names, one
“seen” from each endpoint, and they each will be subject to repermutation just
once.)

There exists an ordering of vertices on the relabeled tree as follows: there is
a unique directed path from the root to any vertex. This path can be identified
with the string of edge-labels encountered;5 apply lexicographic ordering to these
strings.

In particular, the order of the labels prn0 ,prn1 , . . . ,prnn defines an element of
Σn+1, and that is the value of ξ(τ).

The (levelwise) group structure of Σ+ makes Σ+ into a group object in SetC;
that the structure maps are equivariant is clear. One can now define cyclic operads
(in Set) to be the category of SetC-objects with Σ+-action.
Question. What is the type of category naturally associated to a cyclic operad?

Proposition 1.10. There exists a map of group objects in SetC, Σ→ Σ+.

It is induced by the inclusion {1, 2, . . . , k} ⊂ {0, 1, 2, . . . , k} levelwise (thinking
of Σk as permutations of the former set). Indeed, thanks to the fixed location of
the 0-labeled edge, this just reduces to the definitions; the map is the inclusion of
a group subobject.

Of course, this also defines Σ+ as an operad. Σ+ enjoys the same distributivity
over C as Σ.

More general coefficient categories. It is easy to identify those features of
Set that made its role possible. Starting with the easiest case, the free compositional
structure functor, C can be written as

X∗ ∈ SetN 7−→ {n 7→
∐

τ∈Compositional trees
deg(τ)=n

X|v1| × X|v2| × · · · × X|vk|} ∈ SetN

where vi are the vertices of τ (recall they carry a canonical order) and |vi| is the
valence of vi and, by definition,

X|vi| =

{
{∗} if the vertex vi is labeled with a prni
X|vi| otherwise

5The first edge is seen as issuing from the root and so on; there is no ambiguity.
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for a fixed singleton {∗}. (Note that, from here on, vertices of trees are not deco-
rated by members of sets – save for the possible exceptional labels prni on terminal
vertices.)

The definition makes sense, in place of 〈Set ,×, {∗}〉, for any monoidal category
〈M,⊗, I〉 with countable coproducts (fix some particular functor computing the

k-fold tensor product for each tree). The natural transformation CC
µ−→ C exists

provided ⊗ commutes with coproducts, i.e. the canonical maps∐
(Y ⊗Xi) −→ Y ⊗ (

∐
Xi)∐

(Xi ⊗ Y ) −→ (
∐

Xi)⊗ Y
(1.2)

are isomorphisms; the monad multiplication for Set-trees provides the reindexing of
terms for the iterated coproduct. Identifying the symmetric group with a co-power
of the unit object, Σn =

∐
σ∈Σn

I ∈ M, Σ and Σ+ become group objects provided

M is symmetric monoidal, allowing the definitions of operad and cyclic operad to
be extended to M.

The natural guess to extend L to a monoidal category 〈M,⊗, I〉 would also be

X∗ ∈MN 7−→ {n 7→
∐

τ∈Lawvere trees
deg(τ)=n

X|v1| × X|v2| × · · · × X|vk|} ∈ M
N

where vi are the vertices of τ in order, |vi| is the valence of vi and, by definition,

X|vi| =

{
I if the vertex vi is labeled with a prni
X|vi| otherwise.

Note, however, that under µ I is to become the target of canonical maps from any
object ofM. One does not expect this to happen unless I is a terminal object and
⊗ is in fact categorical product in M. Under these conditions and (1.2), Lawvere
structures can be defined by the above.

Coequalizers. The following observation relies, ultimately, on the fact that
our structures have only finitary operations:6

Proposition 1.11. Suppose − ⊗ − commutes with filtered colimits; then C

(L, or the free operad functor, or the free cyclic operad functor) preserves filtered
colimits.

Proof. Colimits in MN are computed levelwise; coproducts commute with
colimits. Given the form of the free structure functors, the claim reduces to the
following: for a filtered diagram D and functors Fi : D → M, i = 1, 2, . . . , k, the
canonical map

colim
D

(F1 ⊗ F2 ⊗ . . .⊗ Fk)→ (colim
D

F1)⊗ (colim
D

F2)⊗ . . .⊗ (colim
D

Fk)

is an isomorphism. Indeed, “interpolate” between the two sides by

colim
D×D×···×D

F1 ⊗ F2 ⊗ . . .⊗ Fk

6As far as the desired conclusion is concerned – that colimits exist in the category of C-

algebras or L-algebras – weaker constraints on the structure suffice, such as the free algebra
functor preserving κ-filtered colimits for some regular cardinal κ. All hypotheses cannot be

dropped; indeed, there exist monads over complete and cocomplete categories whose category of

algebras possesses no colimits (cf. [2]).
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the colimit over the tensor product of all the diagrams Fi : D→M. The canonical
map

colim
D

(F1 ⊗ F2 ⊗ . . .⊗ Fk)→ colim
D×D×···×D

F1 ⊗ F2 ⊗ . . .⊗ Fk
induced by the diagonal D→ D×D×· · ·×D is an isomorphism since this diagonal
is final (see [11]) in the filtered diagram D×D× · · · ×D, and the canonical map

colim
D×D×···×D

F1 ⊗ F2 ⊗ . . .⊗ Fk → (colim
D

F1)⊗ (colim
D

F2)⊗ . . .⊗ (colim
D

Fk)

is an isomorphism by iterated evaluation of the colimit and the hypothesis on ⊗. �

Let now C be a category and T a monad on C. It is quite easy to show – see [2]
– that if C has colimits of certain types of diagrams (e.g. filtered) and T preserves
those, then CT possesses colimits over those diagrams, and they are preserved by
the forgetful functor.

A coequalizer is reflexive if its parallel morphisms possess a common section;
hence it is the colimit of a filtered diagram. Recall, finally, the following classical
theorem of Linton [10]:

Theorem 1.12. Suppose that CT has coequalizers of reflexive pairs, and in
addition suppose that C has finite (countable, all) coproducts. Then CT has finite
(countable, resp. all) colimits.

In practice one verifies the hypothesis of (1.11) by noting that −⊗− has right
adjoints; it follows that M-structures such as MC, MS, ML possess the colimits
that M does.

Enrichments. (See [7] or [2] vol.II. for general background on enriched cate-
gory theory.) Suppose thatM is closed (symmetric, cartesian) monoidal, therefore
enriched over itself. This adds an extra layer of structure, as C,L, etc. can be made
intoM-monads, and the corresponding categories of structures intoM-categories.

CC(X∗, ξ) and CS(X∗, ξ) (for X∗ ∈ MC and MS, resp.) become M-tensor
categories in the obvious sense. However, for CL(X∗, ξ) to be an M-category
where “[n]” is the nth M-category power of “[1]” some extra condition is needed,
such asM being complete and cocomplete; see [8] for comparisons of ordinary and
enriched limits.

The reason for not dwelling on these points at length is that in many cases
an operad parametrizes an “up to homotopy” structure, and morphisms of interest
between operads should allow for deformations of these structures. Such mapping
spaces differ from the one above.

Models of structures. This paper is concerned with structures and how they
may be described; still, a paragraph must be spent on what structures are for.
Lawvere’s equational theories are traditionally said to possess models, while operads
(and monads in general) have algebras. Ignoring cyclic operads for the time, there
are two approaches:

(i) Let theM-category C be such that it is possible to associate to X ∈ obM
End(X) ∈ ML or MS or MC, respectively. (The canonical examples
are: in the compositional case, let C be a monoidal M-category; in the
operadic case, a symmetric monoidal M-category; in the Lawvere case,
an M-category where M-cartesian products exist.) For some S∗ ∈ ML,
X becomes a model of S under anML-map S∗ → End(X), and similarly
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for the other cases.7 It is usually prescribed that pr11 ) be sent to the

identity.
(ii) Under slightly more restrictive conditions on C, one may show that the

functor defining S-structures is monadic, and even give an explicit form of
the free S-model functor and monad multiplication. For S∗ ∈ MC, given
that C is a tensored M-category, FS on objects of C is

(1.3) X 7→
∐
n∈N

Sn ⊗X⊗n

For S∗ ∈ MS, given that C is a tensored M-category and M× C ⊗−→ C
preserves (enriched) colimits (such is the case e.g. when M is complete),
FS can be written on objects

(1.4) X 7→
∐
n∈N

colim
Σn

Sn ⊗X⊗n

where the action of Σn on X⊗n is by permutation, and on Sn comes from
the Σ-action that is part of the definition of an operad.

When both approaches apply, they yield equivalent (not necessarily isomorphic)
categories of models.8

For a Lawvere theory, the free T -model monad does not seem to allow “closed”
formulas analogous to (1.3) or (1.4), save for special cases such as Set (more gen-
erally, a Grothendieck topos).

Question. It was completely understood in the 60’s when a functor F : C → D
is monadic that is, up to equivalence (or isomorphism) the forgetful part of a free
T-algebra adjunction. The answer was quickly extended to enriched categories; for
D = Set , one can characterize those monads intrinsically that arise from Lawvere’s
algebraic theories (see [2] vol.II.). But, for suitable C and D, when is a monad
operadic (or compositional)?

Returning to the case of an algebraic theory T ∈ SetL, it is easy to see that
T (considered as a category with objects “[n]”) is equivalent to the dual of the full
subcategory of its Set-models whose objects are the free T -models on finite sets.
In a way, the “coefficients” of T (i.e. the morphisms T ([n], [m])) are determined by
the free model monad.

Question. Are the coefficients of an operad (or compositional structure) de-
termined by the free model monad?

7Equivalently, one may think of this as associating a category of the type of CL, CS, or CC

to X ∈ obM – functorially, presumably – and the structure map exists as a functor between such

categories. E.g. classically a model of a Lawvere theory T , thought of as a category whose “[n]”

object is the nth power of “[1]”, is a product-preserving functor into a category C (usually, Set).
8Following Smirnov, [3] defines operads as monoids in a certain monoidal category of “S-

objects”; correspondingly, [14] defines algebras for an operad, in slightly more generality, as
objects in a category equipped with a suitable monoidal action. These definitions are monadic
and all coincide iff free monoid objects exists iff an expression like (1.4) makes sense. Whichever

way, it is possible to enrich the category of models over M as well, and to construct colimits in a
manner analogous to the case of categories of structures. For algebraic categories over Set – such

as monoids or groups – there are well-known explicit constructions of coequalizers as equivalence
classes of terms. For examples involving operads, see [3] or [14].
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In view of the provocative analogy between formal power series and (1.3), and
divided power series and (1.4), the question may be phrased: can one recover – up
to uniqueness of the suitable kind – the Taylor expansion of a functor, if it exists?

ForM = C = Set , an affirmative answer was given by Joyal in his investigation
of foncteurs analytiques and espècies, cf. [5].

2. Relaxing presentations

This is an attempt to examine, within the context sketched above, how “strict”
notions (equality, isomorphism...) mutate to “lax” ones (isomorphism, equivalence)
upon passing from Set-based structures to ones in Cat . This would probably stay a
fringe phenomenon in higher-order logic if the combinatorics and geometry involved
did not extend its interest.

The heuristics follow. Consider some category SetT of structures over Set , such
as the ones encountered so far; write T for the free structure functor as well. Con-
sider some S∗ ∈ SetT (we will take S∗ to be monoids as a compositional structure

momentarily) and a presentation of S∗ as a coequalizer TR∗ ⇒ TG∗ → S∗ in SetT ,
R∗ and G∗ assumed finite. It is usually not the case that, on applying the forgetful
functor U : SetT → SetN, the diagram UTR∗ ⇒ UTG∗ → US∗ is still a coequalizer
in SetN.9 It is, however, when the coequalizer TR∗ ⇒ TG∗ → S∗ is reflexive.

For such a presentation, TR∗ ⇒ TG∗ is a (reflexive) graph in each degree.

Moreover, it is an object of RGrphT , T -structures in the category of reflexive, di-
rected graphs, structure maps coming from the ones on its vertices and edges. The
term “relaxation” refers, quite simply, to thinking of the n-ary operation (some
composite of the R∗) that used to be responsible for identifying two operations
(composites of the generators G∗) only as a mere natural transformation or homo-
topy or deformation between them.

By assumption, (UTR)n ⇒ (UTG)n → (US)n is a coequalizer in Set , hence
connected components of the graph (UTR)n ⇒ (UTG)n correspond to operations
in Sn. One can associate what might be called a coherent structure to this graph: if
two vertices (“operations”) are linked by a directed path, connect them by a unique
edge (“natural transformation”). This gives a category (poset, even) levelwise and,

tautologously, an object of CatT , a T -structure in the category of small categories.

Call it S
(1)
∗ . Note the property models of S

(1)
∗ possess: if two n-ary functors in the

structure are connected by a chain of structural natural transformations, then they
are connected by a canonical one; the composites of canonical natural transfor-
mations are again canonical, and operations of different arities are linked by those
“vertical” compositional and substitution maps that are part of the definition of
any T -structure.

If S
(1)
∗ permits a finite presentation in CatT , the procedure can be iterated:

the formal properties of Set used above10 are inherited by category objects in Set ,
that is, Cat , whence inherited by category objects in Cat , and so on.

Observe the following:

9It is for the canonical presentation TTS∗ ⇒ TS∗ → S∗ which is split hence absolute, i.e.
remains a coequalizer under the application of any functor. However, the canonical presentation

just about always involves infinitely many generators and infinitely many relations.
10The formal properties referred to are those of any topos – even less would suffice – save

that the notion of finitely presented requires suitable reformulation.
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• Relaxation is not functorial in the structure. It is functorial in a presen-
tation of the structure.

• An identity between two operations becomes relaxed into an “arrow” – a
(higher) natural transformation, not necessarily assumed an isomorphism.
The direction of this arrow is itself subject to choice; this fact corresponds
also to the involutions existing in n-categories (see below)

• A priori, the n-fold relaxation of a Set-structure is a structure with co-
efficients in Ehresmann’s n-dimensional categories, usually denoted catn

and called cubical. More closely, however, the coefficient is a reflexive
graph object in the category of reflexive graph objects in the category of
reflexive ... in Set .

Here, for any category C, the category of reflexive graphs in C is,
by definition, the functor category Fun( •

$$
88 ?oo , C) where the indexing

diagram •
s
''

t

77 ?ioo is a category with two objects and three non-identity

arrows, with composition si = ti = id?. RGrph is reflexive graphs in
Set (note that they are automatically directed), and define RGrphn to be
reflexive graphs in RGrphn−1. Objects in RGrphn form special kinds of
“pasting diagrams” and may be called “spherical”.

• If successive relaxations S
(0)
∗ = S∗, S

(1)
∗ , S

(2)
∗ , S

(3)
∗ , . . . exist, they give

the data for a topological T -structure (e.g. operad) having a finite CW-
complex in each degree; at each stage, an operation in S∗ becomes replaced
by a contractible CW-complex.

The following example – which is the simplest non-trivial one – may put some
old objects in a new light.

Monoids, associahedra, Laplaza’s coherence theorem. Consider the
structure “unitless, associative monoid” as an object in SetC (as it in fact can
be described by purely compositional identities). The usual presentation – a bi-
nary pairing (−,−) subject to ((−,−),−) = (−, (−,−)) – is not reflexive, but
becomes one as soon as the generator (−,−) is included (tautologously) among the

relations.11 That is, consider the coequalizer in SetC

CR∗
s

⇒
t
CG∗ →M∗

where M∗ has a singleton in every degree≥ 2; G2 has a single pairing (−,−) but
G∗ ∈ SetN is empty otherwise; and R∗ ∈ SetN is non-empty in degrees 2 and 3 only,
having one operation denoted {−,−} and [−,−,−] each, with {−,−} s7−→(−,−), {−,−} t7−→

(−,−), [−,−,−]
s7−→((−,−),−), [−,−,−]

t7−→(−,(−,−)) and section (−,−)
i7−→{−,−}.

(CR ⇒ CG)∗ ∈ RGrphC since limits in functor categories are computed
“pointwise”. (Here and in what follows, unless mentioned otherwise, the requi-
site monoidal structure on a category is the cartesian one.) Denote the reflexive

graph (CR⇒ CG)n by ~Kn.
Recall that the vertices of the Stasheff polytope Kn are labeled by full paren-

thetizations of n variables (i.e. elements of (CG)n), and edges correspond to single
applications of re-association. The edges may as well be thought of as directed, as

11In fact, any coequalizer can be changed into a reflexive one by a similar trick.
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prescribed by ((−,−),−) → (−, (−,−)). Under this interpretation, the 1-skeleton

of Kn is part of ~Kn; here is an illustration for n = 5:

tt

jj

��

WW

oo

JJ

OO

TT





jj ?? __ 44

__ ??

��

TT

KK SS

jj 44

Fig.2. The Stasheff polytope K5.

·((··)(··))

ss
·(·(·(··))) ·((·(··))·)

kk

��
·(·((··)·))

ZZ

·((·(··))·)oo

(··)(·(··))

HH

(·(··))(··)

OO

(·((··)·))·

VV

		

hh

((··)·)(··)

kk <<

((·(··))·)·

bb 33

(((··)·)·)·

bb <<

��

OO

(··)((··)·)

VV

JJ

OO

(·(·(··)))·

TT

((··)(··))·

kk 33

Fig.3. The graph ~K5. (There is also an “identity arrow” on each vertex.)
For readability, the outermost parentheses have been omitted from the labels.

Note that if the arrows are not isomorphisms, the commutativity of the pen-
tagonal faces of K5 does not imply the commutativity of the squares. The quadri-
lateral faces commute by functoriality: they reflect the fact that in case an ex-
pression allows more than one re-association, the order in which they are applied
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is irrelevant. (The three “extra” diagonals in ~K5 correspond to the composite
symbols [[−,−,−],−,−], [−,[−,−,−],−] and [−,−,[−,−,−]], leading from ((((−,−),−),−),−) to
((−,(−,−),(−,−)) etc.) Similarly for the higher-dimensional polytopes, and the hyper-
cubes embedded therein. Add, therefore, these commutativity conditions formally:

Proposition 2.1. The functor CatC → RGrphC induced by the forgetful
Cat → RGrph has a left adjoint F .

F is not given by just degreewise application of the free category functor; there
are constraints coming from the fact that the structure maps have to be functors.
Recall therefore the notion of a (reflexive) graph with commutativity conditions
(see e.g. [2]); it is simply 〈G,P〉 where G ∈ RGrph and P is a set {(P 0

λ ;P 1
λ)|λ ∈ Λ}

of pairs of paths in G s.t. P 0
λ and P 1

λ share their initial and terminal vertices.
Graphs with commutativity conditions form a category RGrphCom; a morphism of
graphs induces a morphism of paths which is required to take a distinguished pair

〈P 0
λ ;P 1

λ〉 into another distinguished pair. There is a functor Cat
U−→ RGrphCom:

for a category C, UC has the graph underlying C and as commutativity conditions,
(m1,m2, . . . ,mk;n1, n2, . . . , nl) for every pair of composable sequences mi and nj
in C whose composites coincide.

See [2] for a description of a left adjoint F ′ to U ; intuitively, F ′G is the quotient
of PG, the free path category on G, by the smallest equivalence relation containing
the given P.

Given S∗ ∈ RGrphC, suppose first that S0 = S1 = ∅; then FS∗ ∈ CatC has an
easy inductive construction. Set (FS)0 = (FS)1 = ∅. The induction hypothesis
is that (FS)i has been defined for i < n as F ′〈Si,P〉 for some commutativity

conditions P on Si. Consider now the structure map CS∗
ξ−→ S∗( ∐

τ∈Compositional trees
deg(τ)=n

S|v1| × S|v2| × · · · × S|vk|
)

ξ−→ Sn

where vi are the vertices of τ in order (skipping the ones decorated by prni ) and |vi|
is the valence of vi. Thanks to S0 = S1 = ∅, |vi| < n in the non-trivial cases, hence
the left-hand side may be considered as a category:∐

τ∈Compositional trees
deg(τ)=n

(FS)|v1| × (FS)|v2| × · · · × (FS)|vk|

Consider now, for some tree τ , a k-tuple of morphisms Ai
mi−→ Bi ∈ (FS)|vi|, i =

1, 2, . . . , k. By assumption, the morphism mi can be thought of as an equivalence
class of paths from Ai to Bi in S|vi|. Choose two paths p0

i , p
1
i representing mi,

i = 1, 2, . . . , k such that the p0
i have the same length for all i, and similarly for the p1

i .
Then the tuples (p0

1, p
0
2, . . . , p

0
k) and (p1

1, p
1
2, . . . , p

1
k) both represent (m1,m2, . . . ,mk)

in the product category (FS)|v1| × (FS)|v2| × · · · × (FS)|vk|. ξ maps paths as well;

add the commutativity condition
(
ξ(p0

1), ξ(p0
2), . . . , ξ(p0

k); ξ(p1
1), ξ(p1

2), . . . , ξ(p1
k)
)

to
Sn, for all trees and all such k-tuples of pairs. Define (FS)n as F ′Sn for the
commutativity conditions thus obtained. Composition of morphisms in F ′Si is
induced by concatenation of paths, hence ξ naturally extends to a functor. Degree
by degree, this defines FS∗ ∈ CatC.

The natural bijection CatC(FG∗, C∗) ∼= RGrphC(G∗, UC∗) is easy to construct,
using the same induction.
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The presence of constants or non-identity unary operations ruins the “arity
filtration” used above; but since it is not needed for the present application, the
proof of the general case of (2.1) is postponed till the end of this section.

The category Pos of posets is reflective in the RGrph; the reflector RGrph
coh−→

Pos is as follows: for G ∈ RGrph, coh(G) has the same vertices as G, and A ≺ B
for two vertices A,B iff there exists a (directed) path in G from A to B. coh() is a
left adjoint, but is easily seen to preserve finite limits; it follows that it induces a
functor RGrphC → CatC.

Let P∗ ∈ CatN have • → ?, the category with two objects and a single
non-identity morphism in degree 4, and be empty otherwise. Consider the two

maps CP∗ → (F ~K)∗ in CatC the first of which takes • → ? to the composite
(((−,−),−),−)→((−,(−,−)),−)→(−,((−,−),−))→(−,(−,(−,−))) and the second, to the com-
posite (((−,−),−),−)→((−,−),(−,−))→(−,(−,(−,−))). The following is our main applica-
tion:

Theorem 2.2. The diagram CP∗ ⇒ (F ~K)∗ → coh( ~K∗) is a coequalizer in

CatC.

This is Laplaza’s “coherence for associativity not an isomorphism” theorem [9]:
if in a compositional structure in some category monoidal over Cat (such as the
category of small categories itself) with pairing and re-association as encoded in
~Kn = (CR ⇒ CG)n, n = 2, 3 the single pentagonal relation P4 is satisfied, then in
fact the whole structure is coherent. The proof rests on the geometry of arrows in

(F ~K)n.

(F ~K)n contains n + 1 isomorphic copies of the category (F ~K)n−1, given by
components of its C-structure indexed by the compositional trees (prni labels omit-
ted)

... • ...

•

(the root being of valence n− 1; there are n− 1 trees of this type) and

...

•

•

and its mirror image. Call these maximal faces. Two maximal faces are either

disjoint, or meet in the image of a product of lower-dimensional ~Ki-cells.

Surprisingly, the fact that ~Kn can be realized on the n−3-sphere, with maximal
faces spanning n − 3-balls seems to be of limited help. Since the edges are not
assumed to be isomorphisms, much depends on their orientation; also note that

some diagrams in ~Kn commute by functoriality independently of the pentagon
condition. The key lemma is:

Lemma 2.3. Given vertices A,B,C in coh( ~Kn) s.t. A ≺ B and A ≺ C, there
exists a vertex D s.t. B ≺ D, C ≺ D and for any vertex X with the property that
B ≺ X and C ≺ X, D ≺ X.

If all of A, B and C lie in the same maximal face, so does D.
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This lemma is reminiscent of several “normal form” theorems in logic and
recursion theory, saying that if an expression (i.e. A) can be changed into non-
equivalent forms (B and C) by permissible moves (sequences of re-associations, i.e.
an edge path), then those expressions may again be changed by permissible moves
into an equivalent form, which is in fact initial or “minimal” with this property.

In the present case, the moves (i.e. shifts of parenthesis) getting from A to D
is the union of the moves from A to B and from A to C; the reader is spared the
details, but see [9].

Observe now that the coequalizer of CP∗ ⇒ (F ~K)∗ can be computed, thanks
to the absence of constants and unary operations, by degreewise induction; it is

a quotient of (F ~K)∗, i.e. F ′〈U(F ~K)n,P〉 for some larger collection of commuta-
tivity conditions P. Suppose that in degrees 0 ≤ i < n the coequalizer is in fact

coh( ~Ki) (the structure maps C coh( ~K∗)→ coh( ~Ki) are then uniquely determined).

The claim follows if it is shown that coh( ~Kn) = F ′〈U(F ~K)n,P〉 where the extra
commutativity conditions P state precisely that any two parallel morphisms within
the same maximal face are equal.

This follows by induction. For two verticesA,X in (F ~K)n, denote by dist(A,X)
the size of the longest composable chain of (non-identity) morphisms from A to X.
When there is no morphism from A to X, dist(A,X) is undefined; otherwise, it is

a finite number since (F ~K)n is finite and loop-free.

Given two parallel morphisms A
n

⇒
m
X, the induction is on dist(A,X). Factor

m,n as A
b−→ B

m′

−→ X,A
c−→ C

n′

−→ X respectively, where b and c cannot be
factored further (they therefore belong to the 1-skeleton of the Stasheff polytope
Kn). By Lemma 2.3, there exists a diagram

B

%%
m′

**A

b
::

c $$

= D // X

C

99

n′

44

It is easy to see that for n > 4, if there are two edges issuing from a vertex in Kn,
then they both belong to the same (not necessarily unique) maximal face or the
diagram guaranteed by Lemma (2.3) can be chosen to commute by functoriality.
At any rate, the lozenge marked with = commutes; observe that dist(B,X) <
dist(A,X), dist(C,X) < dist(A,X) and use induction. Finally, for dist(A,X) = 1,

the whole diagram A
n

⇒
m
X must belong to one maximal face. �

Proof of Prop.2.1 in the general case. Given G∗ ∈ RGrphC, suppose that
some commutativity conditions are added in each degree: {〈Gn,Pn〉|n ∈ N}. Note

that CG∗
ξ−→ G∗ defining G∗ as a C-algebra also induces certain maps(
〈G,P〉|v1| × 〈G,P〉|v2| × · · · × 〈G,P〉|vk|

) ξ
−→ 〈Gn,Pn〉

where the product on the left-hand side is computed in the category RGrphCom
(given by products on the underlying graphs and pairs of tuples of commutativity
conditions, as in (2.1)), by extending ξ to map paths. However, ξ may fail to be a
morphism in RGrphCom, i.e. it may fail to map pairs of paths distinguished in the
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product to distinguished pairs in Pn – because Pn does not contain enough such
“commutativity conditions”.

Collect the Pn into P =
∐
n∈N Pn and say that P is adequate if the induced ξ

is in fact a morphism in RGrphCom; whence {〈Gn,Pn〉|n ∈ N} becomes an object
in RGrphComC. Observe:

• There is at least one adequate P.
Indeed, add all possible commutativity conditions to each Gn.

• If the sets Pλ, λ ∈ Λ are all adequate, so is
⋂
λ∈Λ Pλ.

(The intersection still has the requisite closure property.)
• There is only a set of possible adequate P.

Indeed, all our graphs are assumed small.

Let now Pmin be the intersection of all adequate sets of commutativity conditions.

Define (FG)n to be F ′Gn (recall F ′ is the left adjoint to the forgetful Cat
U−→

RGrphCom). F ′ also preserves finite limits, so 〈G∗,Pmin
∗ 〉 that was by construction

a compositional structure in RGrphCom gives rise to (FG)∗ ∈ CatC. Adjointness
follows by the choice of Pmin. �

Why operads? This essay intended to present operads within a spectrum
of algebraic structures, from compositional (with its extremely limited syntax) to
equational varieties that encompass much of actual algebra. (But not all, by far;
the theory of fields is already not equational.) Obvious applications where the Σ-
action plays a role, such as the permutohedron or permutoassociahedron [6] must
be left for a future paper. But it is easy to see why the considerations of the second
section do not extend, e.g. to Lawvere theories. The problem is when a defining
identity is between two operations of unequal arity; for example, the axiom for
the inverse xx−1 = 1 in groups connects a unary operation with a constant. The
“recipe” given for relaxing a presentation only relaxes n-ary relations between n-ary
operations, leaving others strict. It would be interesting, and perhaps important,
to understand what (if any!) the broadest class of universal algebraic structures
is that allows well-behaved relaxation from Set to Cat and even further, “up to
homotopy”.
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