
SHEAFIFIABLE HOMOTOPY MODEL CATEGORIES

TIBOR BEKE

Abstract. If a Quillen model category can be specified using a certain logical syntax
(intuitively, “is algebraic/combinatorial enough”), so that it can be defined in any category of
sheaves, then the satisfaction of Quillen’s axioms over any site is a purely formal consequence
of their being satisfied over the category of sets. Such data give rise to a functor from
the category of topoi and geometric morphisms to Quillen model categories and Quillen
adjunctions.

Introduction

The homotopy model category of the title refers to the (“closed”) model categories of
Quillen [36]. The intended meaning of sheafifiable is best illustrated by some examples:

Example 0.1. (simplicial sheaves)
Quillen’s homotopy theory of simplicial sets can be extended to simplicial sheaves over a
site (i.e. category C with a Grothendieck topology J) as follows. Choose the cofibrations to
be the monomorphisms. Given a choice of local basepoint for X ∈ Sh(C, J ; SSet), one can
construct a sheaf of homotopy groups over the basepoint. See the details in Jardine [25]. A
weak equivalence is a map that induces isomorphisms on the homotopy sheaves for arbitrary
local basepoints. This fixes the data for a Quillen model category, which is in fact simplicial
and proper.

Example 0.2. (simplicial objects in a topos)
A topos is a category equivalent to the category of sheaves on some site; so a category
of simplicial sheaves is a category of simplicial objects in a topos. In 1984, A. Joyal [29]
extended Quillen’s homotopy theory of simplicial sets to simplicial objects in a topos E as
follows: for X• ∈ E∆op

, its homotopy groups can be constructed — by purely categorical
operations in E — as objects (with algebraic structure) over X0. Let a weak equivalence be
a morphism X• → Y• for which the induced squares

πn(X•)

��

// πn(Y•)

��

X0
// Y0

are pullbacks. The rest is as above.

It is not hard to see that the two constructions prescribe identical homotopy model struc-
tures for the same category. For any topos E, there exist many (in fact, a proper class) of
sites whose categories of sheaves are all equivalent to E; Joyal’s result contains the additional
information that to all such sites, Ex. 0.1 associates the same homotopy theory. (Historically,
Ex. 0.2 preceded Ex 0.1; a detailed reworking of Joyal’s proof appears in Jardine [26].)
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Example 0.3. (simplicial rings)
Quillen [36] proves that the category of simplicial rings possesses a homotopy model struc-
ture; the forgetful functor SRing → SSet detects weak equivalences and fibrations. He leaves
open the question whether the same is true for sheaves of simplicial rings. The answer is
affirmative: if Ring(E) denotes the category of ring objects of a topos E, then with the
help of the canonical forgetful functor Ring(E) → E one can endow SRing(E) with a model
structure. The remark in the paragraph following Ex. 0.2 applies here as well: since E∆op

carries an intrinsic homotopy structure (i.e. independent of having chosen a site for E first),
the same is true for SRing(E).

Example 0.4. (small categories and categorical equivalences)
There is a “folk model structure” on Cat , the category of small categories: the weak equiv-
alences are the functors that induce an equivalence of categories, and the cofibrations the
functors that are injective on objects. Joyal and Tierney [30] proved that (internal) category
objects of any topos carry a homotopy model structure with weak equivalences those func-
tors that are (in the internal sense) full, faithful and essentially surjective, and cofibrations
those functors that are monos on the object part. (In the topos of sets, this specializes to
the case of Cat mentioned above. It is distinct from the homotopy theory of Cat introduced
by Thomason [43] — which, incidentally, sheafifies as well.)

Observe that in each case

(1) One takes as granted a homotopy theory of structured sets, and attempts to build
one for sheaves of such structures. The passage is not arbitrary; for example, weak
equivalences in the latter are locally weak equivalences in the former.

(2) The homotopy structure is functorial in the topos, not merely in the site defining the
topos. (This is the difference between Ex. 0.1 and 0.2.)

(3) If E
f−→ F is a topos morphism1, then the inverse image functor f ∗ preserves the

weak equivalences and cofibrations of the homotopy model structure associated to F,
and induces a Quillen adjoint pair between the corresponding model categories. In
particular, the “stalk” at a point Set → F is the set-based homotopy model category
one started with; so, in this sense, one may think of the structure F is endowed with
as a “sheaf of homotopy theories with constant stalk”.

(4) The homotopy model categories in question are all cofibrantly generated.

Outline of this paper. It is not hard to find a precise sense of what was loosely referred to
above as “structured sets” and “sheaves of such structures”, and to guess what additional
criteria the weak equivalences and cofibrations should satisfy if (3) is desired. As to (4),
in the present context it rests on a theorem of Jeffrey Smith that promises to be valuable
in the study of set-theoretically well-behaved Quillen model categories; see Thm. 1.7. The
main result of this paper, 2.8, is a meta-theorem to the following effect: if the ingredients
of a homotopy model category are given by suitable data so that they can be interpreted in
any topos, and over Set it does satisfy Quillen’s axioms, then it does so (functorially) in any
topos. There are mild conditions on the syntax, and a single (annoying) set-theoretical one:
cofibrations have to be generated by a set.

1Throughout this article, topoi and their morphisms are understood in the sense of Grothendieck. Every
topos is a U -topos for a fixed universe U whose elements are called simply sets.
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We give six instances of the main result, some known, some new. Perhaps it is worthwhile
to point out that the known cases had been obtained through independent and fairly labori-
ous methods. The goal here is to invest enough labor so that what is tautological becomes
visibly so.

Two corollaries may deserve attention: the existence of Quillen model categories on simpli-
cial objects in a topos with the class of cofibrations smaller than all monos (Example 2.17),
and existence of the unbounded derived category of any Grothendieck abelian category
(Prop. 3.13). This latter fact is certainly folklore, but the proof via presentable model
categories makes localization arguments easier as well.

Motivation. Perhaps it is useful to devote a few paragraphs to sketching how a topos
may be thought of as a geometric object, and why (and when) it is worthwhile to do so.
This is independent of the technical content matter of the paper, and readers acquainted
with Grothendieckian sheaf theory should skip to the next section.

Many types of geometric objects — manifolds, orbifolds, algebraic spaces, schemes —
are locally isomorphic to a fixed collection of distinguished models, and the chief strength
of sheaf theory is to make this precise and to classify the extent to which such geometric
objects may be non-isomorphic globally. Grothendieck observed that in many cases, the
natural notion of morphism between geometric objects leads to one and the selfsame kind
of adjunction between their associated categories of sheaves. He suggested that topological
(homotopical) invariants be thought of as belonging to the abstract category of sheaves (the
topos), functorially in topos morphisms, rather than to the chosen representation in terms
of a site associated to the geometric object. There are fruitful aspects of this point of view.
An invariant constructed from a topos will have avatars in many contexts, and several global
properties of the category of topoi — for example, analogues of compactness, mapping spaces
and classifying spaces — indeed make them similar to “spaces”. There are also drawbacks,
notably the lack (to date) of any “cellular” or “skeletal” or “dimension-theoretic” approach
to an abstract topos, though these are often the tools used to break up and understand a
geometric object. (Instead, one may try to replace an unwieldy topos by a more combi-
natorial structure with isomorphic invariants; for example, a pro-simplicial set or sheaves
on a simple Grothendieck topology, such as a poset.) But there is another, distinctly post-
Grothendieckian approach, which sees any category of set-valued sheaves as very similar in
some formal properties to the category of sets. Consequently the homological (homotopical)
algebra of sheaves of structures — through which one hopes to capture invariants of the topos
— ought to be similar in some formal aspects to plain homological (homotopical) algebra
with no Grothendieck topology in sight. The onus is on making precise the qualifier “some”.
Let us believe that Quillen’s axioms provide an adequate calculus for homotopical manip-
ulations. The question I sought to answer was: what formal properties should a homotopy
theory satisfy if one wishes to “lift” it into any category of sheaves as functorially as the
homological algebra of R-modules can be lifted? Note that the topos realm has proven to be
a fertile ground for finding cohomological functors (which ought to be thought of as just a
part of homotopy theory) with prescribed properties. This note, however, is only concerned
with a foundational outlook.

Machinery. The seeds of the techniques that provide an answer to the motivating question
were sown (with the exception of coherent logic) by Grothendieck’s school, but matured only
later. The Makkai–Paré [34] theory of accessibility is both a simplification and a far-reaching
extension of the notion of π-accessibility (possibly the most technical part of SGA4). See the
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introduction to [34] for a full discussion of the prehistory. The concept of locally presentable
category was isolated by Gabriel and Ulmer by pondering localizations of abelian categories
and sheaf reflections; cf. esp. Ulmer [44]. Both of these are, ultimately, set-theoretical notions
that allow one (in the present context) to treat with ease arbitrary sites, even those lacking
finiteness properties, points etc. As to the deployment of mathematical logic, exotic as it
may seem in a paper devoted to abstract homotopy theory, it is useful for two reasons. First,
it allows one to parametrize formal homotopy theories that have the right functorial behavior
without lapsing into vagueness as to what constitutes a “structure” or a “correct definition”.
(For example, between the two ways of saying that a functor induces an equivalence of
categories — namely, that it has a quasi-inverse, or that it is full, faithful and essentially
surjective, cf. Ex. 0.4 — the difference is precisely that the second one proceeds within the
language of limits and colimits of graphs while the first one doesn’t: it mentions there exists
a functor that is a quasi-inverse. . . ) Secondly, one has powerful theorems to the following
effect: if a mathematical statement, formulated within the bounds of a specific logical
syntax, holds for structured sets then it holds for like structured objects of any topos. These
theorems are essential to the main Thm. 2.8. Further comparisons with existing work are
given in the text in the form of remarks which, I hope, do not distract the reader.

Omissions. Theorem 2.8 engulfs motivating examples 0.2 and 0.4, but not 0.3. The reason
is that the case of the forgetful functor from simplicial algebraic theories to the underlying
objects, and many other such right adjoint situations, demand a slightly more involved
treatment, purely by virtue of the more complicated description of cofibrations. They are
grouped together in the main theorem of [6], part of which is concerned with setting up a
logical background that permits arguments similar to e.g. Cor. 2.14.

Also, this paper is concerned solely with structures (in the sense of footnote 5) whose
coefficients are constant, i.e. come from the base topos Set . Thus, the results would apply to
the category of R-modules in a topos if R is constant, but not to an arbitrary ringed topos.
Many of the most interesting topos-theoretic Quillen model categories take non-constant
parameters; for example, Voevodsky’s I-local homotopy theory of simplicial objects, where
I is an “interval object” in the topos, or G-equivariant simplicial objects, where G is a (not
necessarily constant) simplicial group. The mixture of set-theoretic and logical tools used in
this paper is robust enough to apply to such situations, but pursuing just those two threads
is probably more important than a bid at all-encompassing generality.

Acknowledgments. I’d like to thank Michael Makkai and Jǐŕı Rosický for making them-
selves accessible, Phil Hirschhorn and Charles Rezk for being model correspondents, and
Ieke Moerdijk and Jaap van Oosten for being very logical. My debt to Jeff Smith and Dan
Kan is so great that it needs a sentence of its own.

At the referee’s suggestion, background material on formal homotopy theory and on cat-
egorical logic is given in the body of the text, rather than in an appendix. This makes for
quite a slow start in sections 1 and 2, but my guess is that each reader will be able to skip
a good half of the preliminaries — though possibly different halves.

1. Presentable homotopy model categories

Homotopy model categories. In this article, the terms Quillen model category and ho-
motopy model category will both refer to what Quillen [36] calls closed model category. (The
reason for dropping the qualifier “closed” is that the interference with closed category is
unfortunate, and the weaker “non-closed” axioms [36] will not be used.) Good introductions
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to the subject include Dwyer–Spaliński [16], Hovey [21] and Goerss–Jardine [18]. Quillen’s
axioms [37] are:

M1: C has finite limits and colimits.
M2: If f and g are composable morphisms in C, and if two of f , g and fg are weak equiva-

lences, then so is the third.
M3: A retract (in the category of morphisms of C) of a fibration, cofibration or weak equiv-

alence is respectively a fibration, cofibration or weak equivalence.
M4: Given the commuting solid arrow diagram

A
��

i
��

// X

p
����

B

l
>>}

}
}

}
// Y

with i a cofibration and p a fibration, if (i) p or (ii) i is a weak equivalence then a
lifting l exists making both triangles commute. (One also says, “i has the left lifting
property with respect to p” or “p has the right lifting property with respect to i” when
an l exists in every commutative square of this type.)

M5: Every morphism can be factored as (i) an acyclic cofibration followed by a fibration,
and also as (ii) a cofibration followed by an acyclic fibration.

(Co)fibrations that are also weak equivalences will be called acyclic (rather than trivial or
aspherical).

Quillen adjoint pairs. Let M, N be homotopy model categories and M
L

�
R

N an ad-

junction. The following three conditions are equivalent: (i) L preserves cofibrations and
R preserves fibrations (ii) L preserves cofibrations and acyclic cofibrations (iii) R preserves
fibrations and acyclic fibrations. HOMODEL is formed by the “class” of homotopy model
categories with these adjunctions as morphisms.2 By convention, the right adjoint gives the
direction of the arrow. (2-categorical aspects are ignored; note, in particular, that equiva-
lence of homotopy model categories in Quillen’s sense does not coincide with equivalence in
HOMODEL.)

Transfinite composition. Let C be a category and I a class of morphisms of C. A mor-
phism F (0) → colim F is said to be a transfinite composition of arrows in I if

• it is the part of a colimit cocone on F : α → C from F (0) to the colimit. Here α is an
ordinal (thought of as an ordered set, hence diagram) and 0 ∈ α its smallest element.

• F takes all successor arrows β ≺ β+ in α into a morphism of I,
• and F is continuous: for every limit ordinal β ≺ α, F restricted to the diagram {γ 4 β}
is a colimiting cocone in C on F restricted to {γ ≺ β}.

Definition 1.1. Let C be a cocomplete category, I any class of morphisms of C.
• Close the class of all pushouts of I under transfinite composition. This defines the class
cell(I) of relative I-cellular maps.

2Since a typical Quillen model category is not accessible, an extra Grothendieck universe is needed to
form HOMODEL. If one restricts to presentable homotopy model categories as below, then HOMODEL lives
in the same universe as TOPOI; both are subcategories of ACC, the Makkai–Paré [34] category of accessible
categories and functors.
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• The class cof(I) of I-cofibrations is defined as follows: X
c−→ Y ∈ cof(I) iff c is a

retract of an X
r−→ Z ∈ cell(I) in the category X/C of objects under X.

• I-fibrations, or I-injectives, denoted inj(I), are the morphisms with the right lifting
property w.r.t. I; that is, such that in any commutative square

•
i
��

// •
p

��

•

??

// •
with i ∈ I, p ∈ inj(I), a dotted lift making both triangles commute exists.

Remark 1.2. Morally, a Quillen model category C is cofibrantly generated if (it is cocomplete
and) the class of its cofibrations is of the form cof(I) for some set I, and its acyclic cofibra-
tions are cof(J) for some set J . The fibrations (resp. acyclic fibrations) must then be inj(J)
(inj(I), resp). The converse implication holds if the small object argument applies; and that
is the definition of cofibrant generation chosen by Dwyer–Hirschhorn–Kan [14], Hovey [21].
If a Quillen model category is locally presentable, as will always be in this article, it is co-
complete and the small object argument (and more) applies to any set of maps; hence, for
the purposes of this paper, cofibrant generation is the “moral” referred to above.

The transfinite small object argument. The inventor’s account (with a mild inaccuracy
related to not requiring a certain cardinal to be regular) is Bousfield [10]. The proof will be
quite abbreviated since so many versions are already in the literature; see e.g. Hovey [21]
(which builds on Hirschhorn [20] and Dwyer–Hirschhorn–Kan [14]) for full details. For
an introduction to the lore of locally presentable and accessible categories, see Adámek–
Rosický [1] or Borceux [8] vol.II.

Proposition 1.3. Let C be a locally presentable category and I a set of morphisms of C.
– Every m ∈ mor C can be factored as fc with c ∈ cell(I), f ∈ inj(I). The factorization
is not unique, but can be performed functorially.

– cof(I) is exactly the class of morphisms having the left lifting property w.r.t. all elements
of inj(I), and inj(I) is exactly the class of morphisms with the right lifting property w.r.t.
all elements of cof(I).

Proof. Define a functor Mor(C) F−→ C and natural transformations dom
Θ−→ F , F

Ψ−→ codom
(these being the domain resp. codomain functors) factoring the identity Mor(C) → Mor(C)
as follows. For a map X

m−→ Y of C, let S be the set of all commutative diagrams

A

i
��

// X

m
��

B // Y

such that i ∈ I, and AS → BS the coproduct of all these arrows i; AS comes with a natural
map to X. The value of F at m is the pushout of

AS

��

// X

BS
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with its natural induced map Θ(m) (resp. Ψ(m)) from X (resp. to Y ). Beginning with

F0 := F , Θ0 := Θ, Ψ0 := Ψ, build by transfinite induction a diagram of functors Mor(C) Fα−→
C and compatible natural transformations dom

Θα−→ Fα, Fα
Ψα−→ codom. For a successor

ordinal α + 1, Fα+1(−) := F (Ψα(−)), Ψα+1(−) := Ψ(Ψα(−)), Θα+1 := Θ(Ψα(−)) ◦ Θα.
For a limit ordinal α, Fα resp. Ψα, Θα are colimits along the chain β ≺ α. Let κ be a
regular cardinal greater than the rank of presentability of the domain of any arrow in I. The

requisite factorization of m is X
Θκ(m)−→ Fκ(m)

Ψκ(m)−→ Y . (Θκ(m) is a transfinite composition
of coproducts of pushouts of arrows from I, but a coproduct of arrows is a transfinite
composition of pushouts, and a transfinite composition of transfinite compositions is one
such again.) The second part of the claim follows by factoring any m ∈ cof(I) as fc with
f ∈ inj(I) and c ∈ cell(I), and noting that m has the left lifting property w.r.t. inj(I), in
particular, w.r.t. f , which entails that it is a retract of c of the type claimed.

Remark 1.4. For the proof to work, it is enough for C to be cocomplete and for the domains
X of the maps in I to be such that homC(X,−) commutes with transfinite compositions
of morphisms from cell(I) provided they are “long enough”. The assumption that C is
locally presentable is much stronger; for example, it implies the existence of a set of dense
generators. There exist cocomplete categories other than locally presentable ones where
every object X has a rank, i.e. hom(X,−) commutes with all κ-filtered colimits for some κ
depending on X (take e.g. free cocompletions of certain large categories). Finally, even such
categories as topological spaces or various topological spectra, where not every object has a
rank, may possess certain sets of morphisms I which “permit the small object argument”,
in the terminology of Dwyer–Hirschhorn–Kan [14], Hovey [21]. In our context of algebraic
models for homotopy types, however, local presentability is a convenient ground assumption.

Definition 1.5. (the solution set conditions)
Let C be a category, W a class of morphisms, m ∈ mor C. Say that W satisfies the solution
set condition at m if there exists a subset Wm of W such that any commutative square

• //

m
��

•
w
��

• // •
with w ∈ W allows to be factorized by a commutative diagram

• //

i
��

⋆

wm

��

// •
w
��

• // ⋆ // •
with wm ∈ Wm. Let I be a class of morphisms; W satisfies the solution set condition at I
if it satisfies it at each m ∈ I. If the solution set condition is satisfied for every m ∈ mor C,
say simply that W satisfies the solution set condition.

Remark 1.6. Let Mor(C) be the category of morphisms of C (maps in Mor(C) are commuta-
tive squares in C), and Mor(W) the full subcategory of Mor(C) whose objects belong to W.
Def. 1.5 is Freyd’s solution set condition for the inclusion functor Mor(W) ↪→ Mor(C). (Even
if W is a subcategory of C, the inclusion W ↪→ C will not be considered in this context, so
the terminology of Def. 1.5 should result in no confusion.)
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The following theorem was announced by Jeffrey Smith at the 1998 Barcelona conference
in Algebraic Topology. It greatly amplifies and simplifies results of Goerss and Jardine [17]
and the author [7]. I am indebted to him for explaining his proof, and for his permission to
reproduce it here.

Theorem 1.7. (J. Smith)
Let C be a locally presentable category, W a subcategory, and I a set of morphisms of C.
Suppose they satisfy the criteria:

c0 W is closed under retracts and has the 2-of-3 property (Quillen’s axiom M2).
c1 inj(I) ⊆ W.
c2 The class cof(I) ∩W is closed under transfinite composition and under pushout.
c3 W satisfies the solution set condition at I.

Then setting weak equivalences:=W, cofibrations:=cof(I) and fibrations:=inj(cof(I)∩W), one
obtains a cofibrantly generated Quillen model structure on C.

Proof. (J. Smith) The strategy is to exhibit a set J of morphisms such that cof(J) = cof(I)∩
W. From there, Quillen’s axioms follow in a well-known way. Two small object arguments
yield the factorization axiom M5; the part of M4 that is not the definition follows from
M5, M2 and the retract argument; M3 holds by the definition of (co)fibrations and c0;
finally, a locally presentable category is complete and cocomplete, so M1 is satisfied.

J itself will be constructed in two steps. Lemma 1.8 shows that if a collection J of
morphisms is “dense” between I and W, then cof(J) = cof(I) ∩W. Lemma 1.9, using c3,
constructs such a J that is only a set.

Lemma 1.8. Let J ⊆ cof(I) ∩W be a collection (set or possibly proper class) of maps in C
such that for any commutative square

•
i
��

// •
w
��

• // •
with i ∈ I, w ∈ W there exists j ∈ J that factors it:

• //

i
��

⋆

j
��

// •
w
��

• // ⋆ // •
Then any f ∈ W can be factored as hg with g ∈ cell(J), h ∈ inj(I).

Corollary. Under the assumptions of the previous lemma, cof(J) = cof(I) ∩W.
Proof of the corollary. cof(J) is the saturation of J under pushout, transfinite composition

and retracts, J ⊆ cof(I)∩W and cof(I)∩W is supposed to be closed under these operations,
so cof(J) ⊆ cof(I) ∩ W. Conversely, consider any f ∈ cof(I) ∩ W and write it f = hg as
above. Since f ∈ cof(I) and h ∈ inj(I), f is a retract of g (in the category of objects under
the domain of f). So f ∈ cof(J).

Proof of Lemma 1.8. This is rather like the ordinary small object argument, save that one
glues on the “interpolating” maps J instead of the I. More precisely, we wish to build by
transfinite induction on λ certain factorizations

X =: P0 → P1 → . . . → Pα → Pα+1 → . . . → Pλ
hλ−→ Y
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of f such that (this is the induction hypothesis) the diagram P0 → . . . → Pλ is a continuous
composition of maps belonging to cell(J). Thence the composite itself will belong to cell(J).
Since cell(J) ⊆ W and f ∈ W, the 2-of-3 property of W implies that hλ ∈ W.
Set P0 := X, h0 := f . At a successor stage, let Sλ be the set of all commutative squares

A //

i
��

Pλ

hλ

��

B // Y

with i ∈ I. The density assumption on J means the existence of a factorization

• //

i

��

As

js
��

ts
// Pλ

hλ

��

• // Bs
// Y

with js ∈ J , for each square s ∈ Sλ. Let Pλ+1 be the pushout⨿
As

//

⨿
js

��

Pλ

��⨿
Bs

// Pλ+1

along the canonical
⨿

s∈Sλ
As

{ts | s∈Sλ}−−−−−−→ Pλ. Let hλ+1 be the canonical pushout corner map
from Pλ+1 to Y . The connecting map Pλ → Pλ+1 is a pushout of coproducts of morphisms
from J . But any coproduct of maps is a transfinite composition (starting from the coproduct
of the domains), so the connecting map belongs to cell(J).
At a limit ordinal λ, X → Pλ is the colimit of the diagram X → . . . → Pα, α ≺ λ.

Let now κ be a regular cardinal exceeding the rank of presentability of all the objects that

occur as domains of maps in I. The required factorization of f is X
g−→ Pκ

h−→ Y .
Indeed, consider any lifting problem

A
a

//

i
��

Pκ

h
��

B // Y

with i ∈ I. Since κ is regular, the diagram X → . . . → Pκ is κ-filtered, and since hom(A,−)
commutes with κ-filtered colimits by assumption, a factors through a prior stage A → Pλ →
Pκ. If the lifting problem

A //

i

��

Pλ

��

Pκ

h
��

B // Y
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is indexed by s ∈ Sλ, the solution to the original one is the bottom composite

A //

i

��

⋆

js

��

// ⋆⨿
js

��

// Pλ

��

B // ⋆ // ⋆ // Pλ+1
// Pκ.

Lemma 1.9. There exists a set J with the property required in Lemma 1.8.

Indeed, consider the set of all morphisms (in the category of arrows) from i ∈ I to the
solution set Wi:

• //

i

��

X

wi∈Wi

��

• // Y

form the pushout P and the canonical corner map c

• //

i

��

X

wi

��
00
00
00
00
00
00
00

i′

��

• //

''OO
OOO

OOO
OOO

OOO
O P

c
AA

A

  
AA

A

Y

and factor c as P
p−→ Q

q−→ Y with p ∈ cell(I), q ∈ inj(I). Set j := pi′. J is the set of
such j (one for each morphism from i ∈ I to Wi). Indeed, i′ ∈ cell(I) and p ∈ cell(I), so
j ∈ cof(I). q ∈ inj(I) ⊆ W by c1, so w0 = qpi′ ∈ W and 2-of-3 imply j ∈ W. Finally, any
morphism from I to W

•
i
��

// •
w
��

• // •
allows to be factored, using c3, as

•
i

��

// X

j
��

X

wi

��

// •
w

��

• // Q
q

// Y // •.
This completes the proof of lemma 1.9 and of Jeff Smith’s theorem.

Remark 1.10. There are numerous variations on the above themes, notably Dwyer-
Hirschhorn-Kan [14], Hirschhorn [20] and Stanley [40], but J. Smith’s theorem seems to
be the first to identify Freyd’s solution set condition as the “culprit” for there being a set of
generating acyclic cofibrations, provided a set of generating cofibrations is known to exist.

Remark 1.11. By virtue of the way the set J is found in lemma 1.9, lemma 1.8 would go
through by assuming merely that the domains of I are small w.r.t. long enough transfinite
cell(I)-compositions. To prove M5 however, one also needs to do a small object argument
on J . Since the solution set is non-canonical, it is best to assume that for every object X,
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hom(X,−) commutes with κ-filtered sequential colimits for some κ; and this is guaranteed
by the assumption that C is locally presentable.

There is a notable type of Quillen model categories whose cofibrations are identifiable
explicitly as the monomorphisms. In all such cases I am aware of, the following proposition
applies to show that they are generated by a set. The proof really goes back to Grothendieck;
see also Barr [2].

Proposition 1.12. Let C be a category; write mono for its class of monomorphisms. Sup-
pose

(i) C is locally presentable.
(ii) Subobjects have effective unions in C. That is,

A ∩B // //

��

��

A
��

��

a

����
��
��
��
�

A ∪B
$$ m

$$II
III

B // //

b 55llllllllll
X

given any two subobjects A,B of an object X, form their intersection A∩B = A×X B
and their pushout A ∪ B over their intersection; the induced maps a, b,m are to be
monomorphisms (whence A ∪ B really is the supremum of A and B in the subobject
lattice of X, i.e. their union).

(iii) mono is closed under transfinite composition.

Then mono = cell(I) = cof(I) for some set I ⊂ mono.

Remark 1.13. Any AB5 abelian category and any elementary topos satisfies (ii)-(iii). (i)
restricts them to Grothendieck abelian categories (see Prop. 3.10) resp. Grothendieck topoi.
If a category satisfies (i)-(ii)-(iii), so do all its over-, under-, and diagram categories, and left
exact localizations.

Proof. Let G be a set of strong generators for C, so that the functors hom(G,−), G ∈ G,
collectively reflect isomorphisms. (Any locally presentable category has such G.) Let Q be
the set of (isomorphism types of) regular quotients of these generators; finally, let I be the
set of all (isomorphism types of) subobjects of members of Q. Then mono = cell(I) (a fortiori
mono = cof(I), since monos are closed under retract).

Argue by contradiction. Suppose X
m−→ Y is a mono but m ̸∈ cell(I). By transfinite

induction, we will build a chain X := P0 → P1 → P2 → . . . → Pλ → . . . → Y of subobjects
of Y that is (i) properly increasing (ii) satisfies X → Pλ ∈ cell(I) for 0 ≺ λ. This contradicts
that C is well-powered.

Set P0 := X
m−→ Y . At a successor stage, find G

g−→ Y , G ∈ G, that does not factor
through Pλ → Y . Factor g as a regular epi followed by a mono: G � Q � Y . Form an
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effective subobject union diagram as above:

Q ∩ Pλ
// //

��

��

Pλ
��

��

a
����
��
��
��
�

Q ∪ Pλ
$$

$$I
II

II

G // // Q // //

55llllllllll
Y

and define Pλ+1 := Q ∪ Pλ. Note a ∈ cell(I). Pλ+1 is bigger than Pλ since g factors through
it, so the induction hypotheses are satisfied.

At a limit ordinal λ, set Pλ := colim α≺λ Pα and use assumption (iii).

Solution sets vs. accessibility. We recall results on the second named set-theoretic con-
straint. In the context of classes of morphisms, it is stronger than 1.5 but much better
behaved under (2-)categorical operations. All in all, it may be easier to check for accessibil-
ity than to solve for a solution set. The interaction with homotopy theory (or, rather, Quillen
model categories whose underlying category is locally presentable) is solely through the so-
lution set condition for weak equivalences, and their closure under retracts (see Prop. 1.19).
The reader may wish to skip to the next section and refer back only as necessary.

Definition 1.14. (accessibility of a class of maps)
Let C be a locally presentable category, W a class of morphisms of C. Let Mor(W) and
Mor(C) be as in remark 1.6. Say that W is an accessible class of maps3 if Mor(W) is an
accessible category, and it is closed in Mor(C) under κ-filtered colimits for some κ.

In the terminology of Adámek–Rosický [1], Mor(W) is an accessibly embedded, accessible
subcategory of Mor(C). We refer to Adámek–Rosický [1], Borceux [8] vol.II or Makkai–
Paré [34] for further background. Note that accessibility of a class of maps lacks meaning
unless the ground category is locally presentable (or accessible, at least). In what follows,
fix a locally presentable C and class of maps W.

Proposition 1.15. If W is accessible, it satisfies the solution set condition.

Proof. More generally, any accessible functor satisfies the solution set condition (at every
object); see Adámek–Rosický [1] Corollary 2.45.

Remark 1.16. The distinction between being an accessible class and satisfying the solution
set condition is subtle. (These notions have the obvious meaning for any class of objects
in a locally presentable category K, and the statements about to be quoted apply to this
more general case.) A theorem due to H. Hu and M. Makkai [22] asserts that a class
of objects closed in K under κ-filtered colimits (for some κ) is accessible iff it satisfies the
solution set condition. J. Rosický andW. Tholen [38] prove that the set-theoretical statement
known as Vopěnka’s Principle (a so-called large cardinal axiom) implies that any class of
objects satisfying the solution set condition will be accessible. This diminishes the chances
of finding, without the aid of axioms external to ZFC, any class of objects that is not
accessible but satisfies the solution set condition. Such a counterexample would disprove
Vopěnka’s Principle from ZFC, and current set theoretical intuition is that this is unlikely.

3The last part of remark 1.6 applies here as well.
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Remark 1.17. One reason to cherish ACC, the (very large) category of accessible categories
and functors is the Limit theorem of Makkai and Paré [34]: ACC is closed in the (very
large) category of (large) categories under weighted pseudo-limits. As a corollary, ACC is
stable under forming under-, over-, comma-, diagram categories. . . ; the intersection of a
set of accessible subcategories is accessible. . . and more. A category is locally presentable
iff it is accessible and cocomplete; as further corollaries, the category of algebras (over an
accessible monad), the category of coalgebras (over an accessible comonad), the category
of [commutative] monoids (w.r.t. an accessible [symmetric] monoidal structure) is locally
presentable if the ground category is so. Here we single out one corollary that ties in quite
directly with the subject matter.

Proposition 1.18. Let Mor(A)
F−→ Mor(B) be an accessible functor, and W an accessible

class in B. F−1(W) (i.e. the class of morphisms in A taken into W by F ) is an accessible
class.

Proof. The full inverse image of a full, accessible subcategory by an accessible functor is
again accessible; see Adámek–Rosický [1] Remark 2.50.

In contrast to the previous ones, the next fact is elementary.

Proposition 1.19. Any accessible class W of maps is closed under retracts (in the category
of morphisms).

Proof. In fact, any full subcategory of cocomplete category closed under κ-filtered colimits for
some κ must be closed under retracts. This is since a retract is a colimit on an “idempotent
loop” diagram

•


which is ∞-filtered, ie. κ-filtered for every κ.

Here is a way to make homotopical machinery accessible. By virtue of Kan’s combinatorial
description of weak equivalences, the class of weak equivalences in SSet is accessible.4 Let
now C be a locally presentable category, to be made into a Quillen model category. Suppose

there exists a detection functor: C F−→ SSet such that w ∈ mor C is a weak equivalence
iff F (w) is one. If F is accessible, that is to say, it preserves κ-filtered colimits for some
κ, then weak equivalences form an accessible class in C, and c0 and c3 of Theorem 1.7
are automatic. J. Smith conjectures that every cofibrantly generated model category whose
underlying category is locally presentable, arises this way.

2. Defining and “sheafifying” homotopy model theories

What is common to simplicial objects, simplicial rings and categories is that they are
structures definable in terms of finite limits. On the intuitive level, this notion has been

4See Example 3.1. The claim does not appear to be a formal consequence of the definition / theorem
that a map in SSet is a weak equivalence iff its geometric realization is. There is no convenient category of
topological spaces known that is also locally presentable.
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around since the beginning of category theory5 and has been given several equivalent formal
definitions since then.

Logics. A language for (first-order, many-sorted) logic consists of a set of types (also called
sorts), function symbols, relations symbols, logical connectives ∧,∨, =⇒ ,¬ and quantifiers
∀, ∃. For convenience, we also add the symbols ⊤, ⊥ and ∃! for the logical constants “true”,
“false” and the quantifier “there exists precisely one”.6 There’s to be a set of (dummy) vari-
ables, each assigned one of the types (and thought of as running over the set of things of that
type). Similarly, each function symbol is supposed to come with its arity ⟨t1, t2, . . . , tn⟩ → t,
meaning it takes an n-tuple of things, the ith of which is type ti, and turns them into a thing
of type t. Analogously for relation symbols. Constants may be thought of as 0-ary functions.
Refer to any textbook for the precise formation rules of well-formed formulas. A formula
containing no free variables (i.e. such that any variable falls under the scope of a quantifier)
is called a sentence. An axiom system is a logical language together with a set of sentences
(axioms).

Example 2.1. In the most natural way of formalizing the notion of vector space, there
exist two types (scalars and vectors), functions of “scalar multiplication” (of arity
⟨scalar,vector⟩ → vector), vector addition. . . , symbols for three constants: the zero vec-
tor and the scalars 0 and 1, numerous axioms, and no relation symbols other than equality.
(Since only things of the same type can be equal, and every relation symbol is to have its
arity, there’s supposed to be a separate = for comparing two scalars, and one for comparing
two vectors.)

An interpretation of a language L (in the category Set) is the assignment of a set Ti to
each type ti of L, an actual function T1 × T2 × · · · × Tn → T for each function symbol of
the respective arity, and a subset R of T1 × T2 × · · · × Tn for each relation symbol r of arity
⟨t1, t2, . . . , tn⟩. It is a model if the axioms are satisfied.

The category of models. Models for a fixed axiom system form a category, in fact a full
subcategory of the category of interpretations of the language. Let M,N be models, with
underlying sets for types TM

i , TN
i , resp. A morphism from M to N is given by a function

TM
i

fi−→ TN
i for each type such that they commute with the interpretations of the function

symbols:

TM
1 × TM

2 × · · · × TM
n

×{fi}
��

// TM

f

��

TN
1 × TN

2 × · · · × TN
n

// TN

and for each relation symbol r, RM is to be taken into a subset of RN by TM
1 × TM

2 × · · · ×
TM
n

×{fi}−→ TN
1 × TN

2 × · · · × TN
n .

5SGA4, Tome 1, Expose 1, 2.9 speaks thus: “Soit γ une espèce de structure algébrique ‘définie par
limites projectives finies’. (Le lecteur est prié de donner un sens mathématique à la phrase précédente.
Notons seulement que les structures de groupes, groupes abéliens, anneux, modules, etc. . . sont de telles
structures.)”

6One could, in several ways, start with a smaller set of logical symbols as basic and express the rest in
terms of them, but there’s no reason for such parsimony for us.
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Interpreting logic in a topos. Let now E be a topos. An interpretation of a language in E is
the assignment of an object Ti to each type ti there is, a morphism T1×T2×· · ·×Tn → T for
each function symbol, and a subobject R of T1×T2×· · ·×Tn for each relation symbol of the
respective arity. Using a calculus of subobjects — intersections, unions, pseudo-complements,
direct and inverse images of subobjects — and via induction on the complexity of formulas,
every sentence of L gets assigned a truth value of “true” or “false”. The rules reduce to the
usual ones when E = Set ; however, it is not the case that two formulas that are logically
equivalent in Set (i.e. always evaluate to the same truth value) will always be logically
equivalent in any topos. The reader is referred to the textbooks of MacLane–Moerdijk [33]
or Borceux [8] vol.III for details. The category of models in E of an axiom system can now
be defined by analogy with the case of Set .

In a fragment of logic only expressions of some specific form are permitted. In this paper,
the emphasis is on the following two fragments.

Cartesian logic. A language for cartesian logic7 is a (many-sorted, first-order) language
containing no relation symbols other than equality and making no use of the logical symbols
∨,¬, ∃,⊥. Moreover, in a cartesian axiom system, only sentences of the following kind are
allowed:

∀x⃗
(
Φ =⇒ ∃!y⃗(Ψ)

)
where x⃗, y⃗ are shorthand for a string of variables, and Φ and Ψ must be finite conjunctions
of expressions of the form t1 = t2 where t1, t2 are terms, that is, meaningful combinations
of constants, dummy variables and function symbols.

Example 2.2. Here’s how to say groupoid in this language. There are two sorts of things,
objects A0 and arrows A1. There are the usual functions of “source” s, “target” t, “identity”
i, and “inverse”; their commutation relations (to conform to the standard that implication
has to be used precisely once. . . ) can be expressed in the form

∀a
(
⊤ =⇒ s(i(a)) = a

)
and so on (here ⊤ is the True, and a is a variable of the type object). To express composition
and its associativity, one has to introduce the auxiliary type P for the “set of” composable

pairs of arrows. There are projections P
p1−→ A1, P

p2−→ A1; composition is a function
P → A1. Another typical axiom is

∀a1, a2
(
t(a1) = s(a2) =⇒ ∃!p(p1(p) = a1 ∧ p2(p) = a2)

)
where p is a variable of type P .

In fact, groupoids are (qualitatively) the most complicated type of example that can occur.
Every axiom ∀x⃗

(
Φ =⇒ ∃!y⃗(Ψ)

)
can be seen as expressing the existence of a (vector-valued)

function with domain specified by Φ and codomain specified by Ψ, and asserting some
equational conditions about components of that vector. So every cartesian structure is an
equational theory of partial algebras, and actually of a special class of partial algebras: the
domain of the partial operations has to be specified by a conjunction of equational conditions
between total operations (morally, “by pullbacks”).

Cartesian logic provides a solution to the exercise of SGA4 recalled in footnote 5: “define
definable in terms of finite limits”. M. Coste’s lim-logic (see Coste [13]), Lawvere’s cartesian

7See Johnstone [28] p.180 and p.221 for the origin of this term.
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theories (see Barwise [4] A.8, Barr–Wells [3]), Ehresmann’s finite limit sketches (see Adámek–
Rosický [1], Barr–Wells [3], Borceux [8] vol.III) and P. Freyd’s essentially algebraic theories
(see Adámek–Rosický [1]) have the same expressive strength in a topos as cartesian logic
does; in fact, any two of them are functorially interdefinable.

The following proposition compresses all that will be needed of finite limit=cartesian
structures below.

Proposition 2.3. Given a structure S defined in terms of finite limits, one can associate
to a topos E the category of S-structures (or “models of the axiom system S”) in E, to be
denoted ModS(E).

8

(i) ModS(E) is a locally presentable category.

(ii) A topos morphism E
f−→ F (i.e. adjoint pair f ∗ ⊣ f∗ such that f ∗ preserves finite limits)

induces an adjunction between ModS(E) and ModS(F).
(iii) For any small category D, ModS(E)

D is canonically isomorphic to ModS(E
D).

(iv) A morphism of S-structures is itself definable in terms of finite limits; more precisely,
there exists a finite limit structure Mor(S) such that Mor(ModS(E)) is canonically equiv-
alent to ModMor(S)(E), for any E.

Example 2.4. The following Set-based structures are finite limit definable: simplicial set,
more generally D-set, for any diagram D; monoid, group, ring. . . more generally, any species
of finitary equational universal algebras (possibly many-sorted); (small) category, groupoid,
2-category, double category. . . , diagram of a fixed shape within the category of any of the
aforementioned structures. The corresponding notion of morphism of structures is always
(strict) homomorphism, preserving all operations on the nose.

Remark 2.5. As pointed out by the referee, both 2.3(iii) and (iv) are special cases of the
classical fact that given cartesian structures S1 and S2, there exists a “tensor product”
cartesian theory S1 ⊗ S2 such that models of S1 in the category of S2-structures, as well as
models of S2 in the category of S1-structures, are canonically isomorphic to S1⊗S2-structures.

The prototype of (iv) is the observation that a natural transformation between two dia-
grams, say of shape D, can itself be thought of as a diagram, indexed by {• → ⋆} × D. It
reduces the task of understanding how to specify well-behaved classes of morphisms between
finite limit structures — notably, the weak equivalences and (co)fibrations — to specifying
subcategories of models (of a different theory). Now recall property (3) of the motivating
examples, that weak equivalences are preserved by inverse images, and the solution set con-
dition c3 of Theorem 1.7. These are characteristic of notions that can be defined in terms of
finite limits and arbitrary colimits, using a set’s worth of data. Since the early 70’s, categor-
ical logicians have provided several equivalent formal analyses of such notions, a convenient
one being

Coherent logic. This fragment is richer than cartesian logic. The language can contain
(besides typed variables and function symbols, as usual) relation symbols as well as the
logical connectives ∧,∨, =⇒ ,∀,∃,⊤,⊥. However, only sentences of the following form are
allowed:

∀x⃗
(
Φ =⇒ Ψ

)
8Let (C, J) be a site; ModS(Sh(C, J)) is equivalent to the category of ModS(Set)-valued sheaves on (C, J).

E.g. a sheaf of abelian groups is an abelian group object in sheaves. Finite limit definable structures form
the largest class of first-order structures to which this extends.
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where x⃗ stands for a string of variables, and Φ and Ψ must be built up via the use of ∃, finite
conjunctions and arbitrary (i.e. possibly infinite) disjunctions from “atomic formulas”, which
are meaningful combinations of constants, variables and function and relation symbols.

Example 2.6. Within each category of type ModS(Set) below, S a finite limit structure,
the notions listed are coherently definable in the language of S:

• SSet : fibrant simplicial sets (i.e. those satisfying the Kan extension condition), acyclic
simplicial sets

• Mor(SSet): monomorphisms, Kan fibrations, “topological” weak equivalences
• Groups: divisible groups, torsion groups
• Rings: local rings, fields, fields of characteristic p > 0, separably closed fields, alge-
braically closed fields

• Mor(Rings): flat homomorphisms
• D+-diagrams in ModS, where D+ is the cocone on a diagram D (i.e. is the result of
formally adding a disjoint terminal object to the small category D): being an initial
cocone, i.e. a colimit on a functor D → ModS(Set).

• D−-diagrams in ModS, where D− is the cone on a finite diagram D (i.e. is the result
of formally adding a disjoint initial object to a category D with finitely many arrows):
being a terminal cone, i.e. a limit on a functor D → ModS(Set).

The reader wishing to see coherent logic in action (in addition to an introduction to it) may
enjoy reading Wraith [46] that constructs the étale topos of a scheme without the intervening
use of a topology on the category of schemes, or any subcategory thereof. (The general étale
topos is glued together from the affines, and the étale topos of a ring is constructed as a
classifying topos.) Johnstone’s related [27] shows how to obtain various spectral (i.e. sheaf)
representations of rings directly by looking at the axioms and also treats Coste’s logic.

Much as cartesian logic matches finite limit sketches, the language of coherent logic is
interdefinable with colimit-and-finite limit sketches; see Makkai–Paré [34], Borceux [8] vol.III.

CAVEAT. The terms geometric and coherent logic are sometimes used interchangeably.
When not, they mean almost the same thing: one of them refers to a logic permitting
infinitary disjunctions (arbitrary colimits) while the other to the same logic with only finitary
disjunctions (resp. finite colimits). In this article, the term “geometric logic” is not used and
“coherent logic” allows arbitrary infinite disjunctions.

The next proposition is a “reader’s digest” of facts of coherent logic, tailored for the needs
of the present paper.

Proposition 2.7. Let S be a structure defined in terms of finite limits, E a topos, A a
set of coherent sentences in the language of S. If X ∈ ModS(E) satisfies these sentences
(“axioms”), one writes X |= A. Let ModS,A(E) be the full subcategory of ModS(E) with
objects those X that satisfy A.

(i) Let E
f−→ F be a topos morphism, X ∈ ModS(F). If X |= A then f ∗(X) |= A.

(ii) ModS,A(E) is closed in ModS(E) under filtered colimits.
(iii) ModS,A(E) is an accessibly embedded, accessible full subcategory of ModS(E).
(iv) Let D be a small category. For any d ∈ obD, let evd denote the “evaluation at d”

functor ED → E, which is the inverse image of a topos morphism. For X ∈ ModS(E
D),

X |= A iff evd(X) |= A for all objects d of D.
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Example 2.6 may suggest that one can transplant a Quillen model category from Set to an
arbitrary topos by borrowing the “formulaic” definition of weak equivalences, cofibrations
and fibrations. This is too much to ask, as pointed out by Jardine [25]: any Eilenberg–
MacLane sheaf is locally fibrant (being a sheaf of simplicial abelian groups); if it were
globally fibrant as well, sheaf cohomology would be trivial. Experience has shown that the
“local” (i.e. stalkwise, i.e. “formulaic” in the sense of the internal logic) weak equivalences are
the right ones. Any two of the three classes defining a Quillen model category determine the
third. This suggests that one borrows the logical description of weak equivalences and one of
the classes of cofibrations and fibrations. The second possibility, in general, leads to a local
homotopy theory, or “homotopy theory of fibrant objects”, in the sense of K. Brown [12];
see also Jardine [24]. Note that Quillen’s axioms are self-dual; the asymmetry is inherent in
the set-theoretic aspect of sheaf theory (cf. cofibrant generation etc.).

The first choice leads to a Quillen model category and is the subject of this paper. Note
that Jeff Smith’s theorem prefigures the non-uniqueness of the choice of cofibrations: pro-
vided one deals with an accessible class of weak equivalences, which therefore satisfy the
solution set condition everywhere, one may replace the I of 1.7 by any set I ′ ⊂ cof(I) as
long as condition c1 is not violated. For this reason, the main theorem below is split into two
parts; the first one produces cofibrations less uniformly in TOPOI, but under less stringent
conditions.

For the rest of this section, let S stand for the definition of a structure in terms of finite
limits. For brevity, write S(E) for ModS(E), E a topos. Let W resp. C be two sets of
axioms of coherent logic in the language of morphisms of models of S. Write W(E) := {f ∈
mor S(E) | f |= W} and C(E) := {f ∈ mor S(E) | f |= C}.

Theorem 2.8. Consider the hypotheses
(i) S(Set) with weak equivalences W(Set) and cofibrations C(Set) is a Quillen model category;
and C(Set) is of the form cof(I), I a set.
(ii) For every topos E, C(E) = cof(IE) for some set IE of maps.
(iii) One of the following: (†) W and C belong to a fragment of coherent logic that has enough
models in Set (for example, axioms of finite length; the countable fragment of coherent logic;
essentially algebraic theories) or (‡) S(E) with weak equivalences W(E) and cofibrations C(E)
is a Quillen model category for every topos E of the form Sh(B), B being a complete Boolean
algebra with its canonical topology.
(1) (i) implies that for every topos E with enough points, S(E) with weak equivalences W(E)
and cofibrations a certain subclass of C(E) is a cofibrantly generated Quillen model category.
In the presence of (iii), the conclusion extends to every topos.
(2) (ii) implies that for every topos E with enough points, the cofibrations can be chosen to
be C(E), the rest being as in (1). In the presence of (iii), the conclusion extends to every
topos.

Remark 2.9. It is immediate that in case (2), a topos morphism E
f∗

�
f∗

F induces a Quillen pair

S(E) � S(F). (2.3(ii) and 2.7(i) show that the left adjoint preserves all weak equivalences
and cofibrations.) One thus has a “coherently definable” or “sheafifiable” homotopy theory
and a functor TOPOI → HOMODEL. See remark 2.18 as to functoriality under (1).

Remark 2.10. The choice of cofibrations is not unique, even if all assumptions are satisfied.
There may be more than one functorial cofibration class as well.
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Remark 2.11. In all examples I am aware of, if (i) holds, so does (ii). In fact, (ii) is likely to
be a formal consequence of its being true for the case Set = E. Alas, as things stand now,
(ii) has to be checked by hand, unless 1.12 applies.

Remark 2.12. I know a single example where one doesn’t seem to get by with countably
many defining axioms of countable length, or with some set of axioms of finite length, for W
and C — cases when (iii)(†) applies — and that is homological localization of simplicial sets
(simplicial objects in a topos). That example is much better seen as a direct consequence of
Jeff Smith’s theorem, together with 1.12 and a bit of accessibility.

The statement of 2.8 begs its proof: observe that the hypotheses of Jeff Smith’s theorem
hold for S(Set); transfer them to S(E) via logical methods; forward applications of Thm. 1.7
yield the conclusions. To begin with, one has unconditionally

Lemma 2.13. For any topos E, S(E) is a locally presentable category. W(E) is closed under
retracts and satisfies the solution set condition in Mor(S(E)).

Proof. By 2.3(i), 2.7(iii), 1.19 and 1.15.

The next two lemmas state facts in tandem, preceded by the hypotheses they need.

Lemma 2.14.
(i) For every topos E with enough points: W(E) has the 2-of-3 property; C(E) is closed under
composition; C(E) ∩W(E) is closed under pushout.
(i,iii) Same conclusions for every topos E.

Proof. Each of these properties has the following form: a set of coherent sentences (in the
language of the appropriate diagram of S-structures) implies certain coherent sentences.
Topoi with enough points inherit the truth of such statements from Set . As to (†), the
definition of having enough models in Set is that such conclusions extend to an arbitrary
topos. It is a theorem of Makkai–Reyes that countable coherent logic has enough models in
Set , of Deligne-Joyal that finitary coherent sentences do. The case of universal Horn logic
/ essentially algebraic theories is classical (see Makkai–Reyes [35]). The Boolean case (‡) is
Barr’s theorem.

Lemma 2.15.
(i) For every topos E with enough points: W(E) and C(E) are closed under transfinite com-
position.
(i,iii) Same conclusions for every topos E.

Proof. By Prop. 2.7, W(E) and C(E) are closed under filtered colimits in the category of mor-
phisms of S(E). If they are closed under composition, they must be closed under transfinite
composition. (Use transfinite induction.)

Lemma 2.16. (i) implies: for any topos E, inj(C(E)) ⊆ W(E).

Proof. This holds for E = Set by assumption, since acyclic fibrations are weak equivalences.
Extend the conclusion from Set to presheaf topoi Pre(D). Let d be any object of the small
category D, and consider the adjunction

S(Set)D
op L

�
evd

S(Set)
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where evd is the “evaluation at d” functor and L its left adjoint (the left Kan extension).
Let f ∈ C(Set). L(f) is a Dop-diagram in S(Set) that is, at every object of D, a copower of
f . Recall that S(Set)D

op
is the “same” as S(Pre(D)). Since any copower of f is a cofibra-

tion in S(Set), and since coherent axioms are evaluated “objectwise” in functor categories
(cf. 2.7(iv)), L(f) will belong to the class C(Pre(D)). Suppose g ∈ inj(C(Pre(D)). A fortiori
g ∈ inj(L(C(Set))). By adjunction, evd(g) ∈ inj(C(Set)), so evd(g) ∈ W(Set). But since the
class W(Pre(D)) is defined again by coherent axioms, evd(g) ∈ W(Set), for every object d of
D, implies g ∈ W(Pre(D)).

Consider now an arbitrary topos E. Choose a site (D, J) of definition for E, and consider

the inclusion E
ℓ

�
i

Pre(D), where ℓ is sheafification. It induces an adjunction S(E) �
S(Pre(D)). (Out of laziness, retain the same letters to denote these adjoints.) Take any f ∈
inj(C(E)). Since sheafification (being an inverse image part of a topos morphism) preserves
the coherently defined class of cofibrations, by adjointness one has i(f) ∈ inj(C(Pre(D)))
whence i(f) ∈ W(Pre(D)). Since sheafification must preserve weak equivalences too, f ∼=
ℓi(f) ∈ W(E).

Part (2) of 2.8 is now simply Jeff Smith’s theorem 1.7 applied to the data S(E), W(E),
and the IE of assumption (ii), using Prop. 2.3(i) and lemmas 2.13 through 2.16.

Part (1) follows by a closer look at the argument in 2.16. Assume (i). By Jeff Smith’s
theorem, S(Set) is a cofibrantly generated Quillen model category. By a theorem of Dwyer–
Hirschhorn–Kan [20], for any cofibrantly generated model category M and small category
D, MD possesses a model structure with the weak equivalences and fibrations being D-
objectwise. Cofibrations in MD can be described as follows. Let Dδ be the diagram D
“made discrete”, that is, Dδ is the set of objects of D and their identities. There is an
adjunction MD � MDδ where the right adjoint is the forgetful functor (i.e. precomposition
with Dδ → D) and the left adjoint its left Kan extension LK . MDδ is (tautologously) a
cofibrantly generated model category whose set of generating cofibrations, IDδ

, is the set of
tuples that are coordinatewise generating cofibrations in M. With the above choice of weak
equivalences and fibrations, cofibrations in MD are cof(LK(IDδ

)).
By virtue of 2.3(iii) and 2.7(iv), the above prescription gives a cofibrantly generated Quillen

model structure on S(Pre(D)) with weak equivalences the W(Pre(D)) and cofibrations a —
for non-trivial D, proper — subclass of C(Pre(D)). (This follows also by a direct application
of Jeff Smith’s theorem.) Now for an arbitrary topos E, choose a site, i.e. topos inclusion

E
ℓ

�
i
Pre(D). Write, for brevity, K for the set of generating cofibrations in S(Pre(D)). Apply

Jeff Smith’s theorem to the data S(E), W(E), ℓ(K). Since S(E) is a full, reflective subcategory
of S(Pre(D)), cof(ℓ(K)) = ℓ(cof(K)). That is, cofibrations in S(E) are sheafifications of the
cofibrations in S(Pre(D)). So cof(ℓ(K)) ⊆ C(E), which lets one deduce that a pushout of an
acyclic cofibration is acyclic from lemma 2.14. Use 2.13 and 2.15 for c0, c3 and the other
part of c2. The adjunction argument used in the second part of the proof of 2.16 establishes
c1. This completes the proof of 2.8.

Example 2.17. Here’s how to construct a model category on simplicial objects in a topos
with Joyal’s weak equivalences, whose class of fibrations is intermediate between the local
fibrations (or fibrations in the internal sense; when the topos has enough points, these are
the maps that are stalkwise fibrations) and the global ones, i.e. maps with the right lifting
property w.r.t. every acyclic mono. Say E = Sh(D, J). Consider the Quillen model structure



SHEAFIFIABLE HOMOTOPY MODEL CATEGORIES 21

on Pre(D)∆
op

= SSetD
op

created by the forgetful functor to SSetDδ . (It is the Bousfield–
Kan model structure, see [11] XI.8.) Its class of cofibrations bk is a proper subclass of

the monomorphisms in general. Letting E
ℓ

�
i

Pre(D) be the canonical adjunction, define

cofibrations in E∆op
to be the class ℓ(bk), weak equivalences W as in 0.2 and fibrations

to be inj(ℓ(bk) ∩ W). Proof: choose a set I such that cof(I) = bk in Pre(D)∆
op
. Then

ℓ(bk) = cof(ℓ(I)) in E∆op
. Apply Jeff Smith’s theorem.

If the topology J is “too strong”, ℓ(bk) may include all monomorphisms in Sh(D, J). (For
example, should it happen that Sh(D, J) is equivalent to Set , note that cof(I) is all injections
as soon as I contains a single non-trivial injection.) There seems to be no a priori reason for
this to happen for all non-trivial topologies, however.

Remark 2.18. This formal argument extends to the upcoming examples, and even to the
ones in [6]. Despite the unsettling vagueness of the “correct” cofibration class, any two
choices have a common super-class, thus giving rise to Quillen-equivalent model categories
[5]. In fact, the Quillen equivalence type of any presentable model category is fixed by
the category itself and its subcategory of weak equivalences. This suggests that the proper
target of TOPOI → HOMODEL may be the category of Quillen model categories and Quillen
pairs modulo Quillen equivalence. Note that existing work of Dwyer–Kan and Rezk also
suggest that “a homotopy theory” (as such) is determined by the category of models and its
subcategory of weak equivalences.

3. Examples

As soon as there is one example of a sheafifiable homotopy model category — in the sense
of part (2) of 2.8 — there are infinitely many, by the following cheap observation: since
S(E)D is equivalent to S(ED), and ED is a topos if E is, there exists a sheafifiable homotopy
theory of D-diagrams of S-structures with the weak equivalences and cofibrations being D-
objectwise. This is reminiscent of (and contains as a special case) the model structure on
simplicial diagrams that Heller [19] denotes right : let the cofibrations be all the monos. It
is in general distinct from (but Quillen-equivalent to) the one existing on diagrams over any
cofibrantly generated model category (reducing to the Bousfield–Kan structure on simplicial
diagrams that Heller named left). We list six non-trivial cases of the main theorem here.
Each satisfies all three hypotheses of 2.8; (ii) holds either because Prop. 1.12 applies directly,
or because the structure arises via an adjunction from one where it applies. This is examined
in more detail in [6]. We also digress into the unbounded derived category.

Example 3.1. (simplicial sets)
The observation that weak equivalences of simplicial sets are definable in terms of finite limits
and countable colimits goes back (at least) to Illusie [23]. It is not necessary to construct

the homotopy group objects internally, however. To begin with, consider a map X•
f−→ Y•

between Kan complexes in SSet . f is a weak equivalence iff it induces a bijection between
embedded “singular spheres”, that is, simplices all of whose lower-dimensional faces are one
and the same 0-simplex and its degeneracies. That the map is onto amounts to: for every
0-simplex y0 in Y• and n-simplex yn all of whose faces are y0 (and its degeneracies), there
exists an n-simplex xn all of whose faces are some x0 (and its degeneracies) such that f(xn)
is in the same based homotopy class of singular simplices as yn, where for two n-simplices to
be in the same homotopy class amounts to the existence of an n + 1-simplex with suitable
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face matching conditions. The sentence in italics translates verbatim into a coherent axiom
in the language of morphisms of simplicial objects. That f induces an injection is similar.
To deal with an arbitrary simplicial map, one has to use some fibrant replacement functor
SSet → SSet definable in coherent logic. Kan’s [31] Ex∞ is such. The functor Ex — together
with the natural transformation Id → Ex — is defined in terms of finite limits, and Ex∞ is
the colimit along the (countable) chain of iterations of Id → Ex.

Example 3.2. (homological localizations of simplicial sets)
Let h∗ be a homology theory on SSet . We need to choose a representation of h∗ in the sense
of G. Whitehead [45],

hn(X) = colim πn(X+ ∧ Ei)(3.1)

where Ei is a “naive spectrum”, ie. sequence of pointed simplicial sets and connecting maps
from the suspension of Ei to Ei+1. One may describe by coherent axioms (or, colimit and
finite limit constructions of simplicial sets) the following, in turn: adding a disjoint basepoint
to X; smashing two pointed simplicial sets; suspending a simplicial set (one ought to use
Kan’s model here); computing πn(−) of a simplicial set (after fibrant replacement); the
colim i of homotopy groups (here one has to use that the connecting maps are definable too);

finally, that for a simplicial map X
f−→ Y , hn(f) is an isomorphism.

Theorem 1.7 and Prop. 1.12 can now be applied; this is one of the (rare!) cases when c2
can be checked directly. Note that by using the machinery of accessible functors and classes,
Bousfield’s original proof in [9] can also be made to work in any topos [7]. By working
directly in the site, Goerss and Jardine [17] establish homological localization for simplicial
sheaves as well.

Remark 3.3. The calculus of accessibility highlights one aspect of the homology–cohomology

dichotomy. A homology theory is a functor SSet
h∗−→ A where A is, typically, a locally

presentable category. (A will be so as soon as it is a cocomplete AB5 abelian category
with generator — such as, graded abelian groups. See Prop. 3.10.) By Milnor’s axiom, h∗
preserves filtered colimits. In fact, as soon as h∗ preserves κ-filtered colimits for some κ, it
is an accessible functor, and h−1

∗ (iso) will be accessible in Mor(SSet), yielding the solution

set condition. By contrast, a cohomology theory is a functor SSet
h∗
−→ Aop. If the opposite

category of a locally presentable category is accessible, they must be (equivalent to) small
posets; see Adámek–Rosický [1] 1.64. So Aop is not accessible; the accessibility of h−1

∗ (iso)
in SSet is then an open question.

From the set-theoretical point of view, all that was used of SSet is that it is a locally pre-
sentable category. Indeed, J. Smith’s theorem implies that any presentable model category
allows localizations w.r.t. any accessible homology theory.

Remark 3.4. This is a good place to discuss (in)dependence of the choices made. After
all, the class of weak equivalences in SSet admits a canonical definition: the maps whose
topological realizations are weak homotopy equivalences. In Ex. 3.1, some combinatorial
characterization of this had to be found. Similarly, in Ex. 3.1, a representing spectrum had
to be chosen. Dependence on these choices is not a frivolous issue; there are examples (albeit
very artificial, from the point of view of homotopy theory) of coherent axioms that cannot
be satisfied in Set (so, from the point of view of sets, parametrize the empty collection) but
do have models in other topoi. On the positive side, one has
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Proposition 3.5. Let A1, A2 be two coherent axiom systems in the same (first-order, many-
sorted) language L. Suppose that in the category of sets, the same structures satisfy them.

(i) Then the same is true in any topos with enough points.
(ii) Suppose that there is a “reason” for this coincidence, more precisely, a formal deduction

via coherent logic of A1 from A2, and vice versa. Then the same class of structures
satisfies them in any topos.

(iii) Suppose that both A1 and A2 belong to a fragment of coherent logic that has enough
models in Set. (For example, Ai, i = 1, 2, may be finitary, or employ countable dis-
junctions but have only countably many axioms, or be an essentially algebraic theory.)
Then again, the same structures will satisfy them in any topos.

Proof. (The reader looking for relevance to abstract homotopy theory may wish to skip to
the examples following the proof.) (i) is trivial, given that points of a topos preserve and
any conservative collection of points reflect the truth of coherent axioms. (ii) is the mere
fact that coherent deductions remain valid in any topos. (iii) is a “degenerate case” of the
Conceptual Completeness theorem of Joyal–Makkai–Reyes [35]. A1 and A2, by assumption,
have enough models and have the same models in Set . Hence they have the same class of
coherent consequences. This means that their associated syntactic sites Def(A1), Def(A2)
(see Makkai–Reyes [35] or MacLane–Moerdijk [33]) are equivalent. (In fact, Def(A1) and
Def(A2) can be constructed to be the same — not only isomorphic, but identical — since
A1 and A2 were assumed to share the same language L.) But this implies they have the
same models in any topos.

(i) already covers all but a few types of topoi that tend to arise in algebraic geometry and
topology. (ii) applies, for example, to the choice of representing spectra. Let E1 and E2 be
weakly homotopy equivalent spectra, and let A1 say “it (i.e. a variable spectrum) has the
same weak homotopy type as E1”; analogously for A2. Should these two classes coincide,

there is a witness for that, namely a map of spectra E1
f−→ E2 inducing isomorphisms on

the stable homotopy groups. The statement in italics is equivalent to a set of sentences of
coherent logic. This allows the formal demonstration of the equivalence of “the spectrum X
has the same weak homotopy type as E1” with “the spectrumX has the same weak homotopy
type as E2” valid in any topos. (iii) implies, for example, that any “purely combinatorial”
definition of a simplicial map being a weak equivalence can be chosen as long as it has
the intended meaning for simplicial sets. The technical sense of “purely combinatorial” is:
statements in the countable fragment of coherent logic, with signature ∆ (and its extension by
coproducts and coequalizers of equivalence relations). Intuitively, the definition must operate
directly with simplices and the face and degeneracy maps (no mapping spaces, fundamental
groupoids etc. can be used unless these had been so defined beforehand). The axioms must
be “if–then” type, demanding the existence of simplices, or sequences of simplices, satisfying
finitary face-matching conditions whenever other conditions of this type are met; but one
cannot employ uncountably many conditions nor uncountable strings of simplices.

Example 3.6. (small categories and categorical equivalences)
Motivating example 0.4 is a case of Theorem 2.8 where not all the monomorphisms are
cofibrations. I am indebted to Charles Rezk for pointing out that this model structure arises
from the Reedy model structure on simplicial spaces (i.e. simplicial objects in SSet) via a
right adjoint; this gives a simple proof of condition (ii) of 2.8.
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Example 3.7. (groupoids and categorical equivalences)
Restrict the previous example to groupoids, leaving the definitions of cofibrations and weak
equivalences the same. (Fibrations are functors with the right lifting property w.r.t. the
inclusion {•} ↪→ {• → ⋆}.) This model structure too was sheafified “by hand” in Joyal–
Tierney [30]. Via the nerve functor, the existence of this model category can also be deduced
from that on simplicial objects; this proves 2.8(ii).

Example 3.8. (cosimplicial simplicial objects, Reedy model structure)
For indexing categories D satisfying a certain combinatorial property, work of D. Kan (see
[14] or Hovey [21]) shows the existence of a Quillen model structure on MD with weak
equivalences objectwise but neither cofibrations nor fibrations so. For the case D = ∆ and
M = SSet , this model structure made its appearance in Bousfield–Kan [11] X.4. It has
as cofibrations those monomorphisms in SSet∆ that induce isomorphisms on the “maximal
augmentation”. Here the maximal augmentation of X• ∈ ob SSet∆ is a subobject of X0,
the equalizer of the coface maps d0, d1. This is a coherently definable condition. That
2.8(ii) is satisfied follows by Kan’s methods, or one can use the following mild extension of
Prop. 1.12: keep hypotheses (i), (ii) and let C be an accessible subclass of the monomorphisms
closed under pushout and transfinite composition and satisfying the following cancellation
condition: if gf ∈ C, f ∈ C and g ∈ mono, then g ∈ C. Then C = cof(I) for some set I.
(Accessibility lets one find a set of generators; after that, the argument is the same. See [7].)

Example 3.9. (cyclic sets, “weak” model structure)
Let Λop be Connes’ indexing diagram for cyclic objects, containing the simplicial indexing
diagram ∆op as a subcategory. Dwyer–Hopkins–Kan [15] show the existence of a Quillen
model structure on Pre(Λ), or “cyclic sets”, created by the forgetful functor Pre(Λ) → SSet .
That is to say, f ∈ morPre(Λ) belongs to W iff it is a weak equivalence considered just as
a map of simplicial sets. Thanks to Ex. 3.1, this makes the class W coherently definable.
Dwyer–Hopkins–Kan define a cyclic map to be a fibration iff it is a Kan fibration when
considered just as a map of simplicial sets, and give the following combinatorial description

of cofibrations: X
f−→ Y ∈ Pre(Λ) is a cofibration iff it is an injection such that for each

object [n] of Λop, its group of automorphisms (which is a cyclic group of order n + 1) acts
freely on the elements of Y ([n]) not in the image of X([n]). Taking the contrapositive, this
becomes a coherent condition.

Spaliński’s [39] strong model category structure on cyclic sets is dealt with in [6].
Another application of Theorem 1.7 and Prop. 1.12 concerns the unbounded derived cat-

egory. It is valid for Grothendieck abelian categories, which are automatically locally pre-
sentable. Though this fact is a simple conjunction of theorems of Gabriel–Popescu and
Gabriel–Ulmer, we write it out in longhand, since the identification is not commonly made
in the literature.

Proposition 3.10. Let A be an abelian category that satisfies Grothendieck’s axiom AB5
(“directed colimits are exact”, i.e. filtered colimits commute with finite limits). Then the
following are equivalent:

(i) A is cocomplete and has a generator, i.e. object G such that hom(G,−) is faithful 9

(ii) A is locally presentable.

9MacLane [32] suggests the name separator for such an object, which is certainly reasonable, given the
plenitude of senses of “generator” in different categorical contexts.
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Historically, an AB5 category satisfying (i) has been called a Grothendieck (abelian) cat-
egory.

Proof. (ii) =⇒ (i) is trivial: if A is locally presentable, then it is (by definition) cocomplete
and has a set of dense generators, a fortiori a set of generators. Their coproduct will do as
a single generator (in the sense of the proposition), since A has a zero object.

(i) =⇒ (ii): by the Gabriel-Popescu theorem there exists a ring R and an adjoint pair

A
L

�
i

ModR where i is full and faithful, and the left adjoint L is exact. That is, A is

equivalent to a localization of ModR. (Here a localization of a category is a full, reflective,
isomorphism-closed subcategory with the reflector preserving finite limits.) Such localiza-
tions biject with Gabriel topologies on R, i.e. collections F of right ideals of R with certain
closure properties, via associating with F the full subcategory of ModR of F-closed modules.
(See e.g. Stenström [41].) A module M is F-closed iff it is orthogonal to the maps I ↪→ R,
I ∈ F, i.e. homR(R,M) → homR(I,M) is an isomorphism for all I ∈ F. ModR is locally
presentable; by the theorem of orthogonal reflection in locally presentable categories (see
e.g. Adámek–Rosický [1] Cor. 1.40), so is its full subcategory of F-closed modules.

Remark 3.11. The second implication is nontrivial. A being locally presentable entails, for
example, that every object of A, in particular, the generator, has a rank, that is, hom(G,−)
commutes with κ-filtered colimits for some κ. This is not even implicit in the definition of
a generator (as “separator”).

Remark 3.12. Prop. 3.10 is the additive analogue of the case of a topos. Giraud’s theo-
rem says that if a category E is cocomplete, has well-behaved coproducts and quotients of
equivalence relations, and a set of generators, then it is a topos. It is then equivalent to a lo-
calization of a functor category Pre(C), where C is small. Localizations of Pre(C) biject with
Grothendieck topologies on C, via passing to sheaves on a topology; and the sheaf condition
can be phrased as orthogonality w.r.t. a certain set of maps in Pre(C). The conclusion that
E is a locally presentable category now follows as before.

Proposition 3.13. Let A be a Grothendieck abelian category. There is a Quillen model
structure on ChZ(A) (i.e. unbounded chain complexes in A) where cofibrations are the
monomorphisms, and weak equivalences the quasi-isomorphisms.

Proof. Apply Thm. 1.7. If A is Grothendieck abelian, so is ChZ(A). The homology functor
ChZ(A) → AZ (here Z stands for just the discrete set) commutes with filtered colimits and
AZ is locally presentable. The class of isomorphisms is accessible in any locally presentable
category. Prop. 1.18 gives c3, and Prop. 1.12 grants the generating cofibrations.

Corollary 3.14. The unbounded derived category of a Grothendieck abelian category exists
(i.e. has small hom-sets).

Remark 3.15. Even when a localization problem C[W−1] allows a calculus of fractions, a
genuine set-theoretical difficulty remains in establishing C[W−1] has small hom-sets (one
has to exhibit cofinal small subcategories of the large, filtered index categories that arise).
This may be the reason that, to the best of this author’s knowledge, a proof of 3.14 in this
generality has not appeared in print yet. It is certainly a folk theorem, however; see e.g.
Joyal [29]. A recent preprint of Tarŕıo–López–Salorio [42] gives a triangulated proof.

It is quite ironic to observe that while the simple (inductive) injective replacement argu-
ments break down for unbounded complexes, the proof strategy of 3.13 can only apply to
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a category of complexes that is cocomplete. The fibrant replacement functor it produces in
abstracto is quite horrible; it seems that if one wishes to work with explicit resolutions of
unbounded complexes, one should find a judicious sheaf representation of the category first.

Remark 3.16. In his Tohôku classic, Grothendieck was able to demonstrate remarkable (ulti-
mately, set-theoretical) features of what are now called Grothendieck abelian categories, no-
tably the existence of enough injectives (via showing, essentially, that the class of monomor-
phisms is generated by a set). With hindsight, when working with Grothendieck abelian
categories, one encounters a class of examples with much stronger set-theoretic bounds than
is apparent from the concept of generator (“separator”). When limits and colimits are not
as well-behaved as for abelian categories and topoi, it seems necessary to posit the extra set
theoretic control explicitly. Conversely, perhaps it is not frivolous to say that presentable
Quillen model categories are “convenient categories to do homotopical algebra in”, and to
view them as non-abelian counterparts of Grothendieck abelian categories.

As a closing remark, note that [6] lists about a dozen Quillen model categories whose weak
equivalences are coherently definable and whose cofibrations are of the form cof(I), where I
is the image under a suitable left adjoint of a coherently defined class of maps. (They thus
generalize examples 3.6 and 3.7.) Their qualitative features — sheafifiability, existence of
non-canonical as well as functorial choices for cofibrations, and the essential uniqueness of
cofibrations — are so similar to those above that it did not seem worthwhile to burden this
paper with the extra logical machinery needed to “automate” their construction.
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