Today, we learn some tools derived from the 3 basic laws:

- Equivalent resistance
- Voltage division
- Current division

They help you develop intuition about circuits:

- To see relationship between variables
- To see several steps ahead
- To plan a solution to a circuit

Two terminal circuit with all resistors

Behaves like a single resistor

1

L5

Ways of connection

<u>Series connection:</u> Two or more elements are in series if every connected pair exclusively share a single node, i.e., <u>one node connects only two elements</u>.

By KCL, same current flows through elements in series

 $\rm R_1$ and $\rm R_2$ are not in series because the node connecting them also connects a third element.

<u>Parallel connection</u>: Two or more elements are in parallel if they are connected between the same two nodes.

By KVL, same voltage across parallel elements:

$$v_1 = v_2 = v_3$$

Determine series and parallel connection:

These wires cannot be thrown away.
They must be connected to somewhere to draw power

3

Which pair of resistors are in series? Which pair in parallel?

§ 2.5 Series resistors and voltage division

Given R_1 , R_2 . What is v/i ?

By KCL, same current in $\mathbf{R}_1,\mathbf{R}_2$ By Ohm's law, $v_1=R_1i,v_2=R_2i$ By KVL, $v=v_1+v_2$. Putting together: $v=v_1+v_2=R_1i+R_2i=(R_1+R_2)i$ $\Rightarrow v=(R_1+R_2)i$ (1)

 $v = R_{eq}i$ (2) $R_{eq} = ?$

Compare (1) and (2):

 $R_{eq} = R_1 + R_2$

5

L5

L5

If R_{eq} = R_1 + R_2 +....+ R_N , same $v\sim i$ relationship. R_{eq} is called the equivalent resistance.

 $R_{eq} = R_1 + R_2 + \dots + R_N$

L5

Voltage division

Voltage division
$$i = \frac{v}{R_1 + R_2 + \dots + R_N}$$

$$\downarrow i + V_1 - \dots + V_1 = R_1 i = \frac{R_1}{R_1 + R_2 + \dots + R_N} v$$

$$\downarrow v + R_1 + R_2 + \dots + R_N v$$

$$\downarrow v + R_N + \dots + R_N v$$

$$\downarrow v + R_N + \dots + R_N v$$

$$\downarrow v + R_N + \dots + R_N v$$

Voltage division: Total voltage v is divided among the resistors in direct proportion to the resistances. Larger resistance takes more voltage.

Special case with two resistors:

7

§ 2.6 parallel resistors and current division

What is $R_{eq} = v/i$? $i = \frac{v}{R_1} + \frac{v}{R_2} = (\frac{1}{R_1} + \frac{1}{R_2})v$ $i = \frac{1}{R_{eq}}v$ (2) $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \qquad \qquad R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2}$

L5

In general

9

Equivalent resistance for parallel resistors:

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_N}}$$
 Notation: $R_{eq} = R_1 // R_2 // R_N$

Special cases:

$$\begin{aligned} \text{N=2:} \quad R_1 /\!/ \, R_2 &= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2} \\ \text{R}_1 &= R_2 = \ldots = R_N = R \text{:} \qquad \qquad R_{eq} &= \frac{1}{\frac{1}{R} + \frac{1}{R} + \ldots + \frac{1}{R}} = \frac{R}{N} \end{aligned}$$

Simple combinations:

Simple rule:
$$3//6=2$$

$$12//6=4$$

$$15//10=6$$

$$20//5=4$$
Simple rule:
$$\alpha R_1//\alpha R_2 = \frac{\alpha R_1 \times \alpha R_2}{\alpha R_1 + \alpha R_2} = \frac{\alpha R_2 R_2}{R_1 + R_2} = \alpha (R_1//R_2)$$

$$27//54=9(3//6) = 9 \times 2 = 18$$

Common sense:

Adding more resistor to existing parallel ones $\underline{\text{reduces}} \, R_{\text{eq}}$:

$$\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} + \frac{1}{\frac{1}{R_{N+1}}} < \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}} < \frac{1}{\frac{1}{R_k}} = R_k, \text{ for any } k = 1, 2, \dots, N$$

Equivalent resistance for parallel connection is less than any individual resistance

Equivalent conductance:

$$G_{eq} = \frac{i}{v} = \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} = G_1 + G_2 + \dots + G_N$$

9/23/2019

9/23/2019

Two extreme cases:

Case 1: A resistor in parallel with a short circuit

Case 2: A resistor in parallel with an open circuit

13

Equivalent resistance Examples

L5

L5

15

Example: Compute I_s

Example: Compute R_{eq}

17

R5

Practice 7: Find I_s

L6

Practice 8: Find v_s

Practice 9: Find v_1, v_2

Practice 10: Find i_1 , i_2

19

Three useful tools derived from basic laws:

- Equivalent resistance
- Voltage division
- Current division

Used together to solve circuit problems

Voltage division:

$$\mathbf{v}_1 = \frac{R_1}{R_1 + R_2} \mathbf{v}$$

$$\mathbf{v}_2 = \frac{R_2}{R_1 + R_2} \mathbf{v}$$

Current Division:

$$i_{1} = \frac{R_{2}}{R_{1} + R_{2}}i$$

$$i_{2} = \frac{R_{1}}{R_{1} + R_{2}}i$$

9/23/2019

L6

Example: Find i_0 and v_1 .

Approach 1: Assign auxiliary variable I.

Use equivalent resistance with respect to 12V to find I, then v_1 =4I, and i_0 can be computed by current division.

$$\begin{cases} R_{\rm eq} = 4 + 6//3 = 4 + 2 = 6\Omega \\ \text{By Ohm's Law, } I = 12/R_{\rm eq} = 12/6 = 2A \\ \text{Thus } v_1 = 4I = 8V. \\ \text{By current division: } i_0 = \frac{6}{3+6}I = \frac{6}{3+6} \times 2 = \frac{4}{3}A \end{cases}$$

Be Careful: In this equivalent circuit, only I is the same as in the original circuit. Neither v_1 nor i_0 , can be found in it. You need to go back to the original circuit to find v_1 and i_0 .

21

L6

Approach 2: Use equivalent resistance of 6//3, denoted as R'_{eq}.

$$R'_{eq}$$
=3//6=2 Ω . By voltage division,

$$\mathbf{v}_1 = \frac{4}{4+2} \times 12 = 8V, \mathbf{v}_2 = \frac{2}{4+2} \times 12 = 4V$$

Be careful, i_0 cannot be found in the equivalent circuit. $i_0 \ne I$. You have to use the original circuit to find i_0 .

Where is v_2 in the original circuit?

Since the voltage across 3Ω is v_2 , by Ohm's Law, $i_0 = v_2/3 = 4/3A$

22

Approach 1: Which is the voltage across 3A? v_1 or v_2 ?

It is v_2 . If you know the Req w.r.t 3A, you can obtain v_2 by ohm's law.

23

Be careful, you cannot find v_1 in the simplified circuit. Have to use the original circuit to find v_1

L6

Approach 2: Use current division. Assign I_1 , I_2 .

Example: Find I_s , I_1 , v_{ab}

Outline of the solution:

Find I_s first, then use current division to find I_1 .

To find v_{ab} , need to find $v_{\rm 1}, v_{\rm 2}$, then use KVL

$$v_2 + v_{ab} + v_1 = 0 \Rightarrow v_{ab} = -v_2 - v_1$$

To find $v_{\rm 1}$, need the current through 15Ω . Assign $I_{\rm 2}$,

 $\it I_{\rm 2}\,$ can be computed by current division on $\it I_{\rm 1}\,$

Step 3: Go back to the original circuit to find v_{ab} :

 I_1 is divided by $15\Omega + 25\Omega = 40\Omega$ and $25\Omega + 20\Omega + 15\Omega = 60\Omega$

$$I_2 = \frac{60}{60 + 40} \times 0.6 = 0.36A$$

$$v_1 = 15I_2 = 15 \times 0.36 = 5.4V$$

 $v_2 = 3I_s = 3 \times 1.8 = 5.4V$

$$v_2 = 3I_s = 3 \times 1.8 = 5.4V$$

$$v_{ab} + v_1 + v_2 = 0$$

$$v_{ab} = -v_1 - v_2 = -5.4 - 5.4 = -10.8V$$

27

Example: Find v_0 and the power absorbed by the dependent current source.

Hint: Use KCL to make an equation for v_0

Solution: Assign current I_1

 $\it I_1$ is the same current through 2Ω

By Ohm's Law,
$$I_1=\frac{v_0}{2}=0.5v_0$$

KCL at node a:

$$1.8 + 0.2v_0 = I_1 = 0.5v_0$$

$$\Rightarrow 1.8 = 0.3v_0$$

$$\Rightarrow v_0 = 6V$$

We have: $v_0 = 6V$

$$v_3 = ?$$
 $v_3 = 3 \times 0.2v_0$
= $3 \times 0.2 \times 6 = 3.6V$
 $v_4 = ?$ $v_4 = 4I_1$, $I_1 = \frac{v_0}{2} = \frac{6}{2} = 3A$

 $v_4 = 4 \times 3 = 12V$

Power absorbed by the dependent current source?

Need voltage across $0.2v_0$

Assign v_s

To apply KVL correctly, Assign v_3 , v_4

KVL around right side loop:

$$v_s + v_3 + 4.5 + v_0 + v_4 = 0$$

$$v_s = -v_3 - 4.5 - v_0 - v_4$$
$$= -3.6 - 4.5 - 6 - 12$$

$$p_{0.2v_0} = v_s \times 0.2v_0$$

= -26.1 × 0.2 × 6
= -31.32W

29

4.5V 2Ω ≷3Ω 1.8A

-////

$\sqrt[4]{4\Omega}$ 5Ω 2Ω $0.8v_{0}$ 1.8A 2Ω **-**////₋ 5Ω 15V

Variations of the circuit

Same idea! Express Branch current I_1 , I_2 In terms of v_0 , Then apply KCL

If power by a current source is needed, compute its voltage by using KVL

Alternatively:

Ohms Law: $v_x = 6I_1 = 16.2V$

Voltage division:
$$v_1 = \frac{9}{9+6} \times v_x = 9.72 \text{V}$$

More current division:

$$I_3 = \frac{10}{10 + 15} \times I_1 = 1.08A$$

$$v_1 = 9I_3 = 9.72V$$

$$I_4 = \frac{5}{5 + 20} \times I_2 = 0.36A$$

$$v_2 = 8I_4 = 2.88V$$

Current division:

$$I_1 = \frac{12}{8+12} \times 4.5 = 2.7A$$
$$I_2 = \frac{8}{8+12} \times 4.5 = 1.8A$$

31

Example: Find the currents i_1 , ..., i_5

L6

Approach1: Use equivalence resistance and current division.

$$i_2 = \frac{6}{3+6} \times i_1 = \frac{6}{9} \times 3 = 2A$$

$$i_3 = \frac{3}{3+6} \times i_1 = \frac{3}{9} \times 3 = 1A$$

$$i_3 = \frac{3}{3+6} \times i_1 = \frac{3}{9} \times 3 = 1A$$

 $i_4 = \frac{18}{9+18} \times i_3 = \frac{18}{27} \times 1 = \frac{2}{3}A$

$$i_5 = \frac{9}{9+18} \times i_3 = \frac{9}{27} \times 1 = \frac{1}{3}A$$

Example: Find the currents i₁, ..., i₅

Approach2: Use voltage division and Ohm's law . Assign v_2 .

L6

 4Ω $\stackrel{>}{\geq}$ 3//9//18=2 Ω 18V

By voltage division $v_2 = \frac{2}{4+2} \times 18 = 6V$

By Ohm's law, $i_1 = \frac{v_2}{2} = \frac{6}{2} = 3A$

$$i_2 = \frac{v_2}{3} = \frac{6}{3} = 2A$$

$$i_4 = \frac{v_2}{9} = \frac{6}{9} = \frac{2}{3}A$$
 $i_5 = \frac{v_2}{18} = \frac{6}{18} = \frac{1}{3}A$

$$i_3 = i_4 + i_5 = \frac{2}{3} + \frac{1}{3} = 1A$$

33

Example: Find i_1, i_2, i_3, i_4, I_x

In all three circuits, i_1, i_2, i_3, i_4 are the same

How about I_x , I_0 ? By KCL, $I_0 = i_1 + i_2 = ?$

$$I_0 = i_1 + i_2 = i_3 + i_4 = 3A$$

 $I_x = i_1 - i_3 = i_4 - i_2$

By current division:

$$i_1 = \frac{20}{30} \times 3 = 2A; i_2 = 1A;$$
 $I_x = i_1 - i_3 = 0.2A$
 $i_3 = 1.8A; i_4 = 1.2A;$ $I_x = i_4 - i_2 = 0.2A$

≷20Ω 10Ω 3A extend 20Ω ≶30Ω i_4 10Ω ≶20Ω 3A 20Ω ≶30Ω

 i_2

• Test 1 will be given on Sept 30 (Monday), 11-11:50am. In Ball Hall 210 There will be two versions in different colors.

Please arrive 5-10 minutes earlier

 A practice exam will be given on 9/25/2019(Wednesday), 11-11:50am in Ball Hall 210

Solution to practice exams will be posted at website Solution to all practice problems in lecture note will be posted.

35

Practice 13: Find I_0 , v_4

Practice 14: Find I_0 , v_2

37

R6

Practice 15: Find the voltage v_{x}

Practice 16: Find v_0 , I_x ,

Practice 16a: Find v_1 , l_0 ,

39

R7

Practice 17: Find v_x , I,

R7

Practice 18: Find i_0 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

41

Practice 20: Find R for the circuit

Practice 21: Find V_s for the circuit

Practice 22: Find R so that $I_{\scriptscriptstyle S}$ is 10A

