L14 L14 #### § 4.5 Thevenin's Theorem A common situation: Most part of the circuit is fixed, only one element is variable, e.g., a load: The fixed part, a two terminal circuit, can be very complex. How the variable part affects v_0 , i_0 , or the power? By Thevenin's theorem, the complex two terminal circuit can be replaced with a simple circuit. Making the analysis very easy Thevenin's theorem is the most important result in Circuit Theory. It will be a main tool for Chapters 7, 8. <u>Thevenin's theorem</u>: Every linear two terminal circuit can be made equivalent to the series connection of a voltage source and a resistor. Same v~i relationship V_{th}: Open circuit voltage across the two terminals Also called V_{oc} R_{th}: equivalent resistance with respect to the two terminals when all <u>independent sources</u> are turned off Case 1: No dependent source. $R_{th}=R_{eq}$ (as in Chapter 2) Case 2: With dependent source. Need to supply an external independent source at the two terminal. Then R_{th} is the ratio between the voltage and current. L14 Example: What is the relationship ∕//√⁄ 4Ω ₩\ between R₁ and i? 1Ω ^{32V} 12Ω Replacing the part to the left of 2A "a", "b" by Thevenin's equivalent Clear relationship: R_{th} Key point: $V_{th}=?$, $R_{th}=?$ Solution: V_{th} is the open circuit voltage. +0V-a = 0 +0V-a = 0For R_{th}, turn off all independent sources: 32V -{//\/√ 4Ω ₩/-R_{th}=1+4//12 =4Ω 12Ω Assign mesh current i₁ KVL along the mesh: $4i_1+12(i_1+2)=32$ $i = \frac{V_{th}}{R_{th} + R_L} = \frac{30}{4 + R_L}$ i₁=0.5A V_{th}=12(i₁+2)=30V L14 ## Case 2: There are dependent sources $\rm V_{\rm th}\!\!:\,$ The same as case 1, the open circuit voltage ## For R_{th} : 1. Turn off all independent sources. - 2. Connect the two terminals to a current/voltage source - 3. Solve for the voltage/current of the source Note: i_0 and v_0 assigned by active sign convention. L14 Explanation: as the independent sources are turned off, the two terminal circuit behaves like a single resistor. Be careful, v_0 and i_0 are assigned according to active sign convention with respect to the source (passive sign convention for R_{th}). Example: Find R_{th}, V_{th} for the two terminal circuit For V_{th}: For R_{th} : turn off 30V with short circuit. Approach 1: connect to voltage source v₀=1V, Use nodal analysis Pick ground. v_x is the node voltage $$V_{th} = v_x$$ KCL at node v_x: $$\frac{v_x - 30}{6} + \frac{v_x}{3} + 2v_x = 0$$ $v_x = 2V$ $v_{th} = 2V$ Given $v_x=1V$ KCL at node v_x : $i_0=i_1+i_2+2v_x$ $v_0 = v_x$ $$i_0 = \frac{1}{6} + \frac{1}{3} + 2 = 2.5A$$ $$R_{th} = \frac{v_0}{i_0} = \frac{1}{2.5} = 0.4\Omega$$ L14 L14 Approach 2: connect to current source i₀=1A, KCL at node v₀: $$\begin{aligned} & \mathbf{i_1} + \mathbf{i_2} + 2\mathbf{v_x} = 1 \\ & \frac{\mathbf{v_0}}{6} + \frac{\mathbf{v_0}}{3} + 2\mathbf{v_0} = 1 \\ & \mathbf{R_{th}} = \frac{\mathbf{v_0}}{\mathbf{i_0}} = \frac{0.4}{1} = 0.4\Omega \end{aligned}$$ Two approaches yield the same R_{th}. Example: Find V_{th} and R_{th} for the two terminal circuit For V_{th} : By KVL, $$V_{th}=v_1+v_2+v_\chi$$ $$v_x = 0V$$ $$v_2 = 0V$$ $$v_2 = 0V$$ $$v_1 = \frac{12}{12+4} \times 24 = 18V \quad \text{By voltage div}$$ $$V_{th} = 18 + 0 + 0 = 18V$$ For R_{th} , turn off 24V, Supply a 1A current source. Find the voltage v_0 across the current source Then $R_{th} = \frac{v_0}{i_0}$ By KVL, $$v_0=v_1+v_2+v_\chi$$ $$v_{x} = 41$$ $$v_x = 4V$$ $$v_2 = 4 \times (1 - 2) = -4V$$ $$v_1 = (4//12) \times 1 = 3V$$ $$v_0 = 3 - 4 + 4 = 3V$$ $$R_{th} = \frac{v_0}{i_0} = 3\Omega$$ Example: Find Thevenin's equivalent with respect to terminals "a" and "b". $R_{th} = 4 + (4 + 16) / (8 + 8 + 6 + 8) = 16\Omega$ v_{th} : open circuit voltage $$I_1 = \frac{30}{20 + 30} \times 2.5 = 1.5A$$ $$I_2 = 2.5 - 1.5 = 1A$$ $$v_4 = -1.5 \times 4 = -6V$$ $$v_6 = 1 \times 16 = 16V$$ $$v_{th} = 14 - 6 + 16 = 24V$$ $v_{th} = 14 + v_4 + v_6$ Example: Find Thevenin's equivalent circuit with respect to terminals "a" and "b" For V_{th} , the open circuit voltage, since there is no independent source , all voltages and currents are 0, $V_{th}\,=\,0.$ For R_{th} , need to supply the two terminal with independent current or voltage source Set $I_0=1A$, need to find v_o . Then $R_{th}=\frac{v_o}{I_o}$ $$i_x = I_o = 1A, \quad 6i_x = 6V$$ Use source transformation Practice 1: Find $\rm R_{th},\,V_{th}$ for the two terminal circuit Practice 2: Find $\rm R_{th},\,V_{th}$ for the two terminal circuit R14 Practice 3: Find $R_{\rm th}$, $V_{\rm th}$ for the two terminal circuit #### §4.6 Norton's Theorem L15 <u>Norton's theorem</u>: Every linear two terminal circuit can be made equivalent to the parallel connection of a current source and a resistor. I_N : Short circuit current from "a" to "b", I_N : same as I_{th} . Since the same circuit is also equivalent to Thevenin's You can get Thevenin's equivalent first, then use source transformation to get Norton's equivalent, or vice vesa 115 ### §4.8 Maximum power transfer <u>Question</u>: for what value of R_L is p maximized? Note that the current i also depends on R_L . Key point: find the exact relationship between i and R_L . Main tool: Thevenin's and Norton's theorem Applications examples: Radio transmitter - maximize power delivered to the antenna or transmission line Grid tied inverter - maximize power delivered to the grid Electric vehicle - maximize power delivered to drive motor By Thevenin's theorem, the two terminal circuit can be replaced with a voltage source in series with a resistor: L15 A pure math problem: find R_L so that p is maximized. At the maximal point, $$\frac{dp}{dR_L}\bigg|_{R_L=R_0}=0$$ $$\begin{split} \frac{dp}{dR_L} &= V_{th}^2 \frac{(R_L + R_{th})^2 - 2R_L (R_L + R_{th})}{(R_L + R_{th})^4} \\ &= V_{th}^2 \frac{R_{th} - R_L}{(R_L + R_{th})^3} \end{split}$$ For dp/dR_L= 0, we must have $R_L=R_{th}$ $$\text{At R}_{\text{L}} = \text{R}_{\text{th}}, \qquad \boxed{p_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}}}$$ L15 Conclusion: Maximal power is transferred to the load when R_L=R_{th}, and the maximal power is $$p_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}}$$ When the Norton's equivalent is used, similar result: Conclusion: Maximal power is transferred to the load when $R_L=R_N$, and the maximal power is $$p_{\text{max}} = \frac{R_N I_{\text{N}}^2}{4}$$ Example: Determine R so that maximal power is delivered. Also find the maximal power. Solution: Need to find V_{th} and R_{th} with respect two the two terminals of R. For V_{th}, disconnect R Since i=0, ${\rm v_x}{\rm = 0.~10\Omega}$ and 15 $\!\Omega$ in series By voltage division $$\mathbf{v}_1 = \frac{15}{15 + 10} \times 20 = 12V$$ Also since i=0, $0.5v_x$ =0 flows through 4Ω . Thus $$v_2 = 0V$$ By KVL, $$V_{th} = v_x + v_1 - v_2 = 0 + 12 + 0 = 12V$$ For R_{th} , turn off 20V, but keep $0.5v_x$ dependent source. Because of the dependent source, supply an external current source i_0 = 1A. (you may also try a voltage source and compare) Need to find v_0 across the 1A current source (Active sign convention) L15 $$v_x=6i_0=6V$$ $v_1=(15//10)\times i_0$ $=6\times 1=6V$ Assign current i_2 for 4Ω By KCL, i_2 =0.5 v_x -1. Thus $$v_2 = 4(0.5v_x-1)$$ $v_0 = v_x + v_1 - v_2 = 4V$ = 4(3-1)=8V $R_{th} = \frac{v_0}{i_0} = \frac{4}{1} = 4\Omega$ Finally, The maximal power is delivered when R=R $_{th}$ =4 Ω . The maximal power is $$p_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}} = \frac{12^2}{4 \times 4} = 9W$$ Example: Find Thevenin's equivalent with respect to terminals "a" and "b". KVL along mesh 1: $$3i_1 + 15 + 4(i_1 - 1.5) + 3i_1 = 0$$ $10i_1 = -9$ $i_1 = -0.9$ $$V_{th} = v_3 + 15 + v_6 = -2.7 + 15 + 9 = 21.3V$$ Question: Any relationship between the following circuits? L15 Illegal to open circuit Norton's equivalent: $$I_{N} = I_{S}$$ $$R_{N} = \infty \quad V_{th} = \infty$$ $$\downarrow I_{S}$$ $$\downarrow V$$ Illegal to short circuit Thevenin's equivalent: $$V_{th} = V_{s}$$ $$R_{th} = 0 \quad I_{N} = \infty$$ $$V_{s} + V_{s} + V_{s}$$ Any resistor in series with current source can be discarded Any resistor in parallel with voltage source can be discarded Practice 4: Find the Norton's equivalent R15 Practice 5: Find the value of $R_{\rm L}$ so that maximum power is delivered. Also find the maximum power. Practice 6: Find the unknown $\rm R_{\rm L}$ so that maximum power is delivered. Also find the maximum power. # **Chapter 4 Review** - Linearity - Source transformation - Superposition - Thevenin's Theorem - Norton's Theorem - Maximum power Transfer <u>Linearity:</u> the input-output relationship of a resistive circuit is linear. If you know any pair of input and output, $$(x,y) = (x_0,y_0)$$ Back Then $y_0 = kx_0$ $k = \frac{y_0}{x_0}$ Backward approach: Assume $y = y_0$, find $x = x_0$ Example 1: Find I_s for $I_0 = 2A$. Compute I_0 for $I_s = 10,24A$. Solution: Find I_s for $I_0 = 2A$. Set the bottom node as ground For $$I_0=2A$$; $I_s=16A$; $k=\frac{I_0}{I_s}=\frac{2}{16}=\frac{1}{8}$, $I_0=\frac{1}{8}I_s$ If $I_s=10A$, $I_0=\frac{1}{8}I_s=\frac{10}{8}=1.25A$ If $I_s=24A$, $I_0=\frac{1}{8}I_s=\frac{24}{8}=3A$ ## Superposition Superposition principle: the voltage across (or current through) an element in a linear circuit, is the sum of voltage/current due to each <u>independent</u> source alone. Due to I_s alone: turn off V_s Set $V_s = 0 \Leftrightarrow$ replace voltage source with short circuit # Key points: - Turn off voltage source with short circuit - Turn of current source with open circuit Due to V_s alone: turn off I_s Set I_s = 0 \Leftrightarrow replace current source with open circuit Example 3: Use superposition to compute v_0 Due to 3A $$30\Omega$$ $+ v_1 - 4\Omega$ 9Ω 18Ω $$I_1 = \frac{30}{10 + 30} \times 3 = 2.25A$$ $$v_1 = 6I_1 = 13.5V$$ $$\downarrow I_1$$ $$4\Omega$$ $$6\Omega > +$$ $$v_1 = 6I_1 = 13.5V$$ # Due to 30V: $$v_0 = v_1 + v_2 = 13.5 + 4.5 = 18V$$ By voltage division: $$v_2 = \frac{6}{6+34} \times 30 = 4.5V$$ ## **Source Transformation:** The following two connections are equivalent The following two connections are equivalent The rule: if you put the two sources side by side, the arrow of the current source points from – to + of the voltage source Use Nodal analysis method: $$I_1 = \frac{v_1}{6}; \quad I_2 = \frac{v_1}{12}; \quad I_x = \frac{v_1}{3}$$ KCL at 121: $$I_1 + I_x + I_2 - \frac{1}{2}I_x = 2$$ $$\frac{v_1}{6} + \frac{v_1}{3} + \frac{v_1}{12} - \frac{v_1}{6} = 2$$ $$v_1 = 4.8V; \quad I_x = \frac{4.8}{3} = 1.6A$$ <u>Thevenin's theorem</u>: Every linear two terminal circuit can be made equivalent to the series connection of a voltage source and a resistor. V_{th}: Open circuit voltage across the two terminals Also called V_{oc} R_{th}: equivalent resistance with respect to the two terminals when all <u>independent sources</u> are turned off Case 1: No dependent source. $R_{th}=R_{eq}$ (as in Chapter 2) Case 2: With dependent source. Need to supply an external independent source at the two terminal. Then R_{th} is the ratio between the voltage and current. #### Norton's Theorem Every linear two terminal circuit can be made equivalent to the parallel connection of a current source and a resistor. I_N : Short circuit current from "a" to "b", R_N : same as R_{th} Since the same circuit is also equivalent to Thevenin's You can get Thevenin's equivalent first, then use source transformation to get Norton's equivalent, or vice vesa #### Maximum power transfer Linear circuit connected to a variable load R_L Power consumed by $$p=R_Li^2$$ <u>Conclusion</u>: Maximal power is transferred to the load when R_L=R_{th}, and the maximal power is $$p_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}}$$ When the Norton's equivalent is used, similar result: Conclusion: Maximal power is transferred to the load when $R_L=R_N$, and the maximal power is $$p_{\text{max}} = \frac{R_N I_N^2}{4}$$ Example 4: Find the unknown resistance R_L so that maximum power is delivered to it. Also find the maximum power. For V_{th} , disconnect R_L 2Ω $$2i_{x} \xrightarrow{l_{x}} V_{th} V_{th} V_{th}$$ For R_{th} , turn off 18V, supply current source turn off 18V, supply current source $$\begin{array}{c} By \ KVL, \\ 2i_x + 3i_x + 18 + 2i_x - 2i_x = 0 \\ \hline \\ -1 \\ \hline \\ 2\Omega \\ 4\Omega \\ \hline \\ 4\Omega \\ \\ 4V \\ + v_3 - \\ \\ \\ + \\ \\ \end{array}$$ $$V_{th} = 18 + 3i_x = 7.2V$$ KVL along outer loop: $$-2i_x + 2(i_x - 1) + 3i_x + 2(i_x - 1) = 0$$ $$i_x = 0.8, \quad v_0 = 4 + 3i_x = 6.4V, \quad R_{th} = \frac{v_0}{1} = 6.4\Omega$$ When $$R_L = 6.4\Omega$$; $p_{max} = \frac{V_{th}^2}{4R_{th}} = \frac{7.2^2}{4 \times 6.4} = 2.025$ W