## Problem 1

For the following circuit, find:
(a) $\mathrm{i}\left(0^{+}\right)$and $\mathrm{v}\left(0^{+}\right)$,
(b) $\mathrm{dv}\left(0^{+}\right) / \mathrm{dt}$,
(c) $\mathrm{i}(\infty)$ and $\mathrm{v}(\infty)$.


## Problem 2

The current in an RLC circuit is described by

$$
\frac{d^{2} i}{d t^{2}}+10 \frac{d i}{d t}+25 i=0
$$

If $\mathrm{i}(0)=3 \mathrm{~A}$ and $\mathrm{di}(0) / \mathrm{dt}=1 \mathrm{~A} / \mathrm{s}$, find $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$

## Problem 3

A branch voltage in an RLC circuit is described by

$$
\frac{d^{2} v}{d t^{2}}+4 \frac{d v}{d t}+8 v=48
$$

If the initial conditions are $v(0)=4 \mathrm{~V}, \mathrm{dv}(0) / \mathrm{dt}=-20 \mathrm{~V} / \mathrm{s}$, find $\mathrm{v}(\mathrm{t})$.

## Problem 4

In the following circuit, the switch instantaneously moves from position $A$ to $B$ at $t=0$. Find $v(t)$ for all $t \geq 0$.
$(\mathrm{v}(1)=5.546 \mathrm{~V})$


## Problem 5

The switch in the following circuit has been closed for a long time but is opened at $t=0$. Determine $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.

$$
(\mathrm{i}(1)=0.133 \mathrm{~A})
$$



## Problem 6

Calculate $\mathrm{v}(\mathrm{t})$ for $\mathrm{t}>0$ in the following circuit.


## Problem 7

For the following circuit, find $v(t)$ for $t>0 . \quad(v(1)=65.107 \mathrm{~V})$


## Problem 8

Find $v(t)$ for $t>0$ in the following circuit.


## Problem 9

Obtain $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$ in the following circuit.


## Problem 10

The switch in the following circuit is moved from position a to b at $\mathrm{t}=0$. Determine $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.
$(i(1)=-0.0283 \mathrm{~A})$


## Problem 11

Given the network in the following circuit, find $v(t)$ for $t>0$.


