Problem 1.

Determine the current flowing through an element if the charge flow is given by
(a) $q(t)=\left(2 e^{-3 t}-4 e^{-t}\right) n C$
(b) $\mathrm{q}(\mathrm{t})=20 \sin 50 \pi \mathrm{t} \mathrm{pC}$
(c) $\mathrm{q}(\mathrm{t})=30 \mathrm{e}^{-2 \mathrm{t}} \cos 60 \mathrm{t} \mu \mathrm{C}$

Problem 2.
Find the charge $q(t)$ flowing through a device if the current is:
(a) $\mathrm{i}(\mathrm{t})=(6 \mathrm{t}+4) \mathrm{mA}, \mathrm{q}(0)=0$
(b) $i(t)=40 \cos (20 t+\pi / 6) \mu \mathrm{A}, \mathrm{q}(0)=2 \mu \mathrm{C}$

Problem 3.

The charge entering a certain element is shown in Fig.1.1. Find the current at:
(a) $\mathrm{t}=4 \mathrm{~ms}$ (b) $\mathrm{t}=12 \mathrm{~ms}$ (c) $\mathrm{t}=20 \mathrm{~ms}$

Figure 1.1

Problem 4.

The current flowing past a point in a device is shown in Fig.1.2. Calculate the total charge through the point over the time period $[0,5]$.

Figure 1.2

Problem 5.

The current through an element is shown in Fig.1.3 Determine the total charge that passed through the element at:
(a) $t=2 \mathrm{~s}$ (b) $\mathrm{t}=4 \mathrm{~s}$ (c) $\mathrm{t}=5 \mathrm{~s}$. Assume $\mathrm{q}(0)=0$.

Figure 1.3

Problem 6.

The charge entering the positive terminal of an element is $\mathrm{q}=5 \sin 6 \pi \mathrm{t} \mathrm{mC}$
while the voltage across the element (plus to minus) is $\mathrm{v}=\cos 6 \pi \mathrm{t}$ V
(a) Find the power delivered to the element at $t=0.3 \mathrm{~s}$
(b) Calculate the energy delivered to the element between 0 and 0.6 s .

Problem 7.

The voltage v across a device and the current I through it are

$$
\mathrm{v}(\mathrm{t})=2 \cos 2 \mathrm{t} \quad \mathrm{~V}, \quad \mathrm{i}(\mathrm{t})=8\left(1-\mathrm{e}^{-0.5 t}\right) \mathrm{A}
$$

Calculate:
(a) the total charge in the device at $\mathrm{t}=1 \mathrm{~s}$, assume $\mathrm{q}(0)=0$.
(b) the power consumed by the device at $\mathrm{t}=1 \mathrm{~s}$.

Problem 8.

Find the power absorbed by each element in Fig.1.4.

Figure 1.4

Problem 9.

Figure 1.5 shows a circuit with five elements. If $\mathrm{p}_{1}=105 \mathrm{~W}, \mathrm{p}_{2}=-70 \mathrm{~W}, \mathrm{p}_{4}=60 \mathrm{~W}, \mathrm{p}_{5}=-30 \mathrm{~W}$, calculate the power p_{3} received or delivered by element 3 .

Figure 1.5

Problem 10.

Calculate the power absorbed or supplied by each element (including the sources) in Fig.1.6

Figure 1.6

Problem 11.
Find I in the network of Fig. 1.7 (Answer: $\mathrm{I}=2.5 \mathrm{~A}$)

Figure 1.7

Problem 12.
Find v_{0} in the circuit of Fig. $1.8 \quad\left(\mathrm{~V}_{0}=18 \mathrm{~V}\right)$

Figure 1.8

