problem 1 solution
$R=v^{2} / P=\frac{14400}{80} \Omega=180 \Omega$
problem 2 solution
(a) $\mathrm{i}=15 / 80=0.187 .5 \mathrm{~A}=187.5 \mathrm{~mA}$
(b) $\mathrm{i}=15 / 75=0.2 A=200 \mathrm{~mA}$

$$
\begin{aligned}
& \text { problem } 3 \text { solution } \\
& i_{1}=-6+11 \mathrm{~A}=5 \mathrm{~A} \\
& i_{2}=11-5 \mathrm{~A}=6 \mathrm{~A} \\
& i_{3}=13-i_{2}=13-6 \mathrm{~A}=7 \mathrm{~A}
\end{aligned}
$$

problem 4 solution
$-10-25+25+v_{1}=0 \Rightarrow \mathrm{v}_{1}=10 \mathrm{~V}$
$20-25-v_{2}=0 \Rightarrow v_{2}=-5 V$
$-v_{1}+v_{2}+v_{3}=0 \Rightarrow \mathrm{v}_{3}=15 \mathrm{~V}$
problem 5 solution
$-18+\mathrm{v}+3=0 \Rightarrow \mathrm{v}=15 \mathrm{~V}$
$-3+12+3 i_{x}=0 \Rightarrow 3 i_{x}=-9 \Rightarrow i_{x}=-3 A$
problem 6 solution
$-22+3 I-8+5 I+6=0$
$I=3 A$
$-V_{a b}+5 I+6=0 \quad \Rightarrow \quad \mathrm{~V}_{\mathrm{ab}}=v_{2}+6=5 \times 3+6 \mathrm{~V}=21 \mathrm{~V}$
problem 7 solution
$-36+4 i_{0}+5 i_{0}+3 i_{0}=0$
$i_{0}=3 \mathrm{~A}$
problem 8 solution

KVL along clockwise direction: $v_{1}+3 v_{x}-v_{x}+v_{2}-15=0$,
$I+3 v_{x}-v_{x}+2 I-15=0$
$I+3(-3 I)-(-3 I)+2 I-15=0$
$-3 I=15 \quad I=-5 A, \quad v_{x}=-3(-5)=15 \mathrm{~V}$
problem 9 solution

By KCL, same current I flows through 4Ω and 3Ω resistor on left side.
By Ohms Law, $I=\frac{V_{0}}{3}$. By the dependent current source, $I_{0}=2 V_{0}$
By KCL at top node, $I=10+I_{0} \Rightarrow \frac{\mathrm{~V}_{0}}{3}=10+2 \mathrm{~V}_{0} \Rightarrow \mathrm{~V}_{0}=-6 \mathrm{~V}$
Thus, $I=\frac{V_{0}}{3}=-2 A, v_{1}=4 I=-8 \mathrm{~V}$.
To find the power dissipated by the controlled source, assign v (passive sign).
Need v_{2} to compute v. By Ohm's Law, $v_{2}=3\left(2 V_{0}\right)=3(-12)=-36 \mathrm{~V}$.
By KVL along outer loop: $-v_{1}-v-v_{2}-V_{0}=0$

$$
v=-v_{1}-v_{2}-V_{0}=-(-8)-(-36)-(-6)=50 \mathrm{~V}
$$

Power dissipated by controlled source $p=v \times 2 V_{0}=50(-12)=-600 \mathrm{~W}$.

$$
V_{0}=-6 V, \quad p=-600 \mathrm{~W}
$$

Problem 10 solution: Determine v_{0} and v_{s} for the circuit below:

Main idea:
Express branch current in terms of v_{o}, and use KCL to make an equation for v_{o}, Then use KVL to find v_{s}

Assign current through $4 \Omega, \mathrm{I}_{4}$, voltage across $2 \Omega v_{2}$, by passive sign convention

By ohm's law: $I_{4}=\frac{v_{0}}{4}$;
By KCL: $\frac{v_{0}}{3}=2+I_{4}=2+\frac{\mathrm{v}_{0}}{4}$
Solving above equation: $v_{o}=24 \mathrm{~V}$;
To find v_{s}, form KVL for the right loop:

$$
v_{0}-12+v_{2}-v_{s}=0 ;
$$

$$
v_{s}=v_{0}-12+v_{2}
$$

By Ohm's Law, $v_{2}=2 \times \frac{v_{0}}{3}=2 \times \frac{24}{3}=16 \mathrm{~V}$ Thus, $v_{s}=24-12+16=28 \mathrm{~V}$

Note: the current through 2Ω, is the same as that through the dependent source, which is $v_{0} / 3$

