Use source transformation to find i_x in the circuit. (I_x=3.33A)

Problem 2

Obtain the Thevenin equivalent at terminals a-b of the circuit.

Problem 4

Obtain the Thevenin and Norton equivalent circuits of the following circuit with respect to terminals a and b.

Answer: $V_{TH} = 3.788V$, $R_{TH} = R_N = 0.455\Omega$, $I_N = 8.325A$

11/3/2014

Problem 5

Determine the Norton's equivalent at terminals a-b for the following circuit. Answer: $I_N = 1.714A$, $R_N = 7\Omega$

Problem 6

Find the Thevenin equivalent at terminals a-b of the circuit.

Answer: $V_{TH} = 3V$, $R_{TH} = 3.5\Omega$

Problem 8

Determine the Thevenin's and Norton's equivalents at terminals a-b Answer: I_N = -1.371A, R_N = R_{TH} = 29.167 Ω , V_{TH} = -40V

Find the maximum power that can be delivered to the resistor R in the following circuit. Answer: $V_{TH} = 4V$, $R_{TH} = 3.2\Omega$, $P_{max} = 1.25W$

Problem 10

Determine the maximum power delivered to the variable resistor R shown in the circuit. Answer: $V_{th} = 8V, R_{th} = 26\Omega, p_{max} = 0.615W$

Determine the maximum power that can be delivered to the variable resistor R in the circuit. Answer: P_{max} =14.424W

