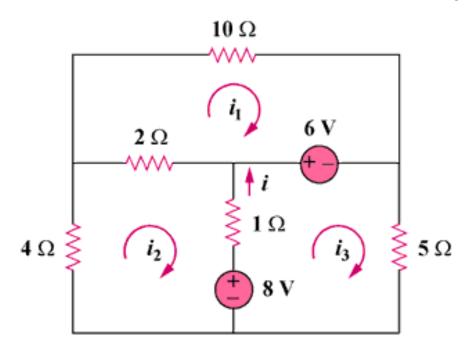

Practice 1: Form 3 mesh equations for i_1, i_2, i_3

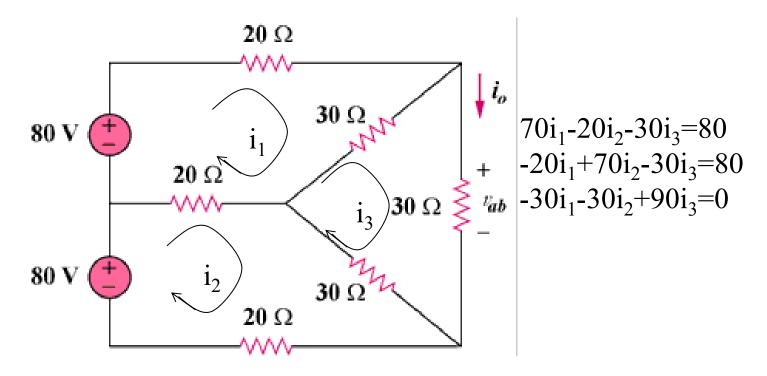

Use the short cut without assigning resistor voltages: KVL along mesh 1: $2i_1 + 6(i_1 - i_2) + 4(i_1 - i_3) - 30 = 0$ (note: i_1 terms with "+") Simplify to get $\rightarrow 12i_1 - 6i_2 - 4i_3 = 30$ (1)

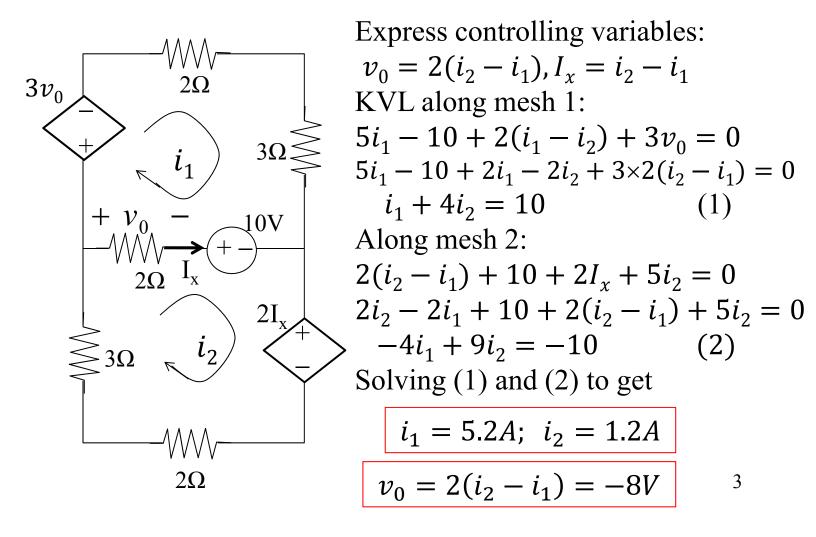
KVL along mesh 2: $6i_2 + 2(i_2 - i_3) + 6(i_2 - i_1) = 0$ (note: i_2 terms with "+") $\rightarrow -6i_1 + 14i_2 - 2i_3 = 0$ (2)

KVL along mesh 3: $2(i_3 - i_2) + 4i_3 + 4(i_3 - i_1) = 0$ (note: i_3 terms with "+") $-4i_1 - 2i_2 + 10i_3 = 0$ (3)

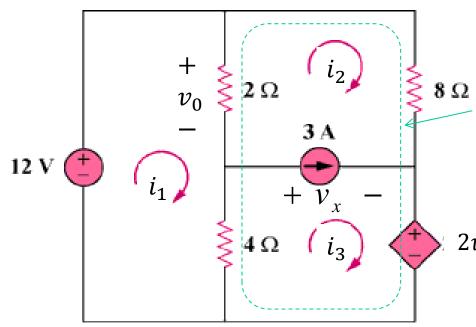
$$12i_{1} - 6i_{2} - 4i_{3} = 30$$

-6i_{1} + 14i_{2} - 2i_{3} = 0
-4i_{1} - 2i_{2} + 10i_{3} = 0


Practice 2: Form 3 mesh equations for i_1, i_2, i_3


KVL along mesh 1: $10i_1 - 6 + 2(i_1 - i_2) = 0$ (note: i_1 terms with "+") $\rightarrow 12i_1 - 2i_2 = 6$ (1) Mesh 2: $2(i_2 - i_1) + 1(i_2 - i_3) + 8 + 4i_2 = 0$ (i_2 terms with "+") $\rightarrow -2i_1 + 7i_2 - i_3 = -8$ (2) Mesh 3: $6 + 5i_3 - 8 + 1(i_3 - i_2) = 0$ (i_3 terms with "+") $\rightarrow -i_2 + 6i_3 = 2$ (3)

$$\begin{array}{l} 12i_1 - 2i_2 = 6 \\ -2i_1 + 7i_2 - i_3 = -8 \\ -i_2 + 6i_3 = 2 \end{array}$$


Practice 3: Form 3 mesh equations for i_1, i_2, i_3

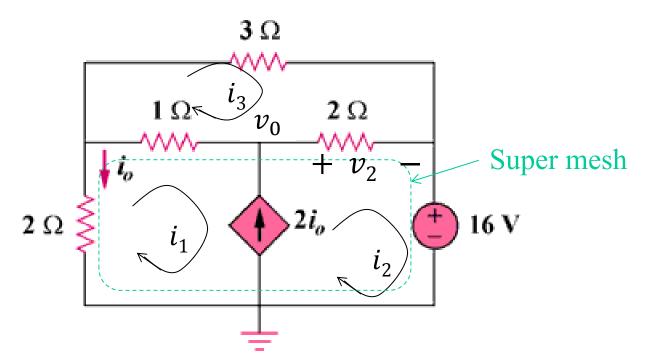
Practice 4: Find i_1 , i_2 and v_0

Practice 5: Find the mesh currents and v_x

Overview:

Due to 3A current source, a super mesh needs to be formed by combining mesh 2 and mesh 3 One equation from mesh 1 $2v_0$ One from super mesh One from 3A source

First, express controlling voltage v_0 : $v_0 = 2(i_1 - i_2)$ KVL along mesh 1: $2(i_1 - i_2) + 4(i_1 - i_3) = 12$ $\Rightarrow 6i_1 - 2i_2 - 4i_3 = 12$ (1)


Along super mesh: $2(i_2 - i_1) + 8i_2 + 2v_0 + 4(i_3 - i_1) = 0$

$$\Rightarrow 2(i_2 - i_1) + 8i_2 + 2 * 2(i_1 - i_2) + 4(i_3 - i_1) = 0$$

$$\Rightarrow -2i_1 + 6i_2 + 4i_3 = 0$$
 (2)

By the 3A current source: $i_3 - i_2 = 3$ (3)

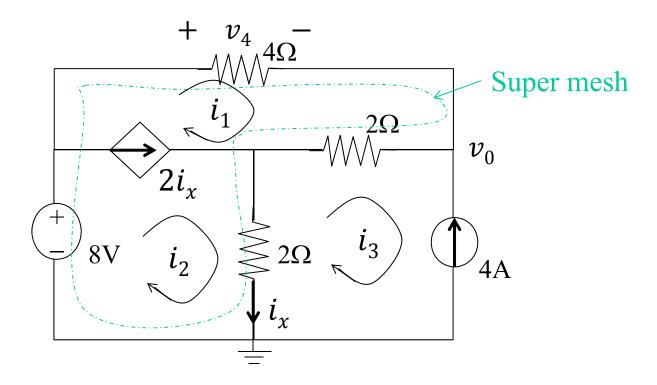
Solving (1)-(3):
$$i_1 = 3.5A$$
; $i_2 = -0.5A$; $i_3 = 2.5A$

To find v_x , apply KVL along mesh 2: $v_x = -v_0 + 8i_2 = -2(3.5 + 0.5) + 8(-0.5) = -12V$ $v_x = -12V$ Practice 6: Find i_0 and v_0 :

First, express controlling current i_0 : $i_0 = -i_1$ (0) KVL along mesh 3: $3i_0 + 2(i_0 - i_0) + (i_0 - i_1) =$

$$\Rightarrow -i_1 - 2i_2 + 6i_3 = 0$$
(1)

KVL along super mesh: $2i_1 + (i_1 - i_3) + 2(i_2 - i_3) + 16 = 0$ $3i_1 + 2i_2 - 3i_3 = -16$ (2)


By dependent current source: $2i_0 = i_2 - i_1$, plug in (0) $-2i_1 = i_2 - i_1$, $\rightarrow i_1 + i_2 = 0$ (3)

Solving (1)-(3), $i_1 = -10.667A$, $i_2 = 10.667A$, $i_3 = 1.778A$

To find v_0 , assign v_2 , then $v_0 = v_2 + 16 = 2(i_2 - i_3) + 16 = 33.778V$

$$i_0 = -i_1 = 10.667A$$

 $v_0 = 33.778V$

Practice 7: Use mesh analysis method to find i_x and v_0 :

First, notice, $i_3 = -4A$ (a)

Express controlling current i_x : $i_x = i_2 - i_3 \rightarrow i_x = i_2 + 4$ (b) KVL along super mesh: $4i_1 + 2(i_1 + 4) + 2(i_2 + 4) = 8$ $\Rightarrow 6i_1 + 2i_2 = -8$ (1)

By dependent current source: $i_2 - i_1 = 2i_x = 2(i_2 + 4)$ $\rightarrow -i_1 - i_2 = 8$ (2)

Solving (1) and (2): $i_1 = 2A$; $i_2 = -10A$

$$i_x = i_2 + 4 = -10 + 4 = 6A$$

To find v_0 , assign v_4 : $v_0 = 8 - v_4 = 8 - 4i_1 = 0V$ $v_0 = 0V$