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3.32 In aircraft control systems, an ideal pitch response ( ) versus a pitch command ( ) is 
        described by the transfer function 
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 actual aircraft response is more complicated than this ideal transfer function; nevertheless,
        the ideal model is used as a guide for autopilot design. Assume that  is the desired rise time,
 

rt
       and that

1.789                   

1 1.6                   

                   0.89
        Show that this ideal response possesses a fast settling time and minimal overshoot by plotting 
 

n
r

r

t

t

ω
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       the step response for 0.8,  1.0,  1.2, and 1.5 sec.rt =  
 
Solution: The following program statements in MATLAB produce the following plots: 
% Problem 3.32 
tr = [0.8 1.0 1.2 1.5]; 
t=[1:240]/30; 
tback=fliplr(t); 
clf; 
for I=1:4, 
    wn=(1.789)/tr(I); %Rads/second 
    tau=tr(I)/(1.6); %tau 
    zeta=0.89; % 
    b=tau*(wn^2)*[1 1/tau]; 
    a=[1 2*zeta*wn (wn^2)]; 
    y=step(b,a,t); 
    subplot(2,2,I); 
    plot(t,y); 
    titletext=sprintf('tr=%3.1f seconds',tr(I)); 
    title(titletext); 
    xlabel('t (seconds)'); 
    ylabel('Qo/Qc'); 
    ymax=(max(y)-1)*100; 
    msg=sprintf('Max overshoot=%3.1f%%',ymax); 
    text(.50,.30,msg); 
    yback=flipud(y); 
    yind=find(abs(yback-1)>0.01); 
    ts=tback(min(yind)); 
    msg=sprintf('Settling time =%3.1f sec',ts); 
    text(.50,.10,msg); 
    grid; 
end 
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3.35 Consider the two nonminimum phase systems,
2( 1)                ( )

( 1)( 2)
3( 1)( 2)                ( )

( 1)( 2)( 3)
        (a) Sketch the unit step responses for ( ) and ( ), p

sG s
s s

s sG s
s s s

G s G s

−
= −

+ +
− −

= −
+ + +

aying close attention to the transient
              part of the response.
        (b) Explain the difference in the behavior of the two responses as it relates to the zero 
              locations.
        (c) Consider a stable, strictly proper system (that is, m zeros and n poles, where ). 
              Let ( ) denote the step response of the system. The step response is said to have an
         

m n
y t

<

     undershoot if it initially starts off in the "wrong" direction. Prove that a stable, strictly
              proper system has an undershoot if and only if its transfer function has an odd number
              of real RHP zeros.
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Solution: ( ) For ( ) :
1 2( 1)                            ( ) ( )

( 1)( 2)
( )

                            ( )
( )

( )
                            lim[( ) ( )] lim
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                      Each factor ( ) or ( ) can be thought of as a complex number 
                      (a magnitude and a phase) whose pictorial representat
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p z p p
≠ ≠

−
=

− −

− −

∏ ∏
∏ ∏

ion is a vector pointing to 
                      and coming from  or  respectively.
                      The method for calculating the residue at a pole  is:
                      (1) Draw ve

i

j l

i

p
z p

p
ctors from the rest of the poles and from all the zeros to the pole .

                      (2) Measure magnitude and phase of these vectors.
                      (3) The residue will be equal to the

ip

 gain, multiplied by the product of the vectors
                            coming from the zeros and divided by the product of the vectors coming from
                            the poles.
            

0 1 2
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          In our problem:
2( 1) 1 4 3                             ( )

( 1)( 2) 1 2 1 2
                             ( ) 1 4 3t t

Rs R RY s
s s s s s s s s s
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                     For ( ) :
3( 1)( 2) 1 9 18 10                            ( )

( 1)( 2)( 3) 1 2 3
                             ( ) 1 9 18 10t t t

G s
s sY s
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               (b) The first system presents an "undershoot". The second system, on the other hand,
                     starts off in the right direction.
                     The reasons for this init

1

2

ial behavior of the step response will be analyzed in part c.
                             In ( ):        dominant at 0 the term 4
                             In ( ):        dominant at 0 t

ty t t e
y t t

−= −

= 2he term 18
               (c) The following concise proof is from [1] (see also [2]-[3]).
                     Without loss of generality assume the system has unity DC gain ( (0) 1). Since
         

te

G

−

=
            the system is stable, ( ) (0) 1, and it is reasonable to assume ( ) 0. 

                     Let us denote the pole-zero excess as . Then, ( ) and its 1 derivatives
              

y G y
r n m y t r

∞ = = ∞ ≠
= − −

       are zero at 0, and (0) is the first non-zero derivative. The system has an 
                     undershoot if (0) ( ) 0. The transfer function may be re-written as

                        

r

r

t y
y y

=

∞ <

1

1

(1 )
      ( )

(1 )

                     The numerator terms can be classified into three types of terms:
                     (1). The first group of terms are of the form (1 ) wit

m

i i
m r

i i

i

s
zG s
s
p

sα

=
+

=

−
=

−

−

∏

∏

h 0.
                     (2). The second group of terms are of the form (1 ) with 0.

i
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α

α α
>

+ >
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                     (3). Finally, the third group of terms are of the form, (1 ) with 0, and
                             could be negative.

                     However, 4 ,  so that 

i i i

i

i i

s sβ α α
β

β α

+ + >

< the corresponding zeros are complex.
                     All the denominator terms are of the form (2), (3), above. Since,
                                   (0) lim ( )

                     it i

r r

s
y s G s

→∞
=

s seen that the sign of (0) is determined entirely by the number of terms of group
                     3 above. In particular, if the number is odd, then (0) is negative and if it is even, 
       

r

r

y
y

              then (0) is positive. Since ( ) (0) 1, then we have the desired result.
                     [1] Vidyasagar, M., "On Undershoot and Nonminimum Phase Zeros," 

ry y G∞ = =
IEEE Trans. 

              , Vol. AC-31, p. 440, May 1986.
                     [2] Clark, R., N., , John Wiley, 1962.
                     [3] Mita, T. and H. Yoshid

       Automat. Contr.
Introduction to Automatic Control Systems

a, "Undershooting phenomenon and its control in linear 
                     multivariable servomechanisms, " , Vol. AC-26, pp. 
                     402-407, 1981.

IEEE Trans. Automat. Contr.

 
3.39 Suppose that unity feedback is to be applied around the following open-loop systems. Use 
        Routh's stability criterion to determine whether the resulting closed-loop systems will be stable.

3 2

2

3 2

2 3 2

4 3 2
4 3 2

4( 2)        ( ) ( )
( 2 3 4)

2( 4)        ( ) ( )
( 1)

4( 2 1)        ( ) ( )
( 2 1)

Solution:
( ) 4( 2)        ( ) ( ) ,          ( ) 2 3

1 ( ) 2 3 8 8

sa KG s
s s s s

sb KG s
s s

s s sc KG s
s s s s

KG s sa T s a s s s s
KG s s s s s

+
=

+ + +
+

=
+

+ + +
=

+ − −

+
= = = + + +

+ + + + +
4

3

2

1

0

8 8

                          :     1    3    8
                          :     2    8
                          :         
                          :     
                           :   

       

s

s
s
s a b
s c
s d

+

8 1 2 3 1 0 2 8        where 1,    8,
2 2

2 8                          24,    8

               2 sign changes in first column 2 roots not in LHP unstable.

a b

b ac d b
a

× − × × − ×
= − = − = − =

−
= − = = =

⇒ ⇒
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3 2
3 2

3

2

( ) 2( 4)        ( ) ( ) ,          ( ) 2 8 0
1 ( ) 2 8

              The Routh's array is,
                          :     1       2
                          :     1       8
        

KG s sb T s a s s s s
KG s s s s

s
s

+
= = = + + + =

+ + + +

1

0

                  :     6
                           :   8
              There are two sign changes in the first column of the Routh array. Therefore, there are two
              roots not in the LHP.

s
s

−
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3.40 Use Routh's stability criterion to determine how many roots with positive real parts the 
        following equations have.
        ( ) 10 30 80 344 480 0
        ( ) 20 78 0
Solutio

b s s s s s
d s s s

+ + + + + =

+ + + =

5 4 3 2

5

4

3

n:
        ( ) 10 30 80 344 480 0
                          :     1       30    344
                          :     10     80    480

                          :     11    148                 

b s s s s s
s
s

s

+ + + + + =

2

1

0

1( )
2
11                          :    5    44                  ( )

120
5                          :     1                              ( )

1224

                           :    1                       

s

s

s

×

− ×

×

3 2

3

2

1

1      ( )
44

             2 roots not in LHP.
        ( ) 20 78 0
                          :     1    20 
                          :     1    78

                          :    1              

d s s s
s
s

s

×

⇒

+ + + =

−

0

1                ( )
58
1                           :    1                                ( )
78

             2 roots not in LHP.

s

×

×

⇒
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3.41 Find the range of  for which all the roots of the following polynomial are in the LHP.
                        5 10 10 5  0
        Use MATLAB to verify your answer by plotting the roo

K
s s s s s K+ + + + + =

5 4 3 2

5

4

ts of the polynomial in the s-plane
        for various values of .
Solution:  5 10 10 5  0
                          :     1      10    5
                          :     5      10    
    

K
s s s s s K

s
s K

+ + + + + =

3
1 2

2
1

1
1

0

1

                      :         

                          :          
                          :                   
                           :                 

1(              Where 

s a a

s b K
s c
s K

a = − 2

2 1
1

1
2

1 2 1
1

1

10) 5(10) 1( ) 5(5) 258,     
5 5 5

5 10 55                          ,
8

350 1375                          ,
5( 55)

               For stability: all terms in first colum

K Ka

a a Kb
a

Ka a b K Kc
b K

− − −
= = − =

− +
= − =

− + −
= − = −

+

1

2

1

n  0
55               (1) 0      55

8
350 1375 ( 3.89)( 354)               (2) 0,   0      55 3.89

5( 55) 5( 55)
               (3) 0
               Combining (1), (2), and (3) 

Kb K

K K K Kc K
K K

K

>
+

= > ⇒ > −

+ − − +
= − > < ⇒ − < <

+ +
>

⇒  0 3.89. If we plot the roots of the polynomial for 
               various values of  we obtain the following root locus plot (see Chapter 5),

K
K

< <

 



8 

 
 
 
A:  Use Matlab to compute the overshoot, rise time, settling time (with respect to step response) 

for system  
)1(5.0

)5.0()( 2 ++
+

=
ss

ssH
α

α   when 1,2,4,10=α , respectively. Plot the time 

response for each case and compare the results. Choose the final time as 15 seconds.  Be careful 
that when   is small,  the step response may cross the line y=0.9 several times.   　  
 
Solution: 
% Problem 5.A 
linespec=['r','g','b','k']; 
alpha = [10 4 2 1]; 
mp=[]; ts=[]; tr=[]; 
t=[0:0.01:15]; 
clf; 
for i=1:4 
    b=[1 0.5*alpha(i)]; 
    a=0.5*alpha(i)*[1 1 1]; 
    y=step(b,a,t); 
    plot(t,y,linespec(i)); 
    hold on; 
    % Overshhoot 
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    mp=[mp (max(y)-1)*100]; 
    % Rising Time 
    yind=find(y>0.1);  
    t1=t(min(yind)); 
    yind=find(y>0.9);  
    t2=t(min(yind)); 
    tr=[tr t2-t1]; 
    % Settling Time 
    yind=find(abs(y-1)>0.01); 
    ts=[ts t(max(yind))]; 
end 
xlabel('t (seconds)'); 
ylabel('Step Response y(t)'); 
legend(sprintf('\\alpha = %d, mp = %3.1f%%, tr = %3.1f, ts = %3.1f', alpha(1), mp(1), tr(1), 
ts(1)),... 
       sprintf('\\alpha = %d, mp = %3.1f%%, tr = %3.1f, ts = %3.1f', alpha(2), mp(2), tr(2), ts(2)),... 
       sprintf('\\alpha = %d, mp = %3.1f%%, tr = %3.1f, ts = %3.1f', alpha(3), mp(3), tr(3), ts(3)),... 
       sprintf('\\alpha = %d, mp = %3.1f%%, tr = %3.1f, ts = %3.1f', alpha(4), mp(4), tr(4), ts(4))); 
grid; 
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α  = 10, mp = 16.7%, tr = 1.6, ts = 8.6
α  = 4, mp = 19.1%, tr = 1.4, ts = 8.3
α  = 2, mp = 29.8%, tr = 0.9, ts = 7.9
α  = 1, mp = 69.9%, tr = 0.5, ts = 10.3

 
 


