4.4 The DC-motor speed control in Fig. 4.38 is described by the differential equation

$$
\dot{y}+60 y=600 v_{a}-1500 w
$$

where y is the motor speed, v_{a} is the armature voltage, and w is the load torque. Assume the armature voltage is computed using the PI control law

$$
v_{a}=\left(k_{p} e+k_{I} \int_{0}^{t} e d t\right)
$$

where $e=r-y$.
(a) Compute the transfer function from W to Y as a function of k_{p} and k_{I}.
(b) Compute values for k_{p} and k_{I} so that the characteristic equation of the closed-loop system will have roots at $-60 \pm 60 \mathrm{j}$.

Figure 4.38: Unity feedback system with prePlter for Problem 4.4

Solution:

(a) Transfer function: Set $R(s)=0$, then $E(s)=-Y(s)$

$$
\begin{aligned}
& Y(s)=\frac{-600\left(k_{p}+\frac{k_{I}}{s}\right) Y(s)-1500 W(s)}{(s+60)} \\
& \frac{Y(s)}{W(s)}=\frac{-1500 s}{s^{2}+60\left(1+10 k_{p}\right) s+600 k_{I}}
\end{aligned}
$$

(b) For roots at $s_{1,2}=-60 \pm j 60$,

$$
\left\{\begin{array}{l}
s_{1}+s_{2}=-60\left(1+10 k_{p}\right)=-120 \\
s_{1} s_{2}=7200=600 k_{I}
\end{array} \quad \Rightarrow \quad k_{p}=0.1, \quad k_{I}=12\right.
$$

4.26 Consider the system shown in Fig. 4.49 with PI control.
(a) Determine the transfer function from R to Y.
(b) Determine the transfer function from W to Y.
(c) Use Routh's criteria to find the range of $\left(k_{p}, k_{I}\right)$ for which the system is stable.
(d*) Pick k_{p} and k_{I} so that the closed-loop system is stable. What is the steady state error when $r(t)=1(t)$ and $w(t)=1(t)$?

Figure 4.49: Control system for Problem 4.26
Solution:
(a) $\frac{Y(s)}{R(s)}=\frac{\frac{10}{s^{2}+s+20} \frac{k_{p} s+k_{I}}{s}}{1+\frac{10}{s^{2}+s+20} \frac{k_{p} s+k_{I}}{s}}=\frac{10\left(k_{p} s+k_{I}\right)}{s^{3}+s^{2}+10\left(2+k_{p}\right) s+10 k_{I}}$
(b) $\frac{Y(s)}{W(s)}=\frac{\frac{10}{s^{2}+s+20}}{1+\frac{10}{s^{2}+s+20} \frac{k_{p} s+k_{I}}{s}}=\frac{10 s}{s^{3}+s^{2}+10\left(2+k_{p}\right) s+10 k_{I}}$
(c) The characteristic equation is $s^{3}+s^{2}+10\left(2+k_{p}\right) s+10 k_{I}=0$. The Routh's array is

$$
\begin{array}{ccc}
s^{3}: & 1 & 10\left(2+k_{p}\right) \\
s^{2}: & 1 & 10 k_{I} \\
s^{1}: & 10\left(2+k_{p}-k_{I}\right) & \\
s^{0}: & 10 k_{I} &
\end{array}
$$

For stability we must have $k_{I}>0$ and $k_{p}>k_{I}-2$.
$\left(d^{*}\right)$ Choose $k_{I}=1, k_{p}=1$, The transfer functions become,

$$
\frac{Y(s)}{R(s)}=\frac{10 s+10}{s^{3}+s^{2}+30 s+10}, \quad \frac{Y(s)}{W(s)}=\frac{10 s}{s^{3}+s^{2}+30 s+10}
$$

Since $\frac{Y(0)}{R(0)}=1, \frac{Y(s)}{W(s)}=0$, the steady state error is 0 .
As a verification, let $r(t)=1(t)$ and $w(t)=1(t)$, using matlab, we can get the following response,

