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Abstract— In this paper, we address regional stability and
performance analysis on linear control systems with linear
anti-windup augmentation. We use LMIs to compute 1) an
upper bound for the nonlinear L2 gain, 2) an estimate of
the reachable set under norm bounded exogenous input and
3) an estimate of the domain of attraction with zero input.
The problems are studied in a general setting where the only
requirement on the closed-loop system is well-posedness and
internal stability of the linear closed-loop system.
keywords: Anti-windup systems, nonlinear L2 gain, reach-
able set, domain of attraction, LMIs

I. INTRODUCTION

Input saturation has always existed in control systems
even though it did not always receive sufficient attention.
The reason for its being seemingly ignored during some
periods of the development of control theory is largely due
to the lack of efficient tools to take the theoretical challenges
that it raises. Over the last decade tremendous attention has
been given to control systems with input saturation and
significant advances have been reported in the literature,
mostly fueled by the developments in robustness and H∞
theory, and the more recent LMI optimization techniques.

With fully-developed optimization tools available for
linear systems, we are tempted to use these tools on systems
with saturating actuators. At least the closed-loop system
will be well behaved and predictable around its normal
range of operation where saturation does not occur. The
remaining issues are how to assess the performance when
the system is driven off its normal range of operation and
how to counteract the effect of saturation to minimize global
performance degradation. The second issue has motivated
the construction of anti-windup compensators.

Anti-windup compensators are intended to maintain the
performances of a linear control system in the local operat-
ing range, while guaranteeing global stability or minimizing
the degradation of the global performance. The main idea
is to introduce correction terms (only when saturation
occurs) in the controller equations to counteract the effect of
saturation. The construction of the correction term from the
difference between the input and the output of the actuator
involves a lot of design freedom and has gone through
decades of evolution.
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Earlier anti-windup compensators were constructed
heuristically from experience and simulations. Over the last
decade, systematic approaches have been proposed based
on robustness and H∞ optimal control [3], [4], [6], [13],
[17], and extensive numerical design algorithms have been
developed based on LMI optimization tools [1], [2], [5], [8],
[10], [9], [16], [14], [15], [19]. Among these papers, [15]
studied the general case where the controller is dynamic,
the exogenous input directly enters the actuator and there
is a correction term in the output equation of the controller.
In [15], static anti-windup compensator was constructed
for global stabilization and reduced L2 gain performance.
These synthesis problems were first cast as convex opti-
mization problems with LMI constraints for the general
case. Further more, it was shown with an example that
the correction term in the output equation of the controller
may help to reduce the global L2 gain significantly from
what could be achieved by earlier design methods where
this correction term was absent.

The recent work [8] reached further by constructing
dynamic anti-windup compensators for reduced global L2

gain. The synthesis problems were also formulated as
convex optimization problems with LMI constraints (when
the order of the compensator is no less than that of the
plant). Moreover, numerical examples show that dynamic
compensation may achieve much better performance recov-
ery than static compensation.

Another significant contribution of [8] is the justification
of the original intention of introducing anti-windup com-
pensation through rigorous theoretical analysis rather than
through numerical demonstration. It was concluded that, for
a configuration with exponentially stable plants and stabi-
lizing linear controller, the global L2 gain can always be
made a finite value by designing the dynamic anti-windup
compensator with the algorithm developed in the paper. This
conclusion promises global stability before the anti-windup
compensator is constructed, even before the linear controller
is designed, thus giving us full confidence in designing a
linear controller for the best local performances.

While the boundedness of the global L2 gain gives us a
guaranteed global performance of the closed-loop system, it
might be conservative for practical situations where the L2

norm of the exogenous input is bounded below a known
constant. On the other hand, for plants which are not
exponentially stable, the global L2 gain does not exist and
we would also like to determine the L2 gain for a class
of norm bounded inputs. It is certain that the L2 gain will
diverge to infinity at certain bound on the input norm for
exponentially unstable plants. The objective of designing
anti-windup compensators is to enlarge this bound. More-
over, a global L2 gain may fail in characterizing the anti-
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windup compensation performance when operating in the
small to medium signals range, because worst case signals
that are unreasonably large may enforce bounds that are
overly conservative (see the first of our examples). These
situations motivate us to characterize the nonlinear L2 gain
for general systems with anti-windup augmentation.

An attempt to characterize the L2 gain for norm bounded
inputs has been made in [18] for systems that may include
exponentially unstable plants. This paper contains no ex-
plicit algorithm to compute the L2 gain and the main result
is based on the assumption that the deadzone function lies
within a sector [0,K] with K < I during the operation of
the system as long as the input norm is below a certain
bound (Such an assumption is also made in some other
papers to explain how the global results can be adapted
for regional synthesis). The relation between K and the
bound on inputs is left unresolved except for a special case.
However, for the general case where the exogenous input
directly enters the actuator, the input of the actuator can be
arbitrarily large at certain instant and there exists no K < I
such that the deadzone function can be bounded by [0,K],
even if the L2norm of the exogenous input is arbitrarily
small. It is therefore clear that, for a general anti-windup
configuration, the idea of using a narrowed sector to replace
the global sector [0, I] for regional performance analysis
will not go through.

In this paper, we will generalize and enhance the tool
developed in [12], [11] (also used in [1], [2], [7], [5], [16])
for dealing with saturation and deadzone nonlinearities. This
tool has been proved more effective and flexible than the
conventional idea of bounding the saturation (or deadzone)
with a conic sector smaller than [0, I]. As a matter of
fact, the condition for regional quadratic stability developed
using this tool is less conservative than that obtained with
the conventional method. Moreover, the condition can be
stated with LMIs. In [12], [11], [1], [2], [7], [5], the input to
the saturating actuator is a linear function Fx. In this paper,
we will consider more complicated situations where the
input to the actuator could be a nonlinear function (resulting
from an algebraic loop) of the augmented state and of the
exogenous input.

The main objective of this paper is to characterize
the nonlinear L2 gain and the reachable set for a gen-
eral anti-windup system where the only assumptions are
well-posedness and local stability. While determining the
reachable set is a meaningful problem by itself, it also
facilitates the characterization of the nonlinear L2 gain. For
completeness, we will also include results for the estimation
of the domain of attraction for closed-loop systems that
are not globally stable. This problem has been studied in
[1], [2], [5] for cases where the input of the saturation
depends linearly on the state. In this paper, we will deal
with the general case where there may exist algebraic loops
in the anti-windup configuration. Under such a situation, the
relation between the state and the input to the actuator is
nonlinear and may not be explicitly described.

This paper is organized as follows. Section II describes
the anti-windup system and present three problems to be
studied in the paper. Section III presents three main results
including the characterization of the nonlinear L2 gain,

the reachable sets and the estimation of the domain of
attraction. Section IV uses an example to demonstrate the
main results.
Notation For compact presentation of matrices, given a
square matrices X and P = P T > 0, we denote HeX :=
X + XT and E(P ) := {x : xT Px ≤ 1}.

II. PROBLEM STATEMENT

Consider a linear plant,

P
⎧⎨
⎩

ẋp = Apxp + Bp,uu + Bp,ww
y = Cp,yxp + Dp,yuu + Dp,yww
z = Cp,zxp + Dp,zuu + Dp,zww

(1)

where xp ∈ R
np is the plant state, u ∈ R

nu is the control
input, w ∈ R

nw is the exogenous input (possibly containing
disturbance, reference and measurement noise), y ∈ R

ny is
the measurement output and z ∈ R

nz is the performance
output. Assume that an unconstrained controller has been
designed,

C
{

ẋc = Acxc + Bc,yy + Bc,ww + v1,
yc = Ccxc + Dc,yy + Dc,ww + v2,

(2)

where xc ∈ R
nc is the controller state and yc ∈ R

nu is the
controller output, v1 and v2 will be used for anti-windup
augmentation. In the case without plant input saturation
(therefore, without any anti-windup compensation), the so-
called unconstrained closed-loop is formed by setting

u = yc, v1 = 0, v2 = 0. (3)

For our study we will assume that the unconstrained closed-
loop system satisfies the following property.

Assumption 1: The unconstrained closed-loop system
(1), (2), (3) is well posed and internally stable.

In the presence of actuator saturation, the relation be-
tween u and yc is described as u = sat(yc), where
sat(·) : R

m → R
m is a symmetric decentralized saturation

function with its ith component depending on the ith input
component yci as follows:

ui = satūi
(yci) =

⎧⎨
⎩

ūi, if yci ≥ ūi,
yci, if − ūi ≤ yci ≤ ūi,
−ūi, if yci ≤ −ūi.

(4)

To avoid or to minimize performance degradation caused by
saturation, the closed-loop system can be augmented with
the following anti-windup compensator

AW
{

ẋaw = Aawxaw + Baw(sat(yc) − yc)
v = Cawxaw + Daw(sat(yc) − yc),

(5)

where v =
[

v1

v2

]
, and the unconstrained interconnection

(3) is replaced by the following anti-windup interconnection

u = sat(yc). (6)

The resulting nonlinear closed-loop (1), (2), (5), (6) is
depicted in Figure 1 and will be denoted anti-windup
closed-loop henceforth and its state will be denoted by
x := [xT

p xT
c xT

aw]T .
Stability and performance of the anti-windup closed-

loop are usually studied by using the conic sector [0, I]
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Fig. 1. The linear anti-windup closed-loop system.

to describe the saturating actuator (e.g.,[8], [15]). This
description may be conservative when the system operates
in a bounded region of the state space, for instance, when
the L2 norm of w is bounded by a known value. Attempt
has been made in [18] to characterize the L2 gain for norm
bounded w by replacing the sector [0, I] with a smaller
one [0,K] where 0 < K < I . It was expected that this
K could be obtained or estimated for a class of w such
that ‖w‖2 ≤ s. However, this approach will not work
for the general situation where the disturbance directly
enters the actuator, i.e., when Dcw + DcyDpyw �= 0. Under
this situation, yc contains the disturbance and it can take
arbitrarily large value for any number s. As a result, there
exists no sector [0,K] with K < I to contain the saturation
nonlinearity.

This paper will use a tool originally developed in [12],
[11] to deal with saturation and deadzone functions. The
main idea of the tool is as follows. For a scalar saturation
function satū(·), if |v| ≤ ū then satū(u) is between u
and v for all u ∈ R. Applying this tool to deal with the
saturating actuator in Figure 1, we will have satūi

(yci)
between yci and Hix as long as |Hix| ≤ ūi. Here x is the
combined state in Figure 1 and Hi can be any row vector
of appropriate dimension. It turns out that the choice of Hi

can be incorporated into LMI optimization problems.
To use this new tool of dealing with saturation, the crucial

point is to guarantee that |Hix| ≤ ūi is satisfied during the
operation of the closed-loop system in Figure 1. This means
that we need to find a subset of the combined state space
to confine all the possible trajectories (as tight as possible)
for a class of norm bounded w. In other words, for the
purpose of evaluating the L2 gain for norm bounded w,
it is important to characterize the reachable set. Here we
should remark that characterizing the reachable set is itself
a meaningful problem for a system which has a desirable
operating region of the state.

For a configuration in Figure 1 which is not globally
asymptotically stable, another important problem is to es-
timate the domain of attraction. This problem has been
addressed in [1], [2], [5] for relatively simpler situations
where there exist no algebraic loop.

Based on the aforementioned motivations, we propose to
address the following problems in this paper:

Problem 1: Given the anti-windup closed-loop (1), (2),
(5), (6). For s > 0, determine an estimate of the reachable
set from bounded inputs, namely a set R, such that with
x(0) = 0, we have

x(t) ∈ R ∀t ≥ 0,

for all ‖w‖2 ≤ s, where ‖ · ‖2 represents the L2 norm of

its argument.
Problem 2: Given the anti-windup closed-loop (1), (2),

(5), (6), determine a nonlinear L2 gain from w to z, namely
a nondecreasing function γ(·) : R → R, such that the
following holds:

‖z‖2 ≤ γ(‖w‖2) · ‖w‖2. (7)
Problem 3: Given the anti-windup closed-loop (1), (2),

(5), (6), determine a set S, as large as possible, such that
with w = 0, lim

t→∞x(t) = 0 for all x(0) ∈ S.

III. MAIN RESULTS

For the statement of our main results, it is useful to define
the deadzone function dz(·) : R

nu → R
nu as

dz(yc) := yc − sat(yc).

The ith component of dz, denoted as dzūi
, depends only

on yci,
dzūi

(yci) = yci − satūi
(yci).

Based on this deadzone function, the anti-windup closed-
loop system of Figure 1 can be represented in the following
compact form, graphically represented in Figure 2:

H

⎧⎪⎨
⎪⎩

ẋ = Ax + Bqq + Bww
yc = Cyx + Dyqq + Dyww
z = Czx + Dzqq + Dzww
q = dz(yc) .

(8)

where x = [xT
p xT

c xT
aw]T ∈ R

n, n = np + nc + naw

and, by Assumption 1, the matrices appearing in (8) are
uniquely defined based on the plant, controller and anti-
windup matrices of (1), (2), (5), by equations (9), shown at
the top of next page, where ∆u := (I −Dc,yDp,yu)−1 and
∆y := (I −Dp,yuDc,y)−1, and Daw1,Daw2 correspond to
v1 and v2, respectively.

H
w

q yc

z

dz

Fig. 2. Compact representation of the anti-windup closed-loop system.

Based on the compact representation (8) we are now
ready to state our main results, whose proofs are omitted
due to space constraints.

Theorem 1: (Reachable set by bounded inputs) Given
Q = QT > 0 and s > 0. For the anti-windup closed-loop
(1), (2), (5), (6), with x(0) = 0, we have

x(t) ∈ E(Q−1/s2), (10)

for all w such that ‖w‖2 ≤ s if there exist a diagonal
U ∈ R

nu , U > 0 and Y ∈ R
nu×n such that

He

⎡
⎣ AQ BqU Bw

CyQ−Y −U+ DyqU Dyw

0 0 − I
2

⎤
⎦ ≤ 0 (11)

⎡
⎣ ū2

i

s2
Yi

Y T
i Q

⎤
⎦ ≥ 0, i = 1, . . . , nu, (12)
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⎡
⎣ A

Cy

Cz

⎤
⎦ =

⎡
⎢⎢⎢⎣

Ap + Bpu∆uDcyCpy Bpu∆uCc Bpu∆uCaw2

Bcy∆yCpy Ac + Bcy∆yDpyuCc Caw1 + Bcy∆yDpyuCaw2

0 0 Aaw

∆uDcyCpy ∆uCc ∆uCaw2

Dpzu∆uDcyCpy + Cpz Dpzu∆uCc Dpzu∆uCaw2

⎤
⎥⎥⎥⎦ (9a)

⎡
⎣ Bq Bw

Dyq Dyw

Dzq Dzw

⎤
⎦ =

⎡
⎢⎢⎢⎣

−Bpu∆u + Bpu∆uDaw2 Bpw + Bpu∆u(DcyDpyw + Dcw)
−Bcy∆yDpyu + Daw1 + Bcy∆yDpyuDaw2 Bcw + Bcy∆y(DpyuDcw + Dpyw)

Baw 0
I − ∆u + ∆uDaw2 ∆u(Dcw + DcyDpyw)

−Dpzu∆u + Dpzu∆uDaw2 Dpzw + Dpzu∆u(DcyDpyw + Dcw)

⎤
⎥⎥⎥⎦ (9b)

where Yi is the ith row of Y .
Under conditions (11) and (12), an estimate of the reach-

able set is given by E(Q−1/s2). Since smaller estimates
are desirable, we may formulate an optimization problem
to minimize the size of E(Q−1/s2) under the constraints
(11) and (12), which are LMIs in Q, Y and U . There are
different measures of size for ellipsoids, such as the trace
of Q and the determinant of Q, among which the trace of
Q is a convex measure and is much easier to handle.

In practical application, we may be interested to know the
range of a certain state or an output during the operation
of the system. For instance, given a row vector C ∈ R

1×n,
we would like to determine the maximal value of |Cx(t)|
for all t ≥ 0. Since x(t) ∈ E(Q−1/s2), the maximal value
of |Cx(t)| is less than

ᾱ := (max{xT CT Cx : xT (s2Q)−1x ≤ 1})1/2

= min{α : CT C ≤ α2(s2Q)−1}
= min{α : CQCT ≤ α2/s2}.

To minimize ᾱ, we can minimize α such that CQCT ≤
α2/s2 with Q satisfying (11) and (12). With α determined
this way, we have |Cx(t)| ≤ α for all t. We may choose
different C’s, such as Ci, i = 1, 2, · · · , N , and obtain a
bound αi on |Cix(t)| for each i. The polytope formed as
{x ∈ R

n : |Cix| ≤ αi, i = 1, · · · , N} will also be an
estimate of the reachable set.

Theorem 2: (Nonlinear L2 gain) Given the anti-windup
closed-loop (1), (2), (5), (6). For s > 0, define

γ(s) := min
Q,U,Y,γ

γ, subject to

He

⎡
⎢⎢⎣

AQ BqU Bw 0
CyQ−Y −U+ DyqU Dyw 0

0 0 − I
2 0

CzQ DzqU Dzw −γ2

2 I

⎤
⎥⎥⎦<0 (13)

⎡
⎣ ū2

i

s2
Yi

Y T
i Q

⎤
⎦ ≥ 0, i = 1, . . . , nu, (14)

where U > 0 is diagonal and Q = QT > 0. Then γ :
R>0 → R>0 is nondecreasing and satisfies the nonlinear
L2 bound (7).

Remark 1: If we set Y = 0, then the constraint (14)
vanishes and (13) is equivalent to (10a) of [8], which
characterizes the global finite L2 gain γG of the anti-windup
closed-loop system. Hence γ(·) is always smaller than the

global finite L2 gain. Moreover, γ(s) → γG as s → +∞.
As a matter of fact, as s → +∞, (14) enforces Y → 0. ◦

Remark 2: If Dyw = 0, and if there exists a diagonal
U0 such that −2U0 + DyqU0 + U0D

T
yq < 0, then for

sufficiently small s, γ(s) coincides with the L2 gain of the
unconstrained closed-loop system (1), (2), (3) (namely, the
linear closed-loop system when the anti-windup correction
is not in operation). This can be seen as follows. Let γ0 be
any number strictly larger than the L2 gain of the closed-
loop linear system, which is simply obtained by setting
q = 0 in (8). Then there exists Q = QT > 0 such that

He

⎡
⎣ AQ Bw 0

0 − I
2 0

CzQ Dzw −γ2
0
2 I

⎤
⎦ < 0

If we set Y = CyQ, then (14) is satisfied with s sufficiently
small. Moreover, the right-hand side of (13) with γ replaced
with γ0 is equivalent to (with permutation)

He

⎡
⎢⎢⎣

AQ Bw 0 BqU
0 − I

2 0 0
CzQ Dzw −γ2

0
2 I Dz,qU

0 0 0 −U + DyqU

⎤
⎥⎥⎦ < 0,

which, by Schur complement can be satisfied by letting U =
εU0 for sufficiently small ε. (Note: the existence of such
a U0 guarantees the well-posedness of the unconstrained
closed-loop – see [8] for details). ◦

Remark 3: The property in Remark 2 is generally not
true if Dyw �= 0. One may expect that for sufficiently small
s, the state of the system will stay in a small neighborhood
of the origin and the anti-windup correction should not be in
effect. This misconception needs to be clarified. Although
it is certain that the state will stay in a small neighborhood
of the origin, the input of the actuator, yc, can be arbitrarily
large even if the L2 norm of w is sufficiently small, so that
saturation will be activated and the L2 gain will be larger
than that of the unconstrained closed-loop system. ◦

Theorem 3: (Estimation of the domain of attraction)
Given Q = QT > 0, define V (x) = xT Q−1x. For the
anti-windup closed-loop (1), (2), (5), (6), with w ≡ 0, we
have V̇ < 0 for all x ∈ E(Q−1) \ {0} if there exist a
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diagonal U ∈ R
nu , U > 0 and Y ∈ R

nu×n such that

He
[

AQ BqU
CyQ−Y −U+ DyqU

]
< 0 (15)

[
ū2

i Yi

Y T
i Q

]
≥ 0, i = 1, . . . , nu (16)

In contrast to the reachable set, larger estimate of the
domain of attraction is desirable. We may formulate differ-
ent LMI optimization problems to maximize E(Q−1) with
respect to different measures of set size, such as the trace
of Q and the determinant of Q. We may also choose a
group of vectors xi ∈ R

n, i = 1, 2, · · · , N and formulate
a problem to maximize α such that αxi ∈ E(Q−1) for
i = 1, 2, · · · , N .

IV. EXAMPLES

Example 1: Consider the simple damped mass-spring
system used in [19]. The plant matrices for this example
are given by

⎡
⎣ Ap Bp,u Bp,w

Cp,y Dp,yu Dp,yw

Cp,z Dp,zu Dp,zw

⎤
⎦

=

⎡
⎢⎣

0 1 0 0
−6.667 −0.007 8.333 0
−1 0 0 0
−1 0 0 1

⎤
⎥⎦ ,

which arise from choosing the following parameters in the
mass-spring system commented in [19]:

m = 0.12 kg, k = 0.8
kg

s2
, f0 = 0.0008

kg

s
.

The unconstrained controller is selected according to the
two degree of freedom design strategy given in [19]. The
resulting matrices using the notation in (2)’s is

[
Ac Bc,y Bc,w

Cc Dc,y Dc,w

]

=

⎡
⎢⎣

−2.5 0 0 0 1.5811
193.65 −80 19.365 122.47 0

50 0 0 31.623 0
316.23 −122.47 31.623 200 0

⎤
⎥⎦ ,

so that the input w corresponds to a reference signal
r for the mass position, and the performance output z
corresponds to the tracking error z = r − y (with y being
the mass position).

The interesting peculiarity of this example is that both
static and dynamic anti-windup designs leading to finite
global L2 gain of the closed-loop can be determined using
the algorithms in [8], [15]. In particular, the static anti-
windup compensation scheme leads to the following gain

Daw =
[ −0.2658 0.32596 3.775 0.99

]T
,

which induces a global L2 gain of 64.43 on the compen-
sated closed-loop. The dynamic anti-windup compensation

construction leads to the following plant-order compensator[
Aaw Baw

Caw Daw

]

=

⎡
⎢⎢⎢⎢⎢⎣

0.011673 3.9564 −0.9775
−1.5433 −305.42 −0.11299

0.00056336 0.0025947 −0.0036511
4.1806 0.039359 −0.011064
1.0731 −0.019946 0.034351
6.8492 −1.1084 0.99

⎤
⎥⎥⎥⎥⎥⎦

,

which, by way of the extra degrees of freedom available
in dynamic anti-windup design is able to improve the finite
L2 gain of the closed-loop to 34.5.
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Fig. 3. Response of the system in Example 1.

Surprisingly, the simulation results reported in Figure 3
show that the compensation arising from the static anti-
windup compensation (solid) is extremely more desirable
than the compensation arising from the dynamic anti-
windup compensation scheme (dashed). Indeed, the dashed
curve converges to the desired set point at an extremely slow
rate, whereas static anti-windup reaches the set-point quite
rapidly. Global finite L2 gain analysis, however, predicted
that the former should have performed better than the latter,
due to its reduced closed-loop L2 gain.
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Fig. 4. Nonlinear L2 gains for the system in Example 1.

A possible explanation for this unexpected behavior can
be found when looking at the nonlinear L2 gain character-
izing the two compensation schemes. In particular, Figure 4
compares the nonlinear L2 gain for the scheme with static
anti-windup (solid) to the nonlinear L2 gain for the scheme
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with dynamic anti-windup (dashed). While for large signals
the dynamic scheme improves upon the static one, in the
intermediate signal range, that we are interested in, the static
scheme is characterized by an improved regional L2 gain,
which predicts the simulation results shown in Figure 3.

In light of the nonlinear curves of Figure 4, it is now clear
why the simulations of Figure 3 lead to such a surprising
result. (Note that for those simulations, the input w corre-
sponds to ‖w‖2 =

√
15 · 0.82 ≈ 3.) This is one example

where nonlinear L2 gains are necessary to appropriately
characterize the L2 performance of anti-windup closed-loop
systems operating within a reasonable signal range.

Example 2: We take an example that has been used in
[15]. The plant (1) has the following matrices⎡

⎣ Ap Bp,u Bp,w

Cp,y Dp,yu Dp,yw

Cp,z Dp,zu Dp,zw

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−0.01 0 1 0 0 0
0 −0.01 0 1 0 0

0.4 −0.5 0 0 0 0
−0.3 0.4 0 0 0 0

0.4 −0.5 0 0 −1 0
−0.3 0.4 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

The controller (2)’s matrices are[
Ac Bc,y Bc,w

Cc Dc,y Dc,w

]

=

⎡
⎢⎣

0 0 −1 0 1 0
0 0 0 −1 0 1

0.020 0.025 −2 −2.5 2.0 2.5
0.015 0.020 −1.5 −2 1.5 2.0

⎤
⎥⎦

The L2 gain for the linear unconstrained closed-loop
system is 1. An upper bound of the L2 gain resulting from
the static anti-windup design in [15] is 1.55. A particular
anti-windup gain achieving this is

Daw =

⎡
⎢⎣

−1.4123 −1.0593
−1.7654 −1.4124
−6.2381 −5.6498
−5.6492 −3.4139

⎤
⎥⎦

An upper bound for the nonlinear L2 gain under this
particular static anti-windup is plotted in Fig. 5 as a function
of ‖w‖2 (solid curve). An upper bound for the L2 gain of
the closed-loop system without anti-windup compensation
is plotted in dashed curve as comparison. Actually, the
upper bound for the L2 gain is bounded for bounded ‖w‖2

and it grows at a rate about 2.84 as ‖w‖2 goes to infinity.

V. CONCLUSIONS

In this paper we have addressed tools for regional stability
and nonlinear performance analysis of linear closed-loop
systems with linear anti-windup augmentation. Construc-
tive techniques for numerical estimation of several closed-
loop properties are given and illustrated on two simulation
examples. The examples illustrate cases where nonlinear
gains are mandatory for a correct interpretation of the
performance achieved by the closed-loop with anti-windup
compensation.
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