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Abstract— In a companion paper [14], we developed a sys-
tematic Lyapunov approach to the regional stability and per-
formance analysis of saturated systems via quadratic Lyapunov
functions. The corresponding conditions are expressed in terms
of LMIs but can be too conservative in some cases. To obtain
less conservative conditions, we use in this paper two types
of conjugate Lyapunov functions: the convex hull quadratic
function and the max quadratic function. These functions yield
bilinear matrix inequalities (BMIs) as conditions for stability
and guaranteed performance level. The BMI conditions cover
the LMI conditions for quadratic stability as special cases
and hence the reduction of conservativeness is guaranteed.
A numerical example demonstrates the effectiveness of this
paper’s methods and the great potential of the non-quadratic
Lyapunov functions.
keywords: saturation, deadzone, nonlinear L2 gain, reach-
able set, domain of attraction, Lyapunov functions.

I. INTRODUCTION

Saturation nonlinearities are very common in control sys-
tems. The development of analysis and synthesis tools for
stability and performance within this context has captured
increasing attention from the control community in the past
ten years (see the companion paper [14] for some key refer-
ences in this field). One important approach to characterizing
stability and performances for systems with saturation is
the Lyapunov approach. Generally the Lyapunov approach
consists of two main steps. In the first step the saturation
or the deadzone functions are bounded locally or globally
with sectors. As a result, the system is described with a
linear differential inclusion (LDI). In the second step, the LDI
or the system satisfying a sector condition is analyzed with
tools based on (or extended from) absolute stability theory
which uses Lyapunov functions to characterize stability or
performances.

Many existing results on systems with saturation adopt
the Lyapunov approach and most of them use quadratic
Lyapunov functions. While significant results have been
developed for the characterization of global stability and
L2 gain, more recent efforts have been devoted to regional
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stability and performance analysis (see the extensive refer-
ences in [14]). For example, in our recent work [13], we
characterized nonlinear L2 gains for saturated systems, and
used an example to illustrate that the global characterization
of the L2 gain can be misleading when the system operates
within a bounded region. The regional performance analysis
in [13] was made possible through an effective tool of
describing a saturated system with a parameterized LDI. In
our companion paper [14], we enhanced the LDI description
by proposing two forms of parameterized LDIs. One of them
is polytopic LDI (PLDI) and the other is norm-bounded LDI
(NLDI). The NLDI is derived from the PLDI and is generally
more conservative but could be easier to handle in some
cases. It turns out that the analysis results based on the NLDI
is equivalent to those in [13]. With these LDI descriptions,
there is yet another great potential to be explored in the
second step about the analysis of LDIs. It is now generally
accepted that quadratic Lyapunov functions could be very
conservative even for stability analysis of LDIs (see, e.g., [3],
[5], [15]). For this reason, considerable attention has been
paid to the construction and development of non-quadratic
Lyapunov functions (e.g., see [1], [2], [3], [15], [16], [17],
[20]). In [18], piecewise quadratic Lyapunov functions were
used for the study of saturated systems.

Recently, two types of conjugate Lyapunov functions have
both demonstrated a great potential in the analysis of LDIs
and saturated linear systems [7], [6], [9], [12]. One is called
the convex hull quadratic function since its level set is the
convex hull of a family of ellipsoids. The other is called
max quadratic function since it is obtained by taking the
pointwise maximum over a family of quadratic functions
and its level set is the intersection of a family of ellipsoids.
Some conjugate relationships about these two functions were
established in [7], [6]. Since these functions are natural
extensions to quadratic functions, they can also be used to
perform quantitative performance analysis beyond stability,
such as to estimate the L2 gain, the reachable set, and the
dissipativity, for LDIs. A handful of dual bilinear matrix
inequalities (BMIs) have been derived for these purposes
in [6]. As compared to the corresponding LMIs resulting
from quadratic Lyapunov functions, these BMIs contain extra
degrees of freedom in the bilinear terms, which are injected
through the non-quadratic functions. Experience with low
order systems shows that these BMIs can be effectively
solved with the path-following method in [8]. Although it is
possible that numerical difficulties may arise for higher order
systems, the great potential of these non-quadratic Lyapunov
functions has been demonstrated in [7], [6], [12] through
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a set of numerical examples. In this paper, we will use
these two conjugate Lyapunov functions to enhance regional
performance analysis of saturated systems.

This paper is organized as follows. In Section I-A we
describe the problems to be studied and briefly summarize
the key tools developed in [14] which are crucial to the
description of a saturated system with Polytopic Differential
Inclusions (PDI). Section II contains the main results on the
characterization of stability and performances via the two
non-quadratic Lyapunov functions. Section III uses the same
example from [14] to show that tighter estimations of the
nonlinear L2 gain can be achieved by using the non-quadratic
functions. The paper is concluded with proofs of key and
technical results.

Notation
- I[k1, k2]: For two integers k1, k2, k1 < k2, I[k1, k2] =
{k1, k1 + 1, · · · , k2}.
- sat(·): The standard saturation function. For u ∈ R

m,
[sat(u)]i = sign(ui)min{1, |ui|}.
- dz(u): The deadzone function, dz(u) = u − sat(u).
- co S: The convex hull of a set S.
- HeX: For a square matrix X , HeX := X + XT .
- E(P ): For P ∈ R

n×n, P = PT > 0,

E(P ) := {x ∈ R
n : xT Px ≤ 1}.

- L(H): For H ∈ R
m×n,

L(H) := {x ∈ R
n : |Hx|∞ ≤ 1} .

About the relationship between E(P ) and L(H), for a
given s > 0, we have (see, e.g., [11]),

sE(P ) ⊂ L(H) ⇐⇒

[

1/s2 H`

HT
` P

]

≥ 0 (1)

for all ` ∈ I[1,m], where H` is the `th row of H .

A. Problem statement

The type of closed-loop system that we address in this
paper corresponds to the following general representation of
a linear system subject to saturation:















ẋ = Ax + Bqq + Bww
y = Cyx + Dyqq + Dyww
z = Czx + Dzqq + Dzww
q = dz(y) .

(2)

where x ∈ R
n, q, y ∈ R

m, w ∈ R
r, z ∈ R

p and “dz” is the
standard vector-valued deadzone function. This system can
be graphically depicted as in Fig. 1, where w is the exoge-
nous input or disturbance and z is the performance output.
Many linear systems with saturation/deadzone components

H

w

q yc

z

dz

Fig. 1. Compact representation of a system with saturation/deadzone.

can be transformed into the above general form through
loop transformation. Due to this fact, this type of closed-
loop system has received great attention from the control
community over the past decade. In most of the literature,
various restrictive assumptions are made on the general con-
figuration (2), such as the absence of algebraic loops (namely,
Dyq = 0), or the exponential stability of certain subsystem
(typically, an open-loop plant driven by saturated signals),
and so on. More detailed discussions on the background can
be found in our companion paper [14]. What distinguishes
our current effort from most of the existing results is that
the only assumptions we make on system (2) are that A
is Hurwitz and that the nonlinear algebraic loop is well
posed (these are clearly basic requirements for the system
to be functional). In [14], great attention has been devoted
to the characterization of the well-posedness of (2) and
the development of two forms of parameterized differential
inclusions for (2): the polytopic differential inclusion (PDI)
and the norm-bounded differential inclusion (NDI). In this
paper, we will continue to use the PDI description, which is
summarized in the following proposition.

Proposition 1: (Polytopic differential inclusion (PDI))
Let {Ki : i ∈ I[1, 2m]} be the set of diagonal m×m matrices
with 0 or 1 at the diagonal elements. For i ∈ I[1, 2m], denote

Ti = (I − KiDyq)
−1Ki,

Ai = A + BqTiCy, Bi = Bw + BqTiDyw,

Ci = Cz + DzqTiCy, Di = Dzw + DzqTiDyw.

Let h : R
n → R

m be a given map and let h` be the `th
component of h. For system (2), if |h`(x)| ≤ 1 for all ` ∈
I[1,m], then
[

ẋ
z

]

∈ co
i∈I[1,2m]

{[

Aix + Biw − BqTih(x)
Cix + Diw − DzqTih(x)

]}

. (3)

The NDI description in [14] is more conservative than (3)
but may simplify the computation under certain situations.
However, we will not consider the NDI description in this
paper since detailed investigation reveals that the two non-
quadratic Lyapunov functions will yield the same results as
those by quadratic functions when NDIs are concerned.

We will consider the same stability and performance
analysis problems as in [14]. Instead of using quadratic
Lyapunov functions as in [14], we will apply non-quadratic
Lyapunov functions to address the following problems:

1. Estimation of the domain of attraction: (in the absence
of w) by using invariant level sets of the non-quadratic
Lyapunov functions.

2. Estimation of the nonlinear L2 gain from w to z: With
‖w‖2 ≤ s for a given s, we would like to determine
a number γ > 0 as small as possible, so that under
the condition x(0) = 0, we have ‖z‖2 ≤ γ‖w‖2.
Performing this analysis for each s ∈ (0,∞), we obtain
an estimate of the nonlinear L2 gain.

3. Estimation of the reachable set (from L2 bounded
inputs): With a given bound on the L2 norm of w, i.e,
‖w‖2 ≤ s for a given s, we would like to determine a
set S as small as possible so that under the condition
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x(0) = 0, we have x(t) ∈ S for all t. This set S will
be considered as an estimate of the reachable set.

II. ANALYSIS WITH NON-QUADRATIC LYAPUNOV

FUNCTIONS

In this section, we will use a pair of conjugate functions,
the convex hull quadratic function and the max quadratic
function to perform stability and performance analysis of
system (2). We first review some results about this pair of
conjugate functions.

A. The max quadratic function and the convex hull quadratic
function

Given a family of positive definite matrices Pj ∈
R

n×n, Pj = PT
j > 0, j ∈ I[1, J ], the pointwise maximum

quadratic function is defined as

Vmax(x) := max{xT Pjx : j ∈ I[1, J ]}. (4)

Given Qj ∈ R
n×n, Qj = QT

j > 0, j ∈ I[1, J ]. Let

Γ =
{

γ ∈ R
J : γ1 + γ2 + · · · + γJ = 1, γj ≥ 0

}

.

The convex hull quadratic function is defined as

Vc(x) := min
γ∈Γ

xT





J
∑

j=1

γjQj





−1

x. (5)

For simplicity, we say that Vc is composed from Qj’s.
It was shown in [7] that 1

2Vmax is conjugate to 1
2Vc if

Qj = Pj for each j ∈ I[1, J ]. It is evident that Vc

and Vmax are homogeneous of degree 2, i.e., Vc(αx) =
α2Vc(x), Vmax(αx) = α2Vmax(x). Also established in [7],
[9] are that Vc is convex and continuously differentiable and
that Vmax is strictly convex.

The 1-level set of Vmax and that of Vc are respectively

LVmax
:=

{

x ∈ R
n : Vmax(x) ≤ 1

}

,

LVc
:=

{

x ∈ R
n : Vc(x) ≤ 1

}

.

Since Vmax and Vc are homogeneous of degree 2, we have

sLVmax
=

{

x ∈ R
n : Vmax(x) ≤ s2

}

,

sLVc
=

{

x ∈ R
n : Vc(x) ≤ s2

}

.

It is easy to see that LVmax
is the intersection of the ellipsoids

E(Pj)’s. In [9], It was established that LVc
is the convex hull

of the ellipsoids E(Q−1
j )’s, i.e.,

LVc
=







J
∑

j=1

γjxj : xj ∈ E(Q−1
j ), γ ∈ Γ







.

For a compact convex set S, a point x on the boundary of
S (denoted as ∂S) is called an extreme point if it cannot be
represented as the convex combination of any other points in
S. For a strictly convex set, such as LVmax

, every boundary
point is an extreme point. In what follows, we characterize
the set of extreme points of LVc

. Since LVc
is the convex

hull of E(Q−1
j ), j ∈ I[1, J ], an extreme point must be on the

boundaries of both LVc
and E(Q−1

j ) for some j ∈ I[1, J ].

Define Ej := ∂LVc
∩ ∂E(Q−1

j ), namely

Ej =
{

x ∈ R
n : Vc(x) = xT Q−1

j x = 1
}

. (6)

Then
⋃J

j=1 Ej contains all the extreme points of LVc
. The

exact description of Ej is given by the following lemma
(which is proved in the Appendix).

Lemma 1: For each j ∈ I[1, J ],

Ej ={x ∈ ∂LVc
: xT Q−1

j (Qk−Qj)Q
−1
j x≤0,∀ k∈I[1, J ]}.

It is clear from Lemma 1 that
⋃

δ∈[0,1]δEj={x ∈ LVc
:

xT Q−1
j (Qk−Qj)Q

−1
j x ≤ 0, ∀ k ∈ I[1, J ]}. The following

lemma combines results from [9], [10].

Lemma 2: For a given x0 ∈ R
n, let γ∗ ∈ Γ

be an optimal γ such that xT
0

(

∑J
j=1 γ∗

j Qj

)−1

x0 =

minγ∈Γ xT
0

(

∑J
j=1 γjQj

)−1

x0 = Vc(x0). Assume that

γ∗
j > 0 for j ∈ I[1, J0] and γ∗

j = 0 for j ∈ I[J0 + 1, J ].
Denote

Q0 =

J0
∑

j=1

γ∗
j Qj , xj = QjQ

−1
0 x0, j ∈ I[1, J0].

Then Vc(xj) = Vc(x0) and xj ∈ Vc(x0)
1

2 Ej , j ∈ I[1, J0].
Moreover, x0 =

∑J0

j=1 γ∗
j xj , and

∇Vc(x0) = ∇Vc(xj) = 2Q−1
j xj = 2Q−1

0 x0, j ∈ I[1, J0],

where ∇Vc(x) denotes the gradient of Vc at x.
The following lemma is adapted from a result of [12] to the

slightly different definition of Vc and Vmax (the two functions
in [12] have the coefficient 1

2 ).

Lemma 3: [12] Let H ∈ R
m×n and denote the `-th row

of H as H`. We have, 1) LVc
⊂ L(H) if and only if

HT
` ∈ LVmax

for all ` ∈ I[1,m]; 2) LVmax
⊂ L(H) if and

only if HT
` ∈ LVc

for all ` ∈ I[1,m].

B. Analysis with convex hull quadratic functions

In this section, we apply the convex hull quadratic function
to the analysis of system (2) through the polytopic differential
inclusion (3), which is repeated below for easy reference:
[

ẋ
z

]

∈ co
i∈I[1,2m]

{[

Aix + Biw − BqTih(x)
Cix + Diw − DzqTih(x)

]}

. (7)

This PDI is a valid description for (2) as long as |h(x)|∞ ≤
1. We will restrict our attention to the level set sLVc

, where
|h(x)|∞ ≤ 1 for all x ∈ sLVc

. As with the case of using
quadratic functions, the crucial point is to guarantee that
x(t) ∈ sLVc

under the class of norm-bounded w and the
set of initial states under consideration.

It may appear that choosing h(x) as a linear function Hx
within sLVc

should lead to simpler results than choosing it
as a nonlinear function. However, it turns out that a nonlinear
h(x) not only reduces conservatism but also leads to cleaner
and numerically more tractable results.

Theorem 1: (Reachable set by bounded inputs) Given
Qj = QT

j > 0, j ∈ I[1, J ] and let Vc be composed from
Qj’s. Also given s > 0. For system (2), with x(0) = 0,
we have x(t) ∈ sLVc

for all t > 0 and for all w such
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that ‖w‖2 ≤ s if there exist Yj ∈ R
m×n and λijk ≥ 0,

i ∈ I[1, 2m], j, k ∈ I[1, J ] such that
[ 1

s2
Yj,`

Y T
j,` Qj

]

≥ 0, ` ∈ I[1,m], j ∈ I[1, J ], (8)

where Yj,` is the `th row of Yj , and such that for all i ∈
I[1, 2m], j ∈ I[1, J ],

He







AiQj−BqTiYj +
J
∑

k=1

λijk(Qj−Qk) Bi

0 − I
2






≤ 0. (9)

Remark 1: (Optimization issues) With conditions (9) and
(8), we may formulate an optimization problem to minimize
the estimation of the reachable set as with the quadratic func-
tion case. We observe that the first block in (9) contains some
bilinear terms as the product of a full matrix and a scalar.
From our computational experience, such kind of bilinear
matrix inequalities (BMIs) can be effectively addressed with
the path-following method in [8]. We also see that if we take
Qj = Q and Yj = Y for all j, then the bilinear terms vanish
and the conditions reduce to LMIs (these LMIs coincide with
the ones given in [14, Theorem 1]). In our computation,
we first solve the resulting optimization problem with LMI
constraints and then use the optimal Q∗ and Y ∗ to start the
new algorithm with BMI constraints, with Qj = Q∗ and
Yj = Y ∗ for all j and λijk ≥ 0 randomly chosen. This
approach also proves effective for the problems of estimating
the L2 gain and the domain of attraction, which will be
addressed in Theorems 2 and 3.

Although there is no guarantee that the global optimal
solution can be located, the convergence of the algorithms
is satisfactory. Furthermore, since the initial value of the
optimizing parameters can be inherited from the optimal
solution obtained with quadratic Lyapunov functions, the
algorithms always improve on the results from using the
quadratic functions proposed in [14]. To avoid redundancy,
we will not discuss the computational issues after we present
Theorems 2 or 3. ◦

Remark 2: (About the nonlinear function h(x)) From the
proof of Theorem 1, we see that a nonlinear function
h(x0) = H0(x0)x0 is constructed from Qj’s and Yj’s so
that |H0(x0)x0| ≤ 1 for all x0 ∈ sLVc

(see (23) where
H0 is constructed and subsequent discussion up to (26)).
This makes the proof more complicated than with a linear
function Hx but the result turns out to be cleaner and more
easily tractable numerically. If we attempt to use a linear
function h(x) = Hx such that |Hx|∞ ≤ 1 for all x ∈ sLVc

,
we would have Yj in (9) replaced with HQj and Yj,` in (8)
replaced with H`Qj,`. When we formulate an optimization
problem to estimate the reachable set by taking H and Qj’s
as optimizing parameters, this would result in more complex
BMI terms including HQj which may cause difficulties in
the algorithms, such as slow convergence or getting easily
stuck at a local solution. ◦

We next address the problems of estimating the L2 gain
and the domain of attraction.

Theorem 2: (Nonlinear L2 gain) Given Qj = QT
j >

0, j ∈ I[1, J ] and let Vc be composed from Qj’s. Consider
system (2). Given s, γ > 0. If there exist Yj ∈ R

m×n and
λijk ≥ 0, i ∈ I[1, 2m], j, k ∈ I[1, J ] such that

[ 1

s2
Yj,`

Y T
j,` Qj

]

≥ 0, ` ∈ I[1,m], j ∈ I[1, J ]. (10)

and such that

He











AiQj − BqTiYj +
J
∑

k=1

λijk(Qj − Qk) Bi 0

0 − I
2 0

CiQj − DzqTiYj Di −γ2

2 I











≤0,

(11)
for all i ∈ I[1, 2m], j ∈ I[1, J ]. Then for all w such that
‖w‖2 ≤ s and x(0) = 0, we have ‖z‖2 ≤ γ‖w‖2.

The proof of the following theorem can be adapted from
the proof of Theorem 1 by assuming that Bi = 0.

Theorem 3: (Estimation of the domain of attraction)
Given Qj = QT

j > 0, j ∈ I[1, J ]. Let Vc be composed
from Qj’s. Consider system (2). With w ≡ 0, we have
V̇c(x) < 0 for all x ∈ LVc

\ {0} if there exist λijk ≥ 0,
Yj ∈ R

m×n, i ∈ I[1, 2m], j, k ∈ I[1, J ] such that
[

1 Yj,`

Y T
j,` Qj

]

≥ 0, ` ∈ I[1,m], j ∈ I[1, J ]. (12)

and that for all i ∈ I[1, 2m], j ∈ I[1, J ],

He(AiQj − BqTiYj +

J
∑

k=1

λijk(Qj−Qk)) < 0. (13)

C. Analysis with max quadratic functions

The max quadratic function is not differentiable every-
where. We use ∂Vmax(x) to denote its generalized Jacobian
at x (see, e.g., [4]). If xT Pjx > xT Pkx for all k 6= j, then
Vmax is differentiable at x and ∂Vmax(x) is single valued
and equals 2Pjx. If xT P1x = xT P2x = · · · = xT PJ0

x
and xT P1x > xT Pjx for j > J0, then ∂Vmax(x) =
co{2Pjx : j ∈ I[1, J0]}. For simplicity and with some abuse
of notation, along the trajectory of (2), we denote

V̇max := max{ξT ẋ : ξ ∈ ∂Vmax(x)}.

Theorem 4: (Reachable set by bounded inputs) Given
Pj = PT

j > 0, j ∈ I[1, J ] and let Vmax be the max quadratic
function formed by Pj’s. Also given s > 0. For the system
(2), with x(0) = 0, we have x(t) ∈ sLVmax

for all t > 0
and for all w such that ‖w‖2 ≤ s if there exist H ∈ R

m×n,
λijk ≥ 0, α`j ≥ 0, j, k ∈ I[1, J ], i ∈ I[1, 2m], ` ∈ I[1,m],
such that

∑J
j=1 α`j = 1,





1

s2
H`

HT
`

∑J
j=1 α`jPj



 ≥ 0, ` ∈ I[1,m]. (14)

and for all i ∈ I[1, 2m], j ∈ I[1, J ],

He

[

PjAi − PjBqTiH +
∑J

k=1 λijk(Pj−Pk) PjBi

0 − I
2

]

≤ 0.

(15)

Theorem 5: (Nonlinear L2 gain) Consider system (2).
Given Pj = PT

j > 0, j ∈ I[1, J ] and s, γ > 0, if there exist
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H ∈ R
m×n, λijk ≥ 0, α`j ≥ 0, j, k ∈ I[1, J ], i ∈ I[1, 2m],

` ∈ I[1,m], such that
∑J

j=1 α`j = 1,




1

s2
H`

HT
`

∑J
j=1 α`jPj



 ≥ 0, ` ∈ I[1,m], (16)

and for all i ∈ I[1, 2m], j ∈ I[1, J ],

He











PjAi−PjBqTiH+

J
∑

k=1

λijk(Pj−Pk) PjBi 0

0 − I
2 0

Ci − DzqTiH Di −γ2

2 I











≤0,

(17)
then for all w such that ‖w‖2 ≤ s and x(0) = 0, we have
‖z‖2 ≤ γ‖w‖2.

The following result can be derived by adapting the proof
of Theorem 4.

Theorem 6: (Estimation of the domain of attraction) Con-
sider system (2) and any Pj = PT

j > 0, j ∈ I[1, J ]. With
w ≡ 0, then V̇max(x) < 0 for all x ∈ LVmax

\ {0} if
there exist H ∈ R

m×n, λijk ≥ 0, α`j ≥ 0, j, k ∈ I[1, J ],
i ∈ I[1, 2m], ` ∈ I[1,m], such that

∑J
j=1 α`j = 1,

[

1 H`

HT
`

∑J
j=1 α`jPj

]

≥ 0, ` ∈ I[1,m]. (18)

and for all i ∈ I[1, 2m], j ∈ I[1, J ],

He

[

PjAi − PjBqTiH +
J
∑

k=1

λijk(Pj−Pk)

]

< 0. (19)

As compared to the counterpart results from using convex
hull quadratic functions, the conditions (15), (17) and (19)
in Theorems 4 to 6 appear to be less tractable because of the
bilinear term PjBqTiH in the first blocks of the matrices.
Also, the same H for all Pj’s seem to offer fewer degrees
of freedom as compared to the different Yj for different Qj

in Theorems 1 to 3. However, numerical examples show that
Theorems 4 to 6 may produce better results in some cases.

III. AN EXAMPLE

Consider system (2) with the following parameters:





A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw



 =





















0 0 −1 1 0 0 1
1 0 −2 0 1 1 0
0 1 −3 1 −1 1 1
1 0 1 −3 −1 1 −1
0 1 0 −2 −4 0 1
0 1 0 1 0 −1 0
0 0 1 0 1 0 −1





















.

This system is the same as the one considered in [14],
where quadratic Lyapunov functions are applied to the PDI
description and the NDI description, respectively, to obtain
two estimates of the nonlinear L2 gain. Using this paper’s
methods, we obtain two improved estimates of the nonlinear
L2 gain, one by applying the convex hull function to the
PDI description and the other by applying the max quadratic
function to the PDI description. In what follows, we compare

the two estimates from [14] and the two improved estimates
by this paper’s methods.

Fig. 2 presents these four estimates of the nonlinear L2

gain. The dotted curve is from applying quadratics via NDI,
the dash-dotted one is from applying quadratics via PDI, the
dashed one is from applying max quadratics (with J = 2) via
PDI (Theorem 5) and the solid one is from applying convex
hull quadratics (J = 2) via PDI (Theorem 2). Each of the
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Fig. 2. Different estimates of the nonlinear L2 gain: Case 1.

four curves tends to a constant value as ‖w‖2 goes to infinity.
This constant value will be an estimate of the global L2 gain.
As expected, applying non-quadratic Lyapunov functions
always leads to better results than applying quadratic ones.
However, the relationship between the two non-quadratic
functions is not definite. The situation exhibited in Fig. 2
can be reversed if we change the parameters of the system.
In what follows, we present several scenarios through some
adjustment of the parameters.

Case 2: If we change Dyq to Dyq =

[

−3 −1.3
−2.3 −4

]

,

then the global L2 gain by using quadratics via NDI is
unbounded (or, global stability is not confirmed), while that
by using quadratics via PDI is 170.1473. By using max
quadratics and convex hull quadratics, the global L2 gains
are respectively 20.7833 and 19.3307.

Case 3: If we change Dyq to Dyq =

[

−3 −2
−2 −4

]

, then

the global L2 gain by using quadratics via either NDI or
PDI is unbounded. By using max quadratics and convex hull
quadratics, the global L2 gains are respectively 42.3354 and
31.6731.

The two situations above also show how the stability and
performance results by the same method can be affected by
the parameter Dyq which describes the algebraic loop. As
discussed in [19], this parameter can be adjusted through
anti-windup compensation.

Case 4: Next we replace the matrix A with its transpose

and take Dyq =

[

−3 −2
−2 −4

]

. The four different bounds on

the L2 gain are plotted in Fig. 3, where the dashed curve
is from using max quadratics via PDI and the solid curve is
from using convex hull quadratics via PDI. We see that for
some range of ‖w‖2 around 1, the dashed curve is higher
than the solid one but for ‖w‖2 > 10, the dashed curve is
lower than the solid one.
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Fig. 3. Different estimates of the nonlinear L2 gain: Case 4.

Due to space limitation, we will not present computational
results about the estimation of the domain of attraction or the
estimation of the reachable set. From the different situations
exhibited through the L2 gain, it is not hard to infer that the
difference among the estimations by using quadratics/non-
quadratics via NDI/PDI can be made arbitrarily large through
adjusting the four elements of Dyq . For instance, Case 2
suggests that the estimate of the domain of attraction by using
quadratics via NDI is bounded while that by using quadratics
via PDI is the whole state space. Case 3 suggests that the
domain of attraction estimated by non-quadratic functions
is the whole state space while that by quadratics (via PDI
or NDI) is bounded. On the other hand, the estimate of the
reachable set by non-quadratics can be bounded while that
by quadratics is not.

We should remark that for this particular example, the
algorithm for applying convex hull quadratics converges very
well for all ‖w‖2 and under different parameter changes. The
algorithm for applying max quadratics generally converges
well but for some ‖w‖2, it may have some difficulties and we
need to stop the algorithm and restart it from different initial
values of λijk which are randomly generated. In any case,
improvement is expected from the non-quadratic functions.

IV. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. We will prove the theorem by showing
that for all x ∈ sLVc

and w ∈ R
r, we have V̇c(x,w) ≤ wT w,

where V̇c(x,w) is the derivative of Vc along the trajectory
of (2), which depends on x and w.

Let Pj = Q−1
j , Hj = YjQ

−1
j . Left- and right-multiplying

(9) by diag{Pj , I}, we have

He







PjAi−PjBqTiHj +
J
∑

k=1

λijkPj(Qj−Qk)Pj PjBi

0 − I
2






≤0.

This implies that for all i ∈ I[1, 2m], j ∈ I[1, J ],
2xT Pj(Aix + Biw − BqTiHjx) − wT w

≤ 2
∑J

k=1 λijkxT Pj(Qk − Qj)Pjx,
(20)

∀x ∈ R
n, w ∈ R

r. Given j ∈ I[1, J ] and any δ > 0.
Consider x ∈ δEj . By Lemma 1 we have

J
∑

k=1

λijkxT Pj(Qk − Qj)Pjx ≤ 0. (21)

It follows from (20) that for all x ∈ δEj , w ∈ R
r, δ > 0,

2xT Pj(Aix + Biw − BqTiHjx) − wT w ≤ 0. (22)

(In view of (7) and condition (8), this actually shows that
V̇c(x,w) ≤ wT w for all x ∈ s(LVc

∩ Ej). We proceed to
show that this inequality holds for all x ∈ sLVc

by exploring
the properties of Vc.)

Now consider x0 ∈ sLVc
. Then Vc(x0) = δ2 for some

δ ∈ (0, s]. By Lemma 2, there exist xj ∈ δEj , γj > 0, j ∈

I[1, J0] with J0 ≤ J such that
∑J0

j=1 γj = 1 and x0 =
∑J0

j=1 γjxj . Let

Q0 =

J0
∑

j=1

γjQj , Y0 =

J0
∑

j=1

γjYj , H0 = Y0Q
−1
0 . (23)

Then we also have xT
0 Q−1

0 x0 = Vc(x0) = δ2 and

∇Vc(x0) = 2Q−1
0 x0 = 2Q−1

j xj , j ∈ I[1, J0]. (24)

Applying convex combination to the inequalities in (8),
we have for ` ∈ I[1,m],

[

1/s2 Y0,`

Y T
0,` Q0

]

≥ 0 ⇔

[

1/s2 H0,`

HT
0,` Q−1

0

]

≥ 0. (25)

By (1), this implies that sE(Q−1
0 ) ⊂ L(H0). Since

xT
0 Q−1

0 x0 = δ2 ≤ s2, we have |H0x0| ≤ 1. Applying (7) at
x0 with h(x0) = H0x0, we have

ẋ ∈ co{Aix0 + Biw − BqTiH0x0 : i ∈ I[1, 2m]} (26)

and

V̇c(x0, w) − wT w ∈ (27)

co
i∈I[1,2m]

{∇T Vc(x0)(Aix0 + Biw − BqTiH0x0) − wT w}.

Recall that, for all xj ∈ δEj ,

x0 =
∑J0

j=1 γjxj ,

∇Vc(x0) = 2Q−1
0 x0 = 2Q−1

j xj = 2Pjxj .
(28)

Applying (22) to xj and replacing 2xT
j Pj by ∇T Vc(x0), we

obtain for all w ∈ R
r,

∇T Vc(x0)(Aixj + Biw − BqTiHjxj) − wT w ≤ 0. (29)

By the definition of Q0, H0 and Y0 in (23),

H0x0 = Y0Q
−1
0 x0 =





J0
∑

j=1

γjYj



Q−1
0 x0 (30)

and from (24) we have

Hjxj = YjQ
−1
j xj = YjQ

−1
0 x0, j ∈ I[1, J0]. (31)

Combining (28), (30) and (31) we have
Aix0 + Biw − BqTiH0x0 =
∑J0

j=1 γj(Aixj + Biw − BqTiHjxj) ∀w ∈ R
r.

(32)

Note that this is satisfied for all i ∈ I[1, 2m]. It follows from
(29) that for each i ∈ I[1, 2m] and w ∈ R

r,
∇T Vc(x0)(Aix0 + Biw − BqTiH0x0) − wT w

=

J0
∑

j=1

γj [∇
T Vc(x0)(Aixj + Biw − BqTiHjxj) − wT w]

≤ 0
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By (27), we have

V̇c(x0, w) − wT w ≤ 0 ∀w ∈ R
r. (33)

Note that x0 is an arbitrary point in sLVc
.

Hence we have that V̇c(x,w) ≤ wT w for all x ∈ sLVc
and

w ∈ R
r. Now suppose x(0) = 0 and ‖w‖2

2 ≤ s2. Then for
any t0 > 0, as long as x(t) ∈ sLVc

for all t ∈ (0, t0), we have
Vc(x(t0)) ≤

∫ t0

0
wT (τ)w(τ)dτ ≤ s2, i.e., x(t0) ∈ sLVc

. On
the other hand, if there exists t0 > 0 such that Vc(x(t)) ≤ s2

for all t ∈ (0, t0) and Vc(x(t0)) = s2 then we must have
∫∞

t0
wT (τ)w(τ)dτ = 0 and V̇c(x(t), w(t)) ≤ 0 for almost

all t > t0. Hence Vc(x(t)) ≤ s2 for all t > t0. Therefore,
we conclude that x(t) ∈ sLVc

for all t > 0. �

Proof of Theorem 2. We will prove the theorem by showing
that for all x ∈ sLVc

and w ∈ R
r,

V̇c(x,w) +
1

γ2
zT z ≤ wT w.

Since (11) implies (9), by Theorem 1, we have x(t) ∈ sLVc

for all t and for all ‖w‖2 ≤ s, x(0) = 0. Also, all the
relationships established in the proof of Theorem 1 are true
under the conditions of the current theorem.

Let Pj = Q−1
j and Hj = YjQ

−1
j . Left- and right-

multiplying (11) by diag{Pj , I, I}, and applying Schur com-
plement, similar to the proof of Theorem 1, we obtain that
for all x ∈ δEj , w ∈ R

r, δ > 0

2xT Pjfij(x,w) +
1

γ2
gT

ij(x,w)gij(x,w) − wT w ≤ 0, (34)

where

fij(x,w) = Aix + Biw − BqTiHjx,

gij(x,w) = Cix + Biw − DzqTiHjx.

Relation (34) holds for all i ∈ I[1, 2m] and j ∈ I[1, J ].

Now consider x0 ∈ sLVc
. Then Vc(x0) = δ2 for some

δ ∈ (0, s]. Similarly to the proof of Theorem 1, there exist
xj ∈ δEj , γj > 0, j ∈ I[1, J0] such that

∑J0

j=1 γj = 1 and

x0 =
∑J0

j=1 γjxj . Let H0, Q0, Y0 be defined as in (23). Then
we also have |H0x0| ≤ 1. Applying Proposition 1 at x0, we
have
[

ẋ
z

]

∈ co
i∈I[1,2m]

{[

Aix0 + Biw − BqTiH0x0

Cix0 + Diw − DzqTiH0x0

]}

.

Let

fi0(x0, w) = Aix0 + Biw − BqTiH0x0,

gi0(x0, w) = Cix0 + Diw − DzqTiH0x0.

Then

V̇c(x0, w) +
1

γ2
zT z − wT w ≤ (35)

max
i∈I[1,2m]

{∇T Vc(x0)fi0(x0, w) +
1

γ2
‖gi0(x0, w)‖2 − wT w}.

Since 2xT
j Pj = 2xT

0 Q−1
0 = ∇T Vc(x0) (see (24)), apply-

ing (34) to xj , we obtain for all w ∈ R
r, i ∈ I[1, 2m],

∇T Vc(x0)fij(xj , w) +
1

γ2
‖gij(xj , w)‖2 − wT w ≤ 0. (36)

Similar to (32), we have

fi0(x0, w) =
∑J0

j=1 γjfij(xj , w),

gi0(x0, w) =
∑J0

j=1 γjgij(xj , w).
(37)

It follows that

∇T Vc(x0)fi0(x0, w) +
1

γ2
‖gi0(x0, w)‖2 − wT w ≤ 0,

and from (35)

V̇c(x0, w) +
1

γ2
zT z − wT w ≤ 0, (38)

which is satisfied for all x0 ∈ sLVc
and w ∈ R

r. Since
x(0) = 0, x(t) ∈ sLVc

for all t and for all ‖w‖2 ≤ s,
integrating both sides of (38), we have ‖z‖2

2 ≤ γ2‖w‖2
2.

This completes the proof. �

Proof of Theorem 4. By the definition of Vc, condition
(14) implies that Vc(sH`) ≤ 1 for all ` ∈ I[1,m]. By
Lemma 3, this implies that LVmax

⊂ L(sH) = (1/s)L(H),
i.e., sLVmax

⊂ L(H). Hence |Hx|∞ ≤ 1 for all x ∈ sLVmax
.

By Proposition 1, we have for all x ∈ sLVmax
,

ẋ ∈ co {Aix + Biw − BqTiHx : i ∈ I[1, 2m]} . (39)

On the other hand, it can be verified that (15) implies that

2xT Pj(Aix + Biw − BqTiHx) − wT w ≤ (40)

2
J
∑

k=1

λijkxT (Pk − Pj)x, ∀j ∈ I[1, J ], i ∈ I[1, 2m].

The state space of x can be partitioned in the following
subsets (for all j ∈ I[1, J ]):

Sj = {x ∈ R
n : xT (Pk − Pj)x ≤ 0, k ∈ I[1, J ]}. (41)

If x ∈ Sj\∪k 6=jSk, then Vmax(x) = xT Pjx and ∂Vmax(x) =
2Pjx. If x ∈ ∩J0

j=1Sj \ ∪J
j=J0+1Sj , then Vmax(x) =

xT Pjx, j ∈ I[1, J0] and ∂Vmax(x) = co{2Pjx : j ∈
I[1, J0]}.

We first consider x ∈ Sj \ ∪k 6=jSk. Then
J
∑

k=1

λijkxT (Pk − Pj)x ≤ 0, (42)

and
V̇max(x,w) − wT w ≤

max
i∈I[1,2m]

(2xT Pj(Aix + Biw − BqTiHx) − wT w). (43)

If x ∈ ∩J0

j=1Sj \ ∪J
j=J0+1Sj , then (42) is satisfied for all

j ∈ I[1, J0] and we have

V̇max(x,w) − wT w ≤ (44)

max
j∈I[1,J0]

max
i∈I[1,2m]

(2xT Pj(Aix + Biw − BqTiHx) − wT w).

It follows from (40) and (42) that V̇max(x,w) − wT w ≤ 0.
The remaining part of the proof is similar to the proof of
Theorem 1. �

Proof of Theorem 5. Similarly to the proof of Theorem 4,
we have x(t) ∈ sLVmax

for all t > 0 under the condition
‖w‖2 ≤ s and x(0) = 0. Also, we have |Hx|∞ ≤ 1 for all
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x(t) ∈ sLVmax
. By Proposition 1,

[

ẋ
z

]

∈ co

{[

fi(x,w)
gi(x,w)

]

: i ∈ I[1, 2m]

}

, (45)

where

fi(x,w) = Aix + Biw − BqTiHx,

gi(x,w) = Cix + Diw − DyqTiHx.

By Schur complement it can be verified that (17) implies
2xT Pjfi(x,w) + 1

γ2 ‖gi(x,w)‖2 − wT w

≤ 2
∑J

k=1 λijkxT (Pk − Pj)x
(46)

for all j ∈ I[1, J ], i ∈ I[1, 2m]. With similar arguments as
in the proof of Theorem 4, it can be shown that for all x ∈
sLVmax

and w ∈ R
r,

V̇max(x,w) +
1

γ2
zT z − wT w ≤ 0. (47)

The remaining part of the proof is similar to the proof of
Theorem 2. �

V. CONCLUSIONS

In this paper we addressed the stability and performance
analysis of linear systems with saturation elements. Two
conjugate Lyapunov functions are used to improved the
performance analysis results from our companion paper [14].
The arising BMI conditions reduce the conservatism of the
LMI conditions of [14]. Numerical experience with low order
systems shows that these BMI conditions can be effectively
solved with the path following method. Although there is no
guarantee that the global optimal solutions will be obtained,
the great potential of these non-quadratic Lyapunov functions
has been revealed by a numerical example. The effectiveness
demonstrated through this example motivates further inves-
tigation on these non-quadratic Lyapunov functions and the
development of more efficient algorithms to handle them for
more complicated situations.

APPENDIX

Proof of Lemma 1. Without loss of generality, consider j =
1. Note that

Vc(x) =
1

2
min

γk≥0:
∑

N

k=2
γk≤1











xT



Q1 +

N
∑

j=2

γk(Qk − Q1)





−1

x











.

It is implied here that γ1 = 1 −
∑N

k=2 γk. For a fixed x,
define

φ(γ2, γ3, · · · , γN ) :=
1

2
xT

(

Q1 +

N
∑

k=2

γk(Qk − Q1)

)−1

x.

Then by Schur complement, for any c > 0, the set
{(γ2, γ3, · · · , γN ) :

φ(γ2, γ3, · · · , γN ) ≤ c,
∑N

k=2 γk ≤ 1, γk ≥ 0}
(48)

is convex. Hence the optimal (γ2, γ3, · · · , γN )’s that mini-
mize φ form a convex set.

If x ∈
⋃

δ∈[0,1] δE1, then Vc(x) = 1
2xTQ−1

1 x, implying
that the minimal value of φ is reached at (γ2, γ3, · · · , γN ) =

(0, 0, · · · , 0). This means that at this point, ∂φ/∂γk ≥ 0 for
all k ∈ I[2, N ], i.e.,

xTQ−1
1 (Qk − Q1)Q

−1
1 x ≤ 0 ∀ k ∈ [2, N ]. (49)

On the other hand, it is also clear that (49) implies that
the minimal value of φ is reached at (0, 0, · · · , 0) by the
convexity of the set in (48). Hence, (49) is equivalent to
Vc(x) = 1

2xTQ−1
1 x. In summary, we have

⋃

δ∈[0,1] δE1 =

{x ∈ LVc
: xTQ−1

1 (Qk − Q1)Q
−1
1 x ≤ 0, k ∈ I[1, N ]}. �
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