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Abstract—This paper generalizes the linear sector in the
classical absolute stability theory to a sector bounded by con-
cave/convex functions. This generalization allows more flexible or
more specific description of the nonlinearity and will thus reduce
the conservatism in the estimation of the domain of attraction.
We introduce the notions of generalized sector and absolute
contractive invariance for estimating the domain of attraction of
the origin. Necessary and sufficient conditions are identified under
which an ellipsoid is absolutely contractively invariant. In the
case that the sector is bounded by piecewise linear concave/convex
functions, these conditions can be exactly stated as linear matrix
inequalities. Moreover, if we have a set of absolutely contractively
invariant (ACI) ellipsoids, then their convex hull is also ACI and
inside the domain of attraction. We also present optimization
technique to maximize the absolutely contractively invariant ellip-
soids for the purpose of estimating the domain of attraction. The
effectiveness of the proposed method is illustrated with examples.

Index Terms—Absolute contractive invariance (ACI), absolute
stability, concave function, convex function, generalized sector.

I. INTRODUCTION

CONSIDER the Lur’e system in Fig. 1, where ,
, and :

belongs to a class of sector bounded nonlinear functions. The
absolute stability of the Lur’e system in Fig. 1 is a classical
problem in control theory. It has been addressed extensively
in the nonlinear systems and control literature (see, e.g., [1],
[12], [18], [24], [26], [27], [29], [31], [32], and the references
therein), and is still attracting tremendous attention (see [2], [5],
[6], [9], [10], [21], [22], [25], and [28] for a sample of recent lit-
erature). The traditional tools for absolute stability analysis in-
clude circle criterion and Popov criterion. With the advancement
of robust control theory in the 1980s and 1990s, some close re-
lationship between absolute stability and robustness was estab-
lished in [5] and robustness analysis tools were applied to deal
with absolute stability problems (see, e.g., [5], [9], [18], [25]).
In [18], an absolute stability criterion stemming from the vertex
criterion in robustness analysis was presented along with circle
and Popov criteria. (We will call the first one vertex criterion
in this paper.) Among these tools, circle criterion appears to be
the most popular, but as was implied in [18], circle criterion is
more conservative than the vertex criterion. More importantly,
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Fig. 1. System with a nonlinear component.

with the linear matrix ineqaulity (LMI) optimization techniques
[4], the vertex criterion is easier to handle.

A major trend in the development of absolute stability theory
is the study of absolute stability within a finite region. Since
global absolute stability does not generally hold, the study of
absolute stability within a finite region is also of great signifi-
cance and has been studied extensively (e.g., in [6], [10], [18],
and [29]–[31]). In the case where global absolute stability does
not hold, we need to restrict our attention to a finite region in the
state space, where a sector that is narrower than the global sector
can be used to bound the nonlinear function . Fig. 2 plots
a sector between two straight lines and . This
sector is a global bound for one of the nonlinear functions but is
only a local bound for the other one, which can only be globally
bounded by and . In the finite region, a guaran-
teed domain of attraction can be then obtained by using some
invariant level set of a quadratic or Lur’e type Lyapunov func-
tion. In this paper, we will study the absolute stability in a finite
region.

A very common type of nonlinearity is the standard satura-
tion function and saturation like functions such as

(plotted as one of the functions in Fig. 2). Sta-
bility analysis and design for systems with saturation nonlin-
earities has received tremendous attention in recent years (see
[3], [13], [20], and the references therein). One of the funda-
mental problems is the characterization of the domain of attrac-
tion. While analytical characterization of the domain of attrac-
tion has been attempted and is believed to be extremely hard ex-
cept for some special cases (see, e.g., [17]), most of the literature
is dedicated to obtaining an estimate of the domain of attraction
with reduced conservatism or to enlarging some invariant set
inside the domain of attraction by appropriately designing the
feedback gain. Along this direction, the classical absolute sta-
bility analysis tools such as circle criterion, Popov criterion and
the vertex criterion have been used to obtain an estimate of the
domain of attraction (see, e.g., [7], [8], [11], [18], [19], [23], and
[30]). Typically, the domain of attraction is estimated by using
invariant ellipsoids.

Recently, we developed a new sufficient condition for an el-
lipsoid to be invariant under saturation nonlinearities in [16] (see
also [13]). It was shown that this condition is less conservative
than the existing conditions resulting from the circle criterion
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Fig. 2. Classical linear sector.

Fig. 3. Generalized sector.

or the vertex criterion. The most important feature of this new
condition is that it can be expressed as LMIs in terms of all the
varying parameters and, hence, can easily be used for controller
synthesis. A recent discovery makes this condition even more
attractive. In [14], we showed that, for single input systems,
this condition is also necessary, thus, the largest invariant el-
lipsoid can be exactly obtained by solving an LMI optimization
problem.

Encouraged by our recent stability analysis results on satura-
tion nonlinearity, we attempt to address more general class of
nonlinearities, possibly time varying and with uncertainty. We
will formulate a problem that is a generalization of the clas-
sical absolute stability problem. The motivation is as follows.
In the classical absolute stability problem, the nonlinear func-

tion is within a sector which is bounded by two linear func-
tions. As we can see from Fig. 2, the sector is not a tight bound
for such functions as (the difference between

and is considerably large between the
two intersections). This accounts for the conservatism in deter-
mining the largest invariant ellipsoid by using the circle criterion
or the vertex criterion (see [16]). In view of this, we would like
to introduce a generalized sector bound as plotted in Fig. 3. In
Fig. 3, the two solid curves are and . They
are piecewise linear odd symmetric functions. is convex
for and is concave for . The saturation like
function in dashed curve is . In this paper, we
will consider the absolute stability problem for the system in
Fig. 1 with lying between two piecewise linear functions
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Fig. 4. Class of concave functions.

and . We call the region between and
the generalized sector. In Fig. 3, the function is convex
and is concave for . We may also use two functions
that are both concave (or both convex) for to define a
generalized sector. For example, the saturation like function in
Fig. 3 would be more tightly bounded by two concave piecewise
linear functions. We will establish the necessary and sufficient
condition for the contractive invariance of an ellipsoid for all the
possible nonlinear functions in a generalized sector. An
ellipsoid that is contractively invariant for every nonlinear func-
tion in the generalized sector is said to be absolutely
contractively invariant (ACI). By using the result in [15], we
will see that if we have a set of ACI ellipsoids, then their convex
hull is also ACI.

This paper is organized as follows. In Section II, we define
a class of concave (or convex) nonlinear functions and intro-
duce the notions of generalized sector and absolute contractive
invariance. We also recall a recent result on saturation nonlin-
earity which will be very useful in this paper. In Section III,
we derive necessary and sufficient conditions for an ellipsoid
to be invariant under a piecewise linear function with only one
bend, a piecewise linear function with multiple bends and a gen-
eral concave (or convex) function. In Section IV, we show that
under convex or concave nonlinearities, the convex hull of a set
of invariant ellipsoids is also an invariant set. In Section V, we
present the necessary and sufficient condition for an ellipsoid to
be ACI and show that the convex hull of a set of ACI ellipsoids
is also ACI and inside the domain of attraction. In Section VI,
we present methods for estimating the domain of attraction with
an LMI technique. Section VII concludes this paper.

Notation: For two intergers , , , we
denote . We use

to denote the standard saturation function, i.e.,
. For a set of vectors

, we use to de-
note the convex hull of these vectors, i.e.,

For a row vector , denote

Let be a positive–definite matrix. For a
positive number , denote

For simplicity, we use to denote .

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Concave Functions and Convex Functions

The generalized sector in this paper will be defined in terms
of a class of piecewise linear symmetric functions. We first give
formal definition of some functions that we will use to define
the boundary of the generalized sector.

Given a scalar function . Assume that

1) is continuous, piecewise differentiable,
and ;

2) is odd symmetric, i.e., .
A function satisfying the above assumption is said to be
concave if it is concave for . That is, for any ,

A function satisfying the above assumption is said to be
convex if it is convex for . That is, for any ,
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Fig. 5. Piecewise linear function with three bends.

These definitions are made for simplicity. It should be under-
stood by odd symmetry that a concave function is convex for

and a convex function is concave for . Fig. 4 illus-
trates a few concave functions.

Here, is a simple fact about concave and convex functions.
Fact 1: Let be a concave (convex) function. Given

, if we draw a straight line that is tangential to at
, then the straight line is above (below) for all

.
We will first study the class of piecewise linear functions

if
if

...
if

(1)

where . The values of for
can be determined by odd symmetry, for example,

for . It is easy to see that if is
concave, then and

. The last slope can be positive, negative or zero.
In the case that , is a saturation like function with
a saturation bound . If is convex, then

and . We
note that can be determined from
by the continuity of the function, and vise versa. Fig. 5 plots a
piecewise linear concave function with three bends.

The simplest piecewise linear function is

if
if .

If is concave, then , and
. If is convex, then ,

and . Fig. 6 plots a concave . If
, and , then is the standard saturation

function . The class of piecewise linear functions with
one bend is very important. All the results for general concave or
convex functions will be based on those for this class of simple
piecewise linear functions.

B. The Generalized Sector and Absolute Stability

The state-space description of the system in Fig. 1 is

(2)

Fig. 6. Piecewise linear function with one bend.

A traditional way to estimate the domain of attraction of the
origin is to use invariant sets, among which invariant ellipsoids
are the most popular.

Let be a differentiable positive–definite function. Given
a positive number , a level set of is

The level set is said to be contractively invariant for (2)
if

(3)

for all and . Clearly, if is con-
tractively invariant, then it is inside the domain of attraction. If

is the quadratic function , then .
In the aforementioned definition of contractive invariance, the

nonlinear function is assumed to be known. In practice,
there always exists some degree of uncertainty about a non-
linear component. In view of this, we would like to study the
invariance of a level set for a class of nonlinear functions, for
example, a class of , where
and are known functions. On the other hand, some non-
linear function could be very complicated and we would
like to bound it with simpler functions and . These
problems arise from the same situations which motivated the
problem of the classical absolute stability.

Following the definition of absolute stability initiated by
Lur’e, we hereby introduce the notions of generalized sector
and absolute contractive invariance as follows.

Definition 1: Given functions and , each of
which is concave or convex. A function , piecewise
continuous in and locally Lipschitz in , is said to satisfy a
generalized sector condition if

We use to denote the generalized sector, i.e., the set
of functions that satisfy the above generalized sector condition.
A level set is said to be absolutely contractively invariant
(ACI) over the sector if it is contractively invariant
for (2) under every possible satisfying the generalized
sector condition.
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We see that if is ACI, then any trajectory starting
from it will converge to the origin under all satisfying
the generalized sector condition. Hence, is an absolute
stability region. We may use more general functions to define
the boundary of a sector to capture more detail about a nonlinear
component. The reason that we have chosen concave/convex
functions is for the simplicity and completeness of the results.
As we will see, the concavity and convexity of the boundary
functions ensure that all the conditions for ACI are necessary
and sufficient. We may also choose asymmetric functions or
even symmetric functions. We have settled on odd symmetric
functions since we will be focusing on ellipsoidal level set

, which is symmetric about the origin. Let us next state
a simple fact.

Fact 2: Given a level set and a set of functions ,
. Suppose that for each , is con-

tractively invariant for

Let be a function such that
for all and , then is contractively

invariant for

This fact follows directly from the definition of contractive
invariance [see (3)] and the differentiability of . Here
and can be any nonlinear functions.

By Fact 2, we see that the absolute contractive invariance of
a level set is equivalent to its contractive invariance under both

and . In view of this, we will focus on the invariance
of a level set under a concave or convex function.

C. Condition for Set Invariance Under Saturation Nonlinearity

In [14], we obtained a simple necessary and sufficient con-
dition for the invariance of an ellipsoid under saturation non-
linearity. This condition will be the foundation for all the main
results in this paper.

Proposition 1: An ellipsoid is contractively invariant
for

(4)

if and only if

(5)

and there exists an such that

(6)

and .

III. INVARIANT ELLIPSOIDS UNDER CONCAVE OR CONVEX

FUNCTIONS

A. Piecewise Linear Functions With One Bend

Consider the following system:

(7)

where is odd symmetric and

if
if

Theorem 1: An ellipsoid is contractively invariant
for (7) if and only if

(8)

and there exists an such that

(9)

and

(10)

Proof: We will prove the theorem by converting (7) into
(4) and invoking Proposition 1. It can be verified that

by noticing that . Therefore, (7) can be written
as

Define , and
. Then, (7) is equivalent to

(11)

From Proposition 1, the necessary and sufficient condition for
to be contractively invariant is

(12)

and there exists an such that

(13)

and .
It can be verified that

and

If we define , then (12) is equiv-
alent to (8), (13) is equivalent to (9), and
is equivalent to (10). The proof is completed by observing that

is also uniquely determined by .
The foregoing proof invoked Proposition 1 whose proof is

quite involved. Here, we would like to provide some physical
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interpretation for the sufficiency of the condition. We need to
show that

(14)

Assume that is a concave function (the explanation for the
case where is convex is similar). For a concave function

, we have , and the set inclusion condition
(10) can be equivalently written as

(15)

Notice that

if

Since is concave for , we have

if

and

if

It follows from (15) that for all ,

if

and

if

In any case, we have

(16)

Therefore

In view of (8) and (9), we obtain (14). The crucial point in the
sufficiency is (16), which says that given the set inclusion condi-
tion (10) or (15), the nonlinear function is in the convex
hull of two linear functions and .

With a given , we would like to find the largest contrac-
tively invariant ellipsoid. Denote the largest (or the supreme
of ) such that is contractively invariant for (7) as .
Suppose that (8) is satisfied (if not so, ). By Theorem 1

(17)

This optimization problem can be easily solved by using the
LMI technique in [4]. Note that constraint a) is equivalent to
(see [13])

Fig. 7. Illustration for the proof of Theorem 2.

B. Piecewise Linear Functions With Multiple Bends

Consider the following system:

(18)

where is continuous, odd symmetric, and

if
if

...
if .

(19)

The necessary and sufficient condition for an ellipsoid to be
contractively invariant can also be obtained.

Theorem 2: Assume that is concave (or convex). An
ellipsoid is contractively invariant for (18) if and only if

(20)

and there exist , , such that

(21)

and

(22)

Proof: The main idea of the proof is to construct piece-
wise linear functions , each of which has only one bend,
such that for all

and, meanwhile

This is possible due to the concavity (or convexity) of .
We only give the proof for the case where is

concave. The case where is convex is similar. Let
. Then, is the intersection of the

straight line with the other straight line obtained by
extending the th section of (see Fig. 7).

Define odd symmetric functions

if
if .
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Then

if
if
if .

It follows that

(23)

It is also easy to see that for every

due to the concavity of (refer to Fact 1). By odd symmetry

In summary, for every

(24)

It is easy to see that (20) is a necessary condition for the con-
tractive invariance of an ellipsoid . Hence, we assume
that it is true. From Fact 2 and by (24), the invariance of the el-
lipsoid for (18) implies its invariance for

(25)

On the other hand, by (23), the invariance of for all the
systems in (25) ensures its invariance for (18). Therefore, the
invariance of for (18) is equivalent to its invariance for
all the systems in (25). By Theorem 1, the latter is equivalent to
the condition of Theorem 2.

For a fixed , the largest contractively invariant ellipsoid can
also be obtained by solving an LMI optimization problem. De-
note the largest such that is contractively invariant for
(18) as . Suppose that (20) is satisfied. By Theorem 2

(26)

C. Differentiable Functions

Consider the following system:

(27)

where is a continuously differentiable concave (or convex)
function. Numerically, this can be approximated with
piecewise linear concave functions by increasing the number
of bending points and decreasing the distance between the
neighboring bending points. Hence, a set invariance condition
can be generalized from Theorem 2 by intuition. Here, we
would like to provide an exact characterization of invariant
ellipsoids.

Denote and let . For ,
draw a straight line that is tangential to at . Let the

Fig. 8. Illustration for the definition of �(u; z).

intersection of the straight line with be
and let the intersection of the straight line with the vertical axis
be (see Fig. 8). Then

Since is concave, we have for all and,
hence, .

Define

if
if .

For a fixed , the function is a concave (or convex) piece-
wise linear function with one bend at . Since

, we have

Theorem 3: An ellipsoid is contractively invariant
for (27) if and only if

(28)

and for every , there exists an such that

(29)

and

(30)

Proof: The idea is quite similar to the proof of Theorem
2. Since , we have

On the other hand, by the concavity (or the convexity) of ,
we have, for every ,

Hence, the invariance of for (27) is equivalent to its
invariance for
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Fig. 9. Function � (z).

for all , which is in turn equivalent to the condition of this
theorem by Theorem 1.

Let be fixed. Denote the largest such that is con-
tractively invariant for (27) as . Suppose that (28) is sat-
isfied. Denote the largest such that is contractively
invariant for as , then

(31)

and .
Example 1: Consider system (27) with

and . The matrix is a feedback matrix which
is designed by LQR method with and . The
resulting and are

It turns out that for in the interval , where
is the maximal such that

For this example, is a convex function for (see
Fig. 9, where the function is clipped from above so
that its shape is clearly seen). The minimum value is reached
at with . Hence, the maximal
invariant ellipsoid is . To verify

that is actually the largest invariant ellipsoid, we
plotted the value of along the boundary of
in Fig. 10 (the solid curve), where the abscissa is the angle of

. We also plotted along the boundaries
of (in dash-dotted curve) and
(in dashed curve) in Fig. 10 as comparison. We see clearly that

for all and there are two points on
where . As is increased,

for some segment and as is decreased, for all
.

We also determined the largest invariant ellipsoid of the given
shape that can be confirmed by the vertex criterion in [18] (the
vertex criterion is better than the circle criterion as was implied
in [18]). To do this, we first calculated the minimal such that

which is . Then we located the point on
such that , which is . The
largest invariant that can be concluded from vertex
criterion is the one such that lies between the two
straight lines , i.e., ,
which is . We see that the largest invariant
that can be concluded from vertex criterion is much smaller
than the one we obtained using Theorem 3, which is the actual
largest invariant ellipsoid of the given shape. Fig. 11 plots both

and for comparison.

IV. CONVEX HULL OF INVARIANT ELLIPSOIDS

In this section, we will show that under a concave or convex
nonlinearity, the convex hull of a set of invariant ellipsoids is
also invariant. This result will lead to potentially much larger
estimation of the domain of attraction. To establish this result,
we need to resort to the composite quadratic Lyapunov function
that we introduced in [15].
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Fig. 10. Derivative of V (x) along the boundaries of ellipsoids.

Fig. 11. Comparison of the largest invariant ellipsoids by different methods.

A. The Composite Quadratic Lyapunov Function

The composite quadratic Lyapunov function is determined by
a set of positive–definite matrices . Let

, . For a vector , define

Let

It is easy to see that for all and these two
matrix functions are analytic in . The composite quadratic
function is defined as

(32)

For , the level set of is

Denote the convex hull of the ellipsoids , ,
as
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The following properties about this composite quadratic func-
tion were established in [15].

Theorem 4:

1)
.

2) The function is continuously differentiable.
Let be an optimal such that

, then

The function and an optimal can be computed with
the LMI technique in [4]

(33)

The following fact will also be useful for establishing the
main results of this section.

Fact 3 [13]: For a vector and a matrix ,
if and only if

1) The equality holds if and only if the el-
lipsoid touches the hyperplane at

(the only intersection), i.e.,

2) If , then

and the ellipsoid lies strictly between the hyper-
planes and without touching them.

B. Invariance of the Convex Hull of Ellipsoids

Theorem 5: Let : be a concave function. Con-
sider the system

(34)

Given a set of ellipsoids , . If each ellipsoid
is contractively invariant for (34), then

is a contractively invariant set.
Proof: For simplicity, we assume that

. Otherwise, we can replace with
and with . Since each ellipsoid is

contractively invariant for (34), by Theorems 2 and 3, we have

(35)

Recall from Theorem 4 that
. It suffices to show that

Denote . Now, we consider an arbitrary
. For simplicity, assume that (the proof for

is similar). If for some ,
then and fol-
lows from the invariance of . Hence, we assume that

for any . Then, there exist an integer , some
numbers and vectors , ,
such that

(Here, we have assumed for simplicity that is only related to
the first ellipsoids. Otherwise, the ellipsoids can be reordered
to meet this assumption.) Let ,
then by Theorem 4, . It follows that
the hyperplane is tangential to the convex set
at . Hence, lies between and ,
i.e., . Therefore

(36)

and

We claim that for all . Suppose on the
contrary that for some , say, , then

which is a contradiction. Because of (36) and , the
equality implies that touches the hyperplane

at . Hence, the hyperplane is tangential
to at for every . It follows from Fact 3 that

Since each ellipsoid is contractively invariant, we have

(37)

We need to show that

(38)

Because of (35), we have
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Hence, for all

(39)

We first assume that for all . In this case,
for all . If , then

noticing that, by the assumption that and by the prop-
erty of the function , we have . If ,
then by the property of , is a convex
function for . Hence we also have (38)
by (37).

If does not hold for all , then
we can get an intersection of the set
with the half space . This intersection is also a
polygon and can be denoted as . Since

, we have . Some ’s
belong to , others are not. For those

, we must have and
. It follows from (39) that

. Since , for those ’s such
that , we have

In summary, we have

(40)

Because of this, we can work on the set
instead of . Since for all

, same arguments can be used to prove (38) by using
(40) instead of (37).

Actually, the result in Theorem 5 is also true if is a
convex function.

Theorem 6: Let : be a convex function such that
. Consider the system

(41)

Given a set of ellipsoids , . If each ellipsoid
is contractively invariant for (41), then

is a contractively invariant set.
Proof: Define . Then is a con-

cave function and (41) can be written as

The result follows readily from Theorem 5.

V. ABSOLUTELY INVARIANT SETS UNDER A GENERALIZED

SECTOR CONDITION

Consider a system with a nonlinear component

(42)

where satisfies the generalized sector condition, i.e.,
for all , and each of

and is a piecewise linear concave or convex function. Sup-
pose that

if
if

...
if .

(43)

and

if
if

...
if .

(44)

As we have noted earlier, the absolute contractive invariance
of an ellipsoid is equivalent to its invariance under both
and , which can be verified by Theorem 2. Hence, we have
the following.

Corollary 1: An ellipsoid is absolutely contractively
invariant for (42) over the sector if and only if

(45)

and there exist , and ,
such that

(46)

and

(47)

An optimization problem can be formulated from Corollary
1 to find the largest such that is ACI. Here, all the
conditions can be transformed into LMIs.

Now, suppose that we have a set of ACI ellipsoids. Then it is
clear that each of these ellipsoid is contractively invariant under
both and . By Theorems 5 and 6, the convex hull of
these ellipsoids is also contractively invariant under both
and . By Fact 2, we can be sure that the convex hull of these
ellipsoids is ACI. In summary, we have the following.

Theorem 7: Consider the following system:

(48)

where satisfies a generalized sector bound
and each of and is concave or convex. Suppose
that we have a set of absolutely contractively invariant ellipsoids

, . Then the convex hull of these ellipsoids
is also absolutely contractively invariant.
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VI. ESTIMATION OF THE DOMAIN OF ATTRACTION

For a system with a generalized sector bound, there may exist
infinitely many ellipsoids that are absolutely contractively in-
variant. By Theorem 7, the convex hull of all these ellipsoids
form a larger absolutely contractively invariant set. Hence, this
convex hull can be considered as an estimate of the domain
of attraction. However, it is impossible to obtain all the abso-
lutely contractively invariant ellipsoids. A practical approach is
to choose a finite number of these ellipsoids such that each of
them is the “largest one” according to some measure of set size.

Let be a bounded convex set of some desired
shape. We call it a shape reference set. Suppose that .
For a positive real number , denote

For a set , define the size of with respect to as

Two typical types of are the ellipsoids and the polyhedrons.
A very special type of shape reference set is a straight line seg-
ment

for some . This type of is very simple and yet very
useful. By maximizing the invariant ellipsoid with respect to it,
we obtain the point furthest to the origin along the direction of

that can be enclosed by an invariant ellipsoid. Hence, we can
conclude that this point is inside the domain of attraction. By
taking different , we will obtain different invariant ellipsoids,
all maximized in certain sense (with respect to different

). By Theorem 7, the convex hull of these ellipsoids
gives us an estimate of the domain of attraction.

In the following, we present a method for maximizing the ab-
solutely contractively invariant ellipsoid with respect to

for a fixed . By Corollary 1, this problem can
be formulated as follows:

(49)

This optimization problem can also be transformed into an
LMI problem by defining new parameters. Let

Then it can be shown with the standard technique (see, e.g., [4]
and [13]) that (49) is equivalent to

(50)

Example 2: Consider the same system as in Example 1. Al-
though an optimization problem can be formulated from The-
orem 3 to maximize the invariant ellipsoid with respect to a
shape reference set, it will be an infinite dimensional problem.
A feasible approach is to place between two piece-
wise linear functions and then use the conditions for absolute
contractive invariance. The first piecewise linear function can
be simply taken as the linear function (note that

for ) and the second piecewise linear func-
tion can be obtained by connecting a finite number of points on

including the origin. By the concavity of the function,
for all .

Here, we select six points , , 1, 2, 3, 5, 8.
The resulting piecewise linear function has the form of
(19) with

and

Fig. 12 plots the functions (in dashed curve),
(in solid curve) and the straight line .

We choose , with , 0.6, 1.2, 1.8, 2.4, 3,

and solve (50). We obtain 6 contractively invariant ellipsoids,
as plotted in Fig. 13 (the dotted curves). By Theorem 7, the
convex hull of these ellipsoids (plotted in solid curve) is also
an invariant set inside the domain of attraction. The inner ellip-
soid in dashed curve is the largest invariant ellipsoid
in Example 1. It is much smaller than any of the six ellipsoids in
dotted curves. This shows that the conservatism can be much re-
duced by taking as an optimization parameter. The outermost
curve is the boundary of the actual domain of attraction obtained
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Fig. 12. Approximation of the function tan (u).

Fig. 13. Estimation of the domain of attraction.

by numerical method. It appears that there is still some space
for the ellipsoids to expand such that they are still inside the do-
main of attraction. However, if they grow any larger, they will
no longer be contractively invariant, not even invariant. This ex-
hibits the difference between the quadratic stability region and
the asymptotic stability region.

VII. CONCLUSION

This paper presents a complete characterization of absolutely
contractively invariant ellipsoids for systems with one nonlinear
component which satisfies a generalized sector condition. LMI
optimization techniques are proposed for maximizing the ab-
solutely contractively invariant ellipsoids with respect to some
shape reference set. It is also shown that the convex hull of a set

of absolutely contractively invariant ellipsoids is also absolutely
contractively invariant and hence can be used as an estimate of
the domain of attraction. It should be noted that all the results
in this paper are developed for systems with a single nonlinear
component. Future effort will be made to extend these results to
systems with multiple nonlinear components. Although in that
case, the necessity of the corresponding LMI conditions for set
invariance may be lost.
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