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Abstract—This paper presents a nonlinear control design LMIs in [4], [14], [19] from piecewise quadratic functions
method for robust stabilization and robust performance of lin-  and homogeneous polynomial functions.
ear differential inclusions. A recently introduced non-quadratic Recently, a pair of conjugate Lyapunov functions have

Lyapunov function, the convex hull quadratic function, will be d trated t tential i tabilit d ;
used for the construction of nonlinear state feedback laws. De- G€Mmonstrated great potential in stability and performance

sign objectives include stabilization with maximal convergence analysis of LDIs [7], [6], [10]. These functions are composed
rate, disturbance rejection with minimal reachable set and least from more than one positive-definite matrices and are natural

L, gain. Conditions for stabilization and performances are extensions of quadratic functions. Through these functions,
derived in terms of bilinear matrix inequalities (BMIs), which stability and performances of LDIs are characterized in

cover the existing linear matrix inequality (LMI) conditions - . . .
as special cases. Optimization problems with BMI constraints terms of bilinear matrix inequalities (BMIs) which cover the

are formulated and solved effectively by combining the path- €Xisting LMI conditions in [3] as special cases. Since extra
following algorithm and the direct iterative algorithm. The  degrees of freedom for optimization are injected through

design results are guaranteed to be at least as good asthe bilinear terms, the analysis results are guaranteed to be
the existing results obtained from LMI conditions. In most at least as good as those obtained by corresponding LMI

examples, significant improvements on system performances -, . .
have been achieved, which demonstrate the advantages of conditions. Extensive examples in [7], [6], [10] have shown

using nonlinear feedback control over linear feedback control ~that these non-quadratic Lyapunov functions can effectively
for linear differential inclusions. It is also observed through reduce conservatism in various stability and performance

numerical computation that nonlinear control strategies may  analysis problems, e.g., in the characterization of the con-
help to reduce control effort substantially. vergence rate, the reachable set, the gain and some
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Lyapunov functions, robust stability, robust performance With the effectiveness of non-quadratic Lyapunov func-
_ tions demonstrated on a number of analysis problems, they
. Introduction can further be applied to the construction of feedback

fws. Although it is straightforward to derive algorithms

A simple and practical approach to describe systems wi designinal feedback | based e |
nonlinearities and time-varying uncertainties is to use line pr designinglinear feedback laws based on analysis results

differential inclusions (LDIs). Such practice can be traced" LDls, the full strength of these non-quadratic functions
back to the earlier development (in the 1940s) of absoluf@'” k?e released when theY are ust_ad as control Lyapunov
stability theory, where a component with these complicatefinctions for the construction afionlinear feedback laws.
properties was described with a conic sector and the resultifg" !inéar time-invariant systems, it is well known that
closed-loop system was actually an LDI. The advantages B nlinear controls have no advantage over linear controls

using LDIs to describe complicated systems are fully demor’(‘—’hen it comes to stabilization or minimization of thg gain

strated in [3], where a wide variety of control problems fof(e‘g" See [1_6]_)‘ For systems with t|me-va_ry|ng uncertainties
LDIs are interpreted with linear matrix inequalities (LMIs).and LDIs, it is now accepted that nonlinear control can
The mechanism behind the LMI framework is a systemati/0'K better than linear control. In [2], an example was
application of Lyapunov theory through quadratic functions(.:ons'trm:te‘j to dgmonstrate this as_pect and it wag.suggested
Hwat non-quadratic Lyapunov functions would facilitate the
Eonstruction of nonlinear feedback laws. In [1], piecewise

has been widely applied to various control problems, th . A
Y app P near Lyapunov functions was used for robust stabilization

conservatism introduced by quadratic Lyapunov function
has been revealed in some literature including [3], e.g., in [an
[3], [4], [5], [14]. Considerable efforts have been devoted t

the construction and development of non-quadratic Lyapun ) . ; :
ull quadratic function, for the construction of nonlinear

functions (e.g., see [4], [14], [15], [17], [19]). In [17], a . . . )
necessary and sufficient condition for stability of polytopics’tate feedback IQWS'. This funct_u_)n was introduced |n_[11]
or the characterization of stability region for constrained

LDIs was derived as bilinear matrix equations (althoug rol ¢ Its level set is th hull of a familv of
it is not clear how these matrix equations can be solved%on rol systems. s level Set IS e convex hull ot a family o

d rejection of bounded persistent disturbances.
In this paper, we use one of the pair of conjugate Lyapunov
vnctions recently developed in [7], [6], [10], the convex

Numerically tractable stability conditions were derived a 1I|ps_0|ds. Its conjugate fur_u:non IS called the max (quagiraﬂc)
unction whose level set is the intersection of a family of

x Department of Electrical and Computer Engineering, University O_p"IpSOIFIIS. Of these two _funCtlons' the convex hull fun_ctlo_n
Massachusetts, Lowell, MA 0185tingshu _hu@uml.edu is continuously differentiable whereas the max function is



not. For this reason, the max function appears to be mor®nlinear feedback laws to achieve a few objectives of robust
cumbersome when applied to the construction of nonlineatabilization and performance. In particular, we would like
feedback laws for continuous-time systems (differential into construct a nonlinear state feedback law f(x) so that

clusions). - the closed-loop system is asymptotically stable in the
The design objectives to be addressed in this paper include gpsence of disturbance and the convergence rate is as

stabilization with maximal convergence rate, disturbance re-  fast as possible;

jection via minimizing the reachable set and e gain. As - the state will stay in a small neighborhood of the

will be demonstrated by numerical examples, the nonlinear  gyigin in the presence of a class 65 norm bounded

control design methods can significantly improve robust  gisturbances:

stability and performances for LDlIs. - the state will stay in a small neighborhood of the

Notation origin in the presence of a class of magnitude bounded

- |+ |oot FOrz € R™, |2|o0 := max; |z;]|. disturbances;

- o2 Foru € La, [[ulls := ( OouT(t)u(t)dt)%. - the £, gain fromw to y is as small as possible.

- I[ky, ko]: For two integerskl?kg ky < ko, I[kyi, ko] = As will be demonstrated by examples, nonlinear feedback
{/ﬁ,k; 1, ko). 7 laws may require much less control effort or capacity than
- co S: The convex hull of a ses. linear feedback laws.

-E(P):ForP e R"™™ P=P" >0,

B. The convex hull quadratic function
E(P):={zeR": 2"Pzx <1}.

In this section, we give a brief review of the definition and

- Ly: 1-level set of a positive definite functio, Ly :=  some properties of the convex hull (quadratic) function that

{z eR™: V(z) < 1}. will be necessary for the development of the main results.

- L(H): For H € R™", The convex hull function is constructed from a family of
L(H) = {x ER™: |Hpx|< 1,0 € I[LT]}7 positive definite matrices. Give@; € R"*",Q; = Q] >

0,7 € I[1,J]. Let
whereH, is the/th row of H. About the relationship between L. R7 . _ -
E(P) and L(H), we have, = {76 T +'72+"'+'7J—11'Vj70}a

E(P)C L(H)+= HP'H; <1 Vt¢elI[l,r]. (1) the convex hull function is defined as
-1

J
Py— 3 T . .
o Ve(z) == glellr“lx ;VJQJ Z. )
[I. Problem statement and preliminaries
For simplicity, we say thatl. is composed fromQ);’s.
This function was first used in [11] to study constrained
Consider the following polytopic linear differential inclu- control systems, where it was called the composite quadratic
sion (PLDI), function. We later called it convex hull function in [7],
L Aix + Biu+Tiw | . [6], [10] to differentiate it from other functions which are
[ ] COH Cix + Dw } ‘ ’el[l’N]}’ @ omposed f family of quadratic functions. If we defi
i i posed from a family of quadratic functions. If we define
wherez € R™ is the statey € R™ is the control inputy €  the 1-level set ofV. as
R? is the disturbance ange R? is the outputA;, B;, T;, C; Ly, = {x ER™: Vi(z) < 1}7
and D; are given real matrices of compatible dimensions. ) ]
This type of LDI can be used to describe a wide variety ofind denote the-level set of the quadratic functiorf Px as
nonlinear systems, possibly with time-varying uncertainties. E(P) := {x eR”: z"Px < 1},
Control design problems for LDIs via linear state feedback
of the formwu = Fz have been extensively addressed in [3]"then
where quadratic Lyapunov functions are used as constructive .
tools and the control problems are transformed into LMIs. e = ZVJ‘LJ vy €€
While the LMI technique has gained tremendous popularity
and its applications are still expanding to different types ofvhich means that.y, is the convex hull of the family of
systems, such as constrained control systems and time-deﬂ&psoids,E(Qj‘l),j e I[1,J].
systems, the conservatism resulting from quadratic Lyapunovlt is evident thatV,. is homogeneous of degree 2, i.e.,
functions has been recognized and efforts have been devolédax) = o?V,(x). Also established in [7], [11] is thal,
to the construction of non-quadratic Lyapunov functions. is convex and continuously differentiable.

The convex hull quadratic Lyapunov function initiated in For a compact convex sét, a pointxz on the boundary of
[11], along with its conjugate function, have shown to beS (denoted a$S) is called an extreme point if it cannot be
effective in reducing conservatism in stability analysis andepresented as the convex combination of any other points
evaluation of various performances [7], [6], [10], [13]. In thisin S. A compact convex set is completely determined by
paper, we use the convex hull quadratic function to construits extreme points. In what follows, we characterize the set

A. Problem statement



of extreme points ofLy,. Since Ly, is the convex hull For stability design, we only consider the state inclusion.
of 6(@;1), j € I[1,J], an extreme point must be on theWe would like to construct a nonlinear state feedback law
boundaries of both.,,. and E(Qj—l) for somej € I[1,J]. to achieve robust stabilization via the convex hull quadratic

Denote function V_.(z). The main result is given as follows.
E, = 0Ly, NoEQ") Theorem 1: Consider V, composed fromQ, € R"*",
= {zeR": V. (z)=2"Q; 'z =1}. Qr = QL > 0,k € I[1,J]. If there exist3 > 0, Y}, €
R™" k€ I[1,J] and A\ > 0, i € I[1,N],j,k € I[1,J]

Then|J;_, Ex contains all the extreme points dfy,. The
exact description ot is given as follows.

Lemma 1: [13] For eachk € I[1, J],

such that
QrA] + A;Qi + Y, Bl + B;Y}

J
Ey={z€dLy,: 27Q; (Q;—Qu)Q; 'z < 0,5 €I[1, J]}. <D Ne(Q — Qk) = BQk Vi, k. (9)
4) j=1
For z € R", define Then a stabilizing nonlinear feedback law can be constructed
J -1 as follows. For eaclr € R", lety*(x) € I' be defined as in
F () i 5). Let
7 (2) = arggnépr ;VJQJ' . G © p p
- Y *) *Y , Q *) *Q , 10
From the definition;* can be computed by solving a simple o) ;m g o) ;% v (10)
LMI problem obtained via Schur complements [11]. As F(v) = Y(v)Q()L. (12)
discussed in [12];y* is generally uniquely determined by .
. It is evident thaty* (az) = 7* (). Define f(z) = F(y*(x))z. Then for allz € R", we have
Detailed properties about* were characterized in [12]. max{VV.(z)"(4;x + B;f(x)) :i € I[1,N]} < —BV.(x),
Conditions fory*(z) to be continuous were provided and (12)

numerical results revealed that is generally continuous which implies that the closed-loop system undet f(z) is
except for some degenerated cases. The following lemmsable. If the vector function*(z) is continuous inz, then
combines some results from [11], [12]. u = f(x) is a continuous feedback law. o

Lemma 2: Given z € R™. For simplicity and without loss Sincey* (az) = v*(z), we havef(az) = af(z) and the
0‘; generality, assume thag (x) > 0 for k € I[1, Jo] and  reqyting closed-loop system is homogeneous of degree one.
Ve(z) =0 for k € I[Jo + 1, J]. Denote When the inequality (12) is satisfied,(z(t)) is strictly

. Jo . 1 decreasing and we havé.(z(t)) < V.(z(0))e?*. Hence
QM) = Z'Yk@kv zr = QkQ(Y") ", kelll,Jo].  3is a measure of convergence rate. Moreover, a trajectory
k=1 starting from the boundary of a level set will go to boundaries
Then V.(zy) = Vi) = 2LQ;'z,. Hence z;, € of smaller and smaller level sets. Suppasg e agdLy.,.
(Vo(x))2 By, k € I[1, Jo]. Moreover, Thenz(t) € a(t)0Ly, with a(t) strictly decreasing. In this
Jo case, we say that the level sets are contractively invariant.
T = Zy,jxk, (6) To increase the convergence rate, an optimization problem
k=1 can be formulated to maximizé as follows:
and for allk € I[1, Jy], sup B st. (9). (13)
VVe() = VVe(p) = 205 "o, = 2Q(v*) 2, (7) Xisk 20.Qu=Q) >0V

. The constraint (9) consists of a family of bilinear matrix
where V'V (x) denotes the gradient df, at . inequalities (BMIs) which contain some bilinear terms as

Since v*(ax) = v*(z), by (7), we haveVV(az) = . SN
aVV(z). SinceV, is homogeneous of degree two, to obtadnthe produpt of & full matrix and a sca}ar, "9‘”.’“(@3 o
x). We implemented a two-step iterative algorithm which

some geometric interpretation of Lemma 2, we may restric . i i : .
our attention to a point: € Ly, . Then by the lemmay combines the path-following method in [9] and the direct

can alwavs be expressed as a convex combination of a famiﬁerative method. The first step of each iteration uses the path-
of 2.'s g c 66(22‘1) (note z, € E). Furthermore, the *(Yllowing method to update all the parameters at the same
k= Tk kT k k): ’ time. The second step fixes;,’s and solves the resulting
gradient ofV. at theser;’s are the same and they all equalLMI problem which include€),’s andY’s as variables. This
J J .

to the gradient ofV/, at z. In other wordsyx andz;’s are in . . .
the same hyperplane which is tangentiallto . In fact, the two-step |t_erat|ve method proves very effective on the BMI
' problems in [6], [7], [10], [13] and also works well on the

intersection of the’ hyperplane withy, is a polygon whose examples in Section V.
vertices includery’s (see [12]).

[1l. Nonlinear feedback law for robust stabilization IV. Nonlinear feedback law for robust performance

In the absence of disturbance, the LDI (2) reduces to,  consider the linear differential inclusion (2) in the pres-
z € co{A;x + Byu: i € I[1,N]}. (8) ence of disturbances. Like in [3], we consider two types of



disturbances, the unit peak disturbances The “outer” size ofLy, is defined as

w'(w(t) <1 Yt >0 (14) Qout :=min{a : Ly, C aL(H)}. (19)
and the unit energy disturbances The matrix H can be chosen such théf,z is a certain
o0 3 quantity that we would like to keep small. If we halg, C
lwll2 = (/ wT(t)w(t)dt> <1. (15)  aL(H), then|H,z(t)| < o for all ¢ in the presence of the
0

_ class of disturbances. Sing€ H) is a convex set andy, is
Let u = f(z) be a nonlinear state feedback. The closecthe convex hull of the ellipsoid§(Q;, '), it is easy to see that
loop system is Ly, CaL(H) = L(H/a)ifand only if £(Q, ') € L(H/a)
[ i ] c CO{[ Aix + Bif (z) + Tiw } e I[LN}}. for all k. By (1), this is equivalent to

Ciz + Diw (16) HQH] <o* YeelI[l,r],keI[1,J]. (20)

The control design objective is disturbance rejection, i.e., to In view of the above arguments, the problem of reducing
keep the state close to the origin or to keep the size of tfie reachable set can be formulated as
output (in terms of certain norm) small in the presence of a inf a st (17),(20). (21)
class of disturbances. The disturbance rejection performance Aijk>0,Qr=Q] >0,Yy
can be characterized by reachable set or the maximal output
norm. When the disturbance is of unit peak type, the maximal 2) Reachable set with unit peak disturbances:
output norm is associated with the,, gain; when the Theorem 3: Consider V., composed from@, € R"*",
disturbance is of unit energy, the maximal output norm i§), = Q. > 0,k € I[1,J]. Suppose that there exist
associated with thé, — L, gain or theL, gain. We first Y, € R™*" k € I[1,J], \ijx > 0,i € I[1,N], 5, k € I[1, J]
consider the reachable set. and 3 > 0 such that
M +6Qr  T; ,

A. Suppression of the reachable set 17 —gI <0 ¥k (22)

The reachable set can be estimated with a level set where M;; is given by (18). Let the nonlinear feedback
a certain Lyapunov function. In [3], quadratic Lyapunovu = f(x) = F/(y*(z))x be constructed fronY}’s and Qy's
functions are considered for linear differential inclusions anés in (10) and (11). Thehy, is an invariant set, which means
the reachable set is estimated with ellipsoids through solviriat all trajectories starting frondy, will stay inside for
some LMI problems. In this section, we use the convex hufiny possible disturbance satisfyingt)"w(t) < 1,vt > 0.
of a family of ellipsoids to characterize the reachable set ardoreover, for allzo € R™ and all possible disturbances

we attempt to reduce the reachable set by nonlinear feedbagsisfying the constraint;(¢) will converge toLy,. o
laws. Similarly to the unit energy disturbance case, we can
1) Reachable set with finite energy disturbances: formulate the following optimization problem for the purpose

Theorem 2: Consider V, composed fromQ, € R™*", of minimizing the reachable set or to minimize the maximal

Qr = QL > 0,k € I[1,.J]. Suppose that there exisf, ¢ oOutput norm,
R™*" ke I[1,.J] andAyjx > 0, i € I[1,N],j,k € I[1,.J] inf a st (22),(20.  (23)
such that Xij,B820,Qk=Q} >0,Ys

L } <0 Vik, (17)

B. Suppression of theL, gain

where The main result is stated in the following theorem:
J

My = QuAl+ AQu + YIB! + BiYi — S A\ije(Q; — Qn). Theorem 4: GivenQy, € R™*", Qi = Q}, > 0, k € I[1, J].
b= Ok Qut Yy k= 2 Aik(@r = Qn) Let & > 0. Suppose that there exi}, € R™*" k € I[1,.J]

= (18) and\;;, > 0,7 € I[1,N],j,k € I[1,J] such that
Let the nonlinear feedback = f(z) = F(v*(z))x be My, T; QirCT
constructed front's and Q;'s as in (10) and (11). Then 7 -1 D} <0, Vi,k, (24)
for all w bounded byjlwl|ls < 1 and withz, = 0, the state CiQr D; —6%I
of (16) satisfiese(t) € Ly, for all ¢t > 0. *  where

J
= QeA] + AiQr + Y{ B + BiYi — Y \iji(Q; — Q)
=1

Under the condition of Theorem 2, the level skt
includes the actual reachable set and can be considered aiiC
an estimate for the reachable set. To keep the state in a
small neighborhood of the origin, it is desirable thiag, ~ Let the nonlinear feedback = f(z) = F(y"(x))x be
satisfying the condition is as small as possible. We may ug@nstructed fromy}’s and Q's as in (10) and (11). Then
a reference polytope to measure the siz&pf. The polytope for system (16) withzo = 0, we havelly|[; < djw]2. <

LH):={zeR": |Hpx| <1,0€Il,r]}. the Lo gain. The following optimization problem can be



formulated for suppression of th&, gain:
inf 0 st. (24). (25) il
Xijk>0,Qr=Q Y o
V. Numerical Examples 1
Example 1. Consider a second-order LDI with two vertices, £ or
% € co{A1x + Byu, Asx + Bau}, b
where -2f
13 -1 _ 1 )l
A= [1 2 ] Bl_{o.5]’
43 -2 -1 6 1 2 3
3 —4 0.5 1
Az = { 1 2 ]’ By = { -1 } Fig. 1. A trajectory and a level set
There exists no linear feedback such that the closed-loop
system is quadratically stable. We try to maximize the A, — 3 —4 B, — 0.5
convergence rat@ via nonlinear feedback by solving (13) 2 1 2 ) 2 —0.8
with J = 2. In this case,Ly, is the convex hull of 1
two ellipsoids. The maximaj3 that we have obtained is E= [ 1 ], cC=[1 1]

0.4260 > 0, which shows that the system can be stabilized
via nonlinear feedback law. To achieve this convergencBhis LDI is quadratically stabilizable through linear state
rate, the spectral norm of the feedback géinis || Fy|, > feedback. We would like to design a feedback law to suppress
1.4x10* and the matrixQ; is not well conditioned. From our the £, gain.

simulation experience, high feedback gaifiss and badly When quadratic Lyapunov function is applied to designing
conditioned®;’s usually require very small sampling period,a linear state feedback law, the optimization problem is a
which makes digital implementation difficult. To avoid thisspecial case of (25) witt/ = 1. In this case (25) reduces
situation, we can impose some additional constraints on tfie an LMI problem. The optimab for this case isi; =
range of@;’s. For example, we can piCkmin, gmax > 0  10.7670. When the optimals is approached, the norm of
and impose the constraimt,in/ < Q; < gmax! for each the feedback gain will approach infinity. If we restrict the
4 € I[1, N]. It turns out that this constraint also helps to limithorm of the feedback gain to be less thab00 (via the

the magnitude of;’s. By picking gmin and gmax properly, additional constraint ox;’s, as in Example 1), the optimal
we are able to restrick;’s within the rangel|Fj||» < 600: ¢ is 61 = 11.8886. The feedback gain is

Fy=[ —511.50 —313.62 |, Fo= —26.77 —8.25 |. F = —4.2509 —2.6324 | x 1000, (27)

Other parameters resulting from this additional restriction are Next we apply the convex hull functioVi.(x) with J = 2
0.3114 —0.4635 0.1015 —0.1289 to the design of a nonlinear feedback law. By solving (25)
Q1= —0.4635 0.7286 :| Q2= l: —0.1289 0.3468 :|7 with J = 2, the minimald we have obtained i§, = 1.1947,

. . . ) which is much less tha#;. If we restrict the norm off},
and the maximafs we obtained i = 0'1?’34‘ with these to be less than 1000, then the bésive have computed is
parameters, the nonlinear feedback law is 5y = 1.8477. Other variables corresponding to this value of

u=f(z) = (1 (@)1 +7%Y2)(0 (2)Q1 +15(2)Q2) . §=45, are
whereY; = F;Q;, i = 1,2. Simulation is carried out for the Fy=[ —815.05 —579.43 |, F, = [ —58.73 —28.49 |,

closed-loop system Q, | 15:6863 —20.5376] [ 58599 —8.3901
i€ co{Aix 4 Bif(z), Asx + Baf(x)} 171 -20.5376 27.9733 271 —8.3901 15.8879

1 Here we compare the output responses (with) = 0) for
[ 0 ] the two designs under the disturbancg) = 1, for ¢ € [0, 1]
= Ajx+ B f(r) andi = Asx+ B f(x) is chosen so that and 0 elsewhere. We hayje||; = 1. The switching between
= (VVe(z))'@ is maximized at each time instant (This isz = A,z + B f(z) + Ew andi = Ayx 4+ By f(z) + Ew is
intended to approximate the worst situation). The trajectorghosen such that, is maximized at each time instant. The
is plotted in Fig. 1, where the closed curve is the boundanmwo time responses are compared in Fig. 2, where the dashed
of the level set that includes. curve is produced by the linear state feedback with gain in
Example 2: An LDI subject to disturbance is described as(27) and the solid curve is produced by the nonlinear feed-
i € co{ A1z + Biu+ Ew, Aoz + Bou+ Ew}, y=Cz,  back constructed fron®y, Q; arg(ng FlQl,Yg Q5.
(26) For the dashed curve, we ha&% y%( dt)z = 2.6858, and
where for the solid curve, we havef0 2(t)dt)z = 0.7984.
A — { ] B, — { ] Example 3: Consider the same LDl as in Example 2.
=11 2 |0 27| —05 | Assume that the disturbance is of unit peak type, i.e.,

under initial conditionzy = . The switching between



N ‘ ‘ ‘ guide the design for achieving a few objectives of robust
AN BE— stabilization and performance. The advantages of nonlinear
LN ] feedback over linear feedback has been demonstrated through
’ 1 some numerical examples. It is expected that the design
methods can be extended to deal with other performances,
such as the input-to-state, input-to-output and state-to-output
performances studied in [3]. The max quadratic Lyapunov
function may also be suitable for the design of nonlinear
control if its non-differentiability can be handled properly.
Other non-quadratic Lyapunov functions, such as the homo-
geneous polynomial function, may also be explored for the
design of nonlinear control laws.

‘ -
40 50
t (sec)

Fig. 2. Two output responses under unit energy disturbances

(1]
w'(t)w(t) < 1 for all t. We would like to design a control
law such that the peak of the output is suppressed. This it
achieved by solving (23). Whed = 1, V, is a quadratic
function and the resulting control law is linear. If no restric- [3]
tion on the magnitude of the feedback matrix is imposed,
the optimala is 11.9529. If a bound on the norm @&, is ]
imposed, say||F|| < 5000, we obtaina = 12.8287 := oy
and

F=[—-42244 —2.6093 ] x 10°. (5]

For J = 2, we impose a boun{{Fy|| < 1000 and the best
is 2.4573 := y. Other parameters for the resulting nonlinear (!
feedback law are

Fy=[ —813.88 —577.47 |,F, = [ —62.46 —30.39 |;

| 18.1203 —23.4665 Q= 6.8899 —9.9904
T | —23.4665 31.8746 |’ % | —9.9904 19.1287 |’

In simulation, the switching strategy andare chosen such
that V, is maximized at each time instant to approximate thel®!
worst situation. The two output responses corresponding to
the worstw and the worst switching are plotted in Fig. 3. It[1q)
can be seen that the magnitude of the output is substantially
suppressed by the nonlinear feedback control.

(71

Q1 [8]

(11]
14
12} 7/,//"”””" 777777777777777 [12]
10f /'/ g
[13]
- , - - by linear feedback
o/ 1 [14]
/
at /]
/ 15
2t/ ] [15]
O0K 20 4‘0 66 éu 100
t(se0) [16]
Fig. 3. Two output responses under unit peak disturbances
(17]

VI.

We developed LMI-based methods for the constructiof®!
of nonlinear feedback laws for linear differential inclusions.
The convex hull quadratic Lyapunov functions are used to

Conclusions
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