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Abstract— This paper presents a nonlinear control design
method for robust stabilization and robust performance of lin-
ear differential inclusions. A recently introduced non-quadratic
Lyapunov function, the convex hull quadratic function, will be
used for the construction of nonlinear state feedback laws. De-
sign objectives include stabilization with maximal convergence
rate, disturbance rejection with minimal reachable set and least
L2 gain. Conditions for stabilization and performances are
derived in terms of bilinear matrix inequalities (BMIs), which
cover the existing linear matrix inequality (LMI) conditions
as special cases. Optimization problems with BMI constraints
are formulated and solved effectively by combining the path-
following algorithm and the direct iterative algorithm. The
design results are guaranteed to be at least as good as
the existing results obtained from LMI conditions. In most
examples, significant improvements on system performances
have been achieved, which demonstrate the advantages of
using nonlinear feedback control over linear feedback control
for linear differential inclusions. It is also observed through
numerical computation that nonlinear control strategies may
help to reduce control effort substantially.
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I. Introduction

A simple and practical approach to describe systems with
nonlinearities and time-varying uncertainties is to use linear
differential inclusions (LDIs). Such practice can be traced
back to the earlier development (in the 1940s) of absolute
stability theory, where a component with these complicated
properties was described with a conic sector and the resulting
closed-loop system was actually an LDI. The advantages of
using LDIs to describe complicated systems are fully demon-
strated in [3], where a wide variety of control problems for
LDIs are interpreted with linear matrix inequalities (LMIs).
The mechanism behind the LMI framework is a systematic
application of Lyapunov theory through quadratic functions.

While the LMI technique has been well appreciated and
has been widely applied to various control problems, the
conservatism introduced by quadratic Lyapunov functions
has been revealed in some literature including [3], e.g., in [2],
[3], [4], [5], [14]. Considerable efforts have been devoted to
the construction and development of non-quadratic Lyapunov
functions (e.g., see [4], [14], [15], [17], [19]). In [17], a
necessary and sufficient condition for stability of polytopic
LDIs was derived as bilinear matrix equations (although
it is not clear how these matrix equations can be solved).
Numerically tractable stability conditions were derived as
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LMIs in [4], [14], [19] from piecewise quadratic functions
and homogeneous polynomial functions.

Recently, a pair of conjugate Lyapunov functions have
demonstrated great potential in stability and performance
analysis of LDIs [7], [6], [10]. These functions are composed
from more than one positive-definite matrices and are natural
extensions of quadratic functions. Through these functions,
stability and performances of LDIs are characterized in
terms of bilinear matrix inequalities (BMIs) which cover the
existing LMI conditions in [3] as special cases. Since extra
degrees of freedom for optimization are injected through
the bilinear terms, the analysis results are guaranteed to be
at least as good as those obtained by corresponding LMI
conditions. Extensive examples in [7], [6], [10] have shown
that these non-quadratic Lyapunov functions can effectively
reduce conservatism in various stability and performance
analysis problems, e.g., in the characterization of the con-
vergence rate, the reachable set, theL2 gain and some
dissipativity properties.

With the effectiveness of non-quadratic Lyapunov func-
tions demonstrated on a number of analysis problems, they
can further be applied to the construction of feedback
laws. Although it is straightforward to derive algorithms
for designinglinear feedback laws based on analysis results
on LDIs, the full strength of these non-quadratic functions
will be released when they are used as control Lyapunov
functions for the construction ofnonlinear feedback laws.
For linear time-invariant systems, it is well known that
nonlinear controls have no advantage over linear controls
when it comes to stabilization or minimization of theL2 gain
(e.g., see [16]). For systems with time-varying uncertainties
and LDIs, it is now accepted that nonlinear control can
work better than linear control. In [2], an example was
constructed to demonstrate this aspect and it was suggested
that non-quadratic Lyapunov functions would facilitate the
construction of nonlinear feedback laws. In [1], piecewise
linear Lyapunov functions was used for robust stabilization
and rejection of bounded persistent disturbances.

In this paper, we use one of the pair of conjugate Lyapunov
functions recently developed in [7], [6], [10], the convex
hull quadratic function, for the construction of nonlinear
state feedback laws. This function was introduced in [11]
for the characterization of stability region for constrained
control systems. Its level set is the convex hull of a family of
ellipsoids. Its conjugate function is called the max (quadratic)
function whose level set is the intersection of a family of
ellipsoids. Of these two functions, the convex hull function
is continuously differentiable whereas the max function is



not. For this reason, the max function appears to be more
cumbersome when applied to the construction of nonlinear
feedback laws for continuous-time systems (differential in-
clusions).

The design objectives to be addressed in this paper include
stabilization with maximal convergence rate, disturbance re-
jection via minimizing the reachable set and theL2 gain. As
will be demonstrated by numerical examples, the nonlinear
control design methods can significantly improve robust
stability and performances for LDIs.

Notation
- | · |∞: For x ∈ Rn, |x|∞ := maxi |xi|.
- ‖ · ‖2: For u ∈ L2, ‖u‖2 :=

(∫∞
0

uT (t)u(t)dt
) 1

2 .
- I[k1, k2]: For two integersk1, k2, k1 < k2, I[k1, k2] :=
{k1, k1 + 1, · · · , k2}.
- co S: The convex hull of a setS.
- E(P ): For P ∈ Rn×n, P = P T > 0,

E(P ) := {x ∈ Rn : xTPx ≤ 1}.
- LV : 1-level set of a positive definite functionV , LV :=
{x ∈ Rn : V (x) ≤ 1}.
- L(H): For H ∈ Rr×n,

L(H) :=
{

x ∈ Rn : |H`x| ≤ 1, ` ∈ I[1, r]
}

,

whereH` is the`th row ofH. About the relationship between
E(P ) andL(H), we have,

E(P ) ⊆ L(H) ⇐⇒ H`P
−1HT

` ≤ 1 ∀ ` ∈ I[1, r]. (1)

II. Problem statement and preliminaries

A. Problem statement

Consider the following polytopic linear differential inclu-
sion (PLDI),[

ẋ
y

]
∈ co

{[
Aix + Biu + Tiw

Cix + Diw

]
: i ∈ I[1, N ]

}
, (2)

wherex ∈ Rn is the state,u ∈ Rm is the control input,w ∈
Rp is the disturbance andy ∈ Rq is the output.Ai, Bi, Ti, Ci

and Di are given real matrices of compatible dimensions.
This type of LDI can be used to describe a wide variety of
nonlinear systems, possibly with time-varying uncertainties.
Control design problems for LDIs via linear state feedback
of the formu = Fx have been extensively addressed in [3],
where quadratic Lyapunov functions are used as constructive
tools and the control problems are transformed into LMIs.
While the LMI technique has gained tremendous popularity
and its applications are still expanding to different types of
systems, such as constrained control systems and time-delay
systems, the conservatism resulting from quadratic Lyapunov
functions has been recognized and efforts have been devoted
to the construction of non-quadratic Lyapunov functions.

The convex hull quadratic Lyapunov function initiated in
[11], along with its conjugate function, have shown to be
effective in reducing conservatism in stability analysis and
evaluation of various performances [7], [6], [10], [13]. In this
paper, we use the convex hull quadratic function to construct

nonlinear feedback laws to achieve a few objectives of robust
stabilization and performance. In particular, we would like
to construct a nonlinear state feedback lawu = f(x) so that

- the closed-loop system is asymptotically stable in the
absence of disturbance and the convergence rate is as
fast as possible;

- the state will stay in a small neighborhood of the
origin in the presence of a class ofL2 norm bounded
disturbances;

- the state will stay in a small neighborhood of the
origin in the presence of a class of magnitude bounded
disturbances;

- theL2 gain fromw to y is as small as possible.

As will be demonstrated by examples, nonlinear feedback
laws may require much less control effort or capacity than
linear feedback laws.

B. The convex hull quadratic function

In this section, we give a brief review of the definition and
some properties of the convex hull (quadratic) function that
will be necessary for the development of the main results.
The convex hull function is constructed from a family of
positive definite matrices. GivenQj ∈ Rn×n, Qj = QT

j >
0, j ∈ I[1, J ]. Let

Γ :=
{

γ ∈ RJ : γ1 + γ2 + · · ·+ γJ = 1, γj ≥ 0
}

,

the convex hull function is defined as

Vc(x) := min
γ∈Γ

xT




J∑

j=1

γjQj



−1

x. (3)

For simplicity, we say thatVc is composed fromQj ’s.
This function was first used in [11] to study constrained
control systems, where it was called the composite quadratic
function. We later called it convex hull function in [7],
[6], [10] to differentiate it from other functions which are
composed from a family of quadratic functions. If we define
the 1-level set ofVc as

LVc :=
{

x ∈ Rn : Vc(x) ≤ 1
}

,

and denote the1-level set of the quadratic functionxTPx as

E(P ) :=
{

x ∈ Rn : xTPx ≤ 1
}

,

then

LVc =





J∑

j=1

γjxj : xj ∈ E(Q−1
j ), γ ∈ Γ



 ,

which means thatLVc is the convex hull of the family of
ellipsoids,E(Q−1

j ), j ∈ I[1, J ].
It is evident thatVc is homogeneous of degree 2, i.e.,

Vc(αx) = α2Vc(x). Also established in [7], [11] is thatVc

is convex and continuously differentiable.
For a compact convex setS, a pointx on the boundary of

S (denoted as∂S) is called an extreme point if it cannot be
represented as the convex combination of any other points
in S. A compact convex set is completely determined by
its extreme points. In what follows, we characterize the set



of extreme points ofLVc
. Since LVc

is the convex hull
of E(Q−1

j ), j ∈ I[1, J ], an extreme point must be on the
boundaries of bothLVc and E(Q−1

j ) for somej ∈ I[1, J ].
Denote

Ek := ∂LVc ∩ ∂E(Q−1
k )

=
{
x ∈ Rn : Vc(x) = xTQ−1

k x = 1
}

.

Then
⋃J

k=1 Ek contains all the extreme points ofLVc
. The

exact description ofEk is given as follows.

Lemma 1: [13] For eachk ∈ I[1, J ],
Ek ={x∈∂LVc : xTQ−1

k (Qj−Qk)Q−1
k x ≤ 0, j∈I[1, J ]}.

(4)

For x ∈ Rn, define

γ∗(x) := arg min
γ∈Γ

xT




J∑

j=1

γjQj



−1

x. (5)

From the definition,γ∗ can be computed by solving a simple
LMI problem obtained via Schur complements [11]. As
discussed in [12],γ∗ is generally uniquely determined by
x. It is evident thatγ∗(αx) = γ∗(x).

Detailed properties aboutγ∗ were characterized in [12].
Conditions forγ∗(x) to be continuous were provided and
numerical results revealed thatγ∗ is generally continuous
except for some degenerated cases. The following lemma
combines some results from [11], [12].

Lemma 2: Given x ∈ Rn. For simplicity and without loss
of generality, assume thatγ∗k(x) > 0 for k ∈ I[1, J0] and
γ∗k(x) = 0 for k ∈ I[J0 + 1, J ]. Denote

Q(γ∗) =
J0∑

k=1

γ∗kQk, xk = QkQ(γ∗)−1x, k ∈ I[1, J0].

Then Vc(xk) = Vc(x) = xT
kQ−1

k xk. Hence xk ∈
(Vc(x))

1
2 Ek, k ∈ I[1, J0]. Moreover,

x =
J0∑

k=1

γ∗kxk, (6)

and for allk ∈ I[1, J0],
∇Vc(x) = ∇Vc(xk) = 2Q−1

k xk = 2Q(γ∗)−1x, (7)

where∇Vc(x) denotes the gradient ofVc at x.
Since γ∗(αx) = γ∗(x), by (7), we have∇V (αx) =

α∇V (x). SinceVc is homogeneous of degree two, to obtain
some geometric interpretation of Lemma 2, we may restrict
our attention to a pointx ∈ ∂LVc . Then by the lemma,x
can always be expressed as a convex combination of a family
of xk ’s, xk ∈ ∂E(Q−1

k ) (note xk ∈ Ek). Furthermore, the
gradient ofVc at thesexk ’s are the same and they all equal
to the gradient ofVc at x. In other words,x andxk ’s are in
the same hyperplane which is tangential toLVc . In fact, the
intersection of the hyperplane withLVc is a polygon whose
vertices includexk ’s (see [12]).

III. Nonlinear feedback law for robust stabilization

In the absence of disturbance, the LDI (2) reduces to,

ẋ ∈ co{Aix + Biu : i ∈ I[1, N ]}. (8)

For stability design, we only consider the state inclusion.
We would like to construct a nonlinear state feedback law
to achieve robust stabilization via the convex hull quadratic
function Vc(x). The main result is given as follows.

Theorem 1: Consider Vc composed fromQk ∈ Rn×n,
Qk = QT

k > 0, k ∈ I[1, J ]. If there existβ > 0, Yk ∈
Rm×n, k ∈ I[1, J ] and λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ]
such that

QkAT
i + AiQk + Y T

k BT
i + BiYk

≤
J∑

j=1

λijk(Qj −Qk)− βQk ∀ i, k. (9)

Then a stabilizing nonlinear feedback law can be constructed
as follows. For eachx ∈ Rn, let γ∗(x) ∈ Γ be defined as in
(5). Let

Y (γ∗) =
J∑

k=1

γ∗kYk, Q(γ∗) =
J∑

k=1

γ∗kQk, (10)

F (γ∗) = Y (γ∗)Q(γ∗)−1. (11)

Definef(x) = F (γ∗(x))x. Then for allx ∈ Rn, we have

max{∇Vc(x)T(Aix + Bif(x)) : i ∈ I[1, N ]} ≤ −βVc(x),
(12)

which implies that the closed-loop system underu = f(x) is
stable. If the vector functionγ∗(x) is continuous inx, then
u = f(x) is a continuous feedback law. ¦

Sinceγ∗(αx) = γ∗(x), we havef(αx) = αf(x) and the
resulting closed-loop system is homogeneous of degree one.

When the inequality (12) is satisfied,Vc(x(t)) is strictly
decreasing and we haveVc(x(t)) ≤ Vc(x(0))e−βt. Hence
β is a measure of convergence rate. Moreover, a trajectory
starting from the boundary of a level set will go to boundaries
of smaller and smaller level sets. Supposex0 ∈ α0∂LVc .
Thenx(t) ∈ α(t)∂LVc with α(t) strictly decreasing. In this
case, we say that the level sets are contractively invariant.

To increase the convergence rate, an optimization problem
can be formulated to maximizeβ as follows:

sup
λijk≥0,Qk=QT

k>0,Yk

β s.t. (9). (13)

The constraint (9) consists of a family of bilinear matrix
inequalities (BMIs) which contain some bilinear terms as
the product of a full matrix and a scalar, i.e.,λijk(Qj −
Qk). We implemented a two-step iterative algorithm which
combines the path-following method in [9] and the direct
iterative method. The first step of each iteration uses the path-
following method to update all the parameters at the same
time. The second step fixesλijk ’s and solves the resulting
LMI problem which includesQj ’s andYj ’s as variables. This
two-step iterative method proves very effective on the BMI
problems in [6], [7], [10], [13] and also works well on the
examples in Section V.

IV. Nonlinear feedback law for robust performance

Consider the linear differential inclusion (2) in the pres-
ence of disturbances. Like in [3], we consider two types of



disturbances, the unit peak disturbances

wT(t)w(t) ≤ 1 ∀t ≥ 0 (14)

and the unit energy disturbances

‖w‖2 =
(∫ ∞

0

wT(t)w(t)dt

) 1
2

≤ 1. (15)

Let u = f(x) be a nonlinear state feedback. The closed-
loop system is[

ẋ
y

]
∈ co

{[
Aix + Bif(x) + Tiw

Cix + Diw

]
: i ∈ I[1, N ]

}
.

(16)
The control design objective is disturbance rejection, i.e., to
keep the state close to the origin or to keep the size of the
output (in terms of certain norm) small in the presence of a
class of disturbances. The disturbance rejection performance
can be characterized by reachable set or the maximal output
norm. When the disturbance is of unit peak type, the maximal
output norm is associated with theL∞ gain; when the
disturbance is of unit energy, the maximal output norm is
associated with theL2 − L∞ gain or theL2 gain. We first
consider the reachable set.

A. Suppression of the reachable set

The reachable set can be estimated with a level set of
a certain Lyapunov function. In [3], quadratic Lyapunov
functions are considered for linear differential inclusions and
the reachable set is estimated with ellipsoids through solving
some LMI problems. In this section, we use the convex hull
of a family of ellipsoids to characterize the reachable set and
we attempt to reduce the reachable set by nonlinear feedback
laws.

1) Reachable set with finite energy disturbances:
Theorem 2: Consider Vc composed fromQk ∈ Rn×n,
Qk = QT

k > 0, k ∈ I[1, J ]. Suppose that there existYk ∈
Rm×n, k ∈ I[1, J ] and λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ]
such that [

Mik Ti

T T
i −I

]
≤ 0 ∀i, k, (17)

where

Mik = QkAT
i +AiQk +Y T

k BT
i +BiYk−

J∑

j=1

λijk(Qj −Qk).

(18)
Let the nonlinear feedbacku = f(x) = F (γ∗(x))x be
constructed fromYk ’s and Qk ’s as in (10) and (11). Then
for all w bounded by‖w‖2 ≤ 1 and withx0 = 0, the state
of (16) satisfiesx(t) ∈ LVc for all t ≥ 0. ¦

Under the condition of Theorem 2, the level setLVc

includes the actual reachable set and can be considered as
an estimate for the reachable set. To keep the state in a
small neighborhood of the origin, it is desirable thatLVc

satisfying the condition is as small as possible. We may use
a reference polytope to measure the size ofLVc . The polytope
is described in terms of a matrixH ∈ Rr×n as follows,

L(H) := {x ∈ Rn : |H`x| ≤ 1, ` ∈ I[1, r]}.

The “outer” size ofLVc is defined as

αout := min{α : LVc
⊂ αL(H)}. (19)

The matrix H can be chosen such thatH`x is a certain
quantity that we would like to keep small. If we haveLVc ⊂
αL(H), then |H`x(t)| ≤ α for all t in the presence of the
class of disturbances. SinceL(H) is a convex set andLVc

is
the convex hull of the ellipsoidsE(Q−1

k ), it is easy to see that
LVc ⊂ αL(H) = L(H/α) if and only if E(Q−1

k ) ⊂ L(H/α)
for all k. By (1), this is equivalent to

H`QkHT
` ≤ α2 ∀` ∈ I[1, r], k ∈ I[1, J ]. (20)

In view of the above arguments, the problem of reducing
the reachable set can be formulated as

inf
λijk≥0,Qk=QT

k>0,Yk

α s.t. (17), (20). (21)

2) Reachable set with unit peak disturbances:
Theorem 3: Consider Vc composed fromQk ∈ Rn×n,
Qk = QT

k > 0, k ∈ I[1, J ]. Suppose that there exist
Yk ∈ Rm×n, k ∈ I[1, J ], λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ]
andβ > 0 such that[

Mik + βQk Ti

T T
i −βI

]
≤ 0 ∀i, k, (22)

where Mik is given by (18). Let the nonlinear feedback
u = f(x) = F (γ∗(x))x be constructed fromYk ’s andQk ’s
as in (10) and (11). ThenLVc is an invariant set, which means
that all trajectories starting fromLVc will stay inside for
any possible disturbance satisfyingw(t)Tw(t) ≤ 1,∀t ≥ 0.
Moreover, for all x0 ∈ Rn and all possible disturbances
satisfying the constraint,x(t) will converge toLVc . ¦

Similarly to the unit energy disturbance case, we can
formulate the following optimization problem for the purpose
of minimizing the reachable set or to minimize the maximal
output norm,

inf
λijk,β≥0,Qk=QT

k>0,Yk

α s.t. (22), (20). (23)

B. Suppression of theL2 gain

The main result is stated in the following theorem:

Theorem 4: GivenQk ∈ Rn×n, Qk = QT
k > 0, k ∈ I[1, J ].

Let δ > 0. Suppose that there existYk ∈ Rm×n, k ∈ I[1, J ]
andλijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ] such that


Mik Ti QkCT

i

T T
i −I DT

i

CiQk Di −δ2I


 ≤ 0, ∀ i, k, (24)

where

Mik = QkAT
i +AiQk +Y T

k BT
i +BiYk−

J∑

j=1

λijk(Qj −Qk).

Let the nonlinear feedbacku = f(x) = F (γ∗(x))x be
constructed fromYk ’s and Qk ’s as in (10) and (11). Then
for system (16) withx0 = 0, we have‖y‖2 ≤ δ‖w‖2. ¦

By Theorem 4, the quantityδ gives an upper bound for
the L2 gain. The following optimization problem can be



formulated for suppression of theL2 gain:

inf
λijk≥0,Qk=QT

k,Yk

δ s.t. (24). (25)

V. Numerical Examples

Example 1: Consider a second-order LDI with two vertices,

ẋ ∈ co{A1x + B1u,A2x + B2u},
where

A1 =
[

3 −1
1 2

]
, B1 =

[
1

−0.5

]
,

A2 =
[

3 −4
1 2

]
, B2 =

[
0.5
−1

]
.

There exists no linear feedback such that the closed-loop
system is quadratically stable. We try to maximize the
convergence rateβ via nonlinear feedback by solving (13)
with J = 2. In this case,LVc is the convex hull of
two ellipsoids. The maximalβ that we have obtained is
0.4260 > 0, which shows that the system can be stabilized
via nonlinear feedback law. To achieve this convergence
rate, the spectral norm of the feedback gainF1 is ‖F1‖2 >
1.4×104 and the matrixQ1 is not well conditioned. From our
simulation experience, high feedback gainsFj ’s and badly
conditionedQj ’s usually require very small sampling period,
which makes digital implementation difficult. To avoid this
situation, we can impose some additional constraints on the
range ofQj ’s. For example, we can pickqmin, qmax > 0
and impose the constraintqminI ≤ Qj ≤ qmaxI for each
j ∈ I[1, N ]. It turns out that this constraint also helps to limit
the magnitude ofFj ’s. By picking qmin and qmax properly,
we are able to restrictFj ’s within the range‖Fj‖2 ≤ 600:

F1 =
[ −511.50 −313.62

]
, F2 =

[ −26.77 −8.25
]
.

Other parameters resulting from this additional restriction are

Q1 =
[

0.3114 −0.4635
−0.4635 0.7286

]
, Q2 =

[
0.1015 −0.1289
−0.1289 0.3468

]
,

and the maximalβ we obtained isβ = 0.1334. With these
parameters, the nonlinear feedback law is

u = f(x) = (γ∗1 (x)Y1 + γ∗2Y2)(γ∗1(x)Q1 + γ∗2 (x)Q2)−1.

whereYi = FiQi, i = 1, 2. Simulation is carried out for the
closed-loop system

ẋ ∈ co{A1x + B1f(x), A2x + B2f(x)}

under initial conditionx0 =
[

1
0

]
. The switching between

ẋ = A1x+B1f(x) andẋ = A2x+B2f(x) is chosen so that
V̇c = (∇Vc(x))Tẋ is maximized at each time instant (This is
intended to approximate the worst situation). The trajectory
is plotted in Fig. 1, where the closed curve is the boundary
of the level set that includesx0.
Example 2: An LDI subject to disturbance is described as

ẋ ∈ co{A1x + B1u + Ew, A2x + B2u + Ew}, y = Cx,
(26)

where

A1 =
[

3 −1
1 2

]
, B1 =

[
1

−0.5

]
,

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 1. A trajectory and a level set

A2 =
[

3 −4
1 2

]
, B2 =

[
0.5
−0.8

]
,

E =
[

1
1

]
, C =

[
1 1

]
.

This LDI is quadratically stabilizable through linear state
feedback. We would like to design a feedback law to suppress
theL2 gain.

When quadratic Lyapunov function is applied to designing
a linear state feedback law, the optimization problem is a
special case of (25) withJ = 1. In this case (25) reduces
to an LMI problem. The optimalδ for this case isδ1 =
10.7670. When the optimalδ is approached, the norm of
the feedback gain will approach infinity. If we restrict the
norm of the feedback gain to be less than5000 (via the
additional constraint onQj ’s, as in Example 1), the optimal
δ is δ̄1 = 11.8886. The feedback gain is

F =
[ −4.2509 −2.6324

]× 1000, (27)

Next we apply the convex hull functionVc(x) with J = 2
to the design of a nonlinear feedback law. By solving (25)
with J = 2, the minimalδ we have obtained isδ2 = 1.1947,
which is much less thanδ1. If we restrict the norm ofFk

to be less than 1000, then the bestδ we have computed is
δ̄2 = 1.8477. Other variables corresponding to this value of
δ = δ̄2 are

F1 =
[ −815.05 −579.43

]
, F2 =

[ −58.73 −28.49
]
,

Q1 =
[

15.6863 −20.5376
−20.5376 27.9733

]
, Q2 =

[
5.8599 −8.3901
−8.3901 15.8879

]
.

Here we compare the output responses (withx(0) = 0) for
the two designs under the disturbancew(t) = 1, for t ∈ [0, 1]
and 0 elsewhere. We have‖w‖2 = 1. The switching between
ẋ = A1x + B1f(x) + Ew and ẋ = A2x + B2f(x) + Ew is
chosen such thaṫVc is maximized at each time instant. The
two time responses are compared in Fig. 2, where the dashed
curve is produced by the linear state feedback with gain in
(27) and the solid curve is produced by the nonlinear feed-
back constructed fromQ1, Q2 andY1 = F1Q1, Y2 = F2Q2.
For the dashed curve, we have(

∫ 50

0
y2(t)dt)

1
2 = 2.6858, and

for the solid curve, we have(
∫ 15

0
y2(t)dt)

1
2 = 0.7984.

Example 3: Consider the same LDI as in Example 2.
Assume that the disturbance is of unit peak type, i.e.,
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Fig. 2. Two output responses under unit energy disturbances

wT(t)w(t) ≤ 1 for all t. We would like to design a control
law such that the peak of the output is suppressed. This is
achieved by solving (23). WhenJ = 1, Vc is a quadratic
function and the resulting control law is linear. If no restric-
tion on the magnitude of the feedback matrix is imposed,
the optimalα is 11.9529. If a bound on the norm ofFk is
imposed, say,‖Fk‖ ≤ 5000, we obtainα = 12.8287 := α1

and
F =

[ −4.2244 −2.6093
]× 103.

For J = 2, we impose a bound‖Fk‖ ≤ 1000 and the bestα
is 2.4573 := α2. Other parameters for the resulting nonlinear
feedback law are

F1 =
[ −813.88 −577.47

]
, F2 =

[ −62.46 −30.39
]
;

Q1 =
[

18.1203 −23.4665
−23.4665 31.8746

]
, Q2 =

[
6.8899 −9.9904
−9.9904 19.1287

]
.

In simulation, the switching strategy andw are chosen such
that V̇c is maximized at each time instant to approximate the
worst situation. The two output responses corresponding to
the worstw and the worst switching are plotted in Fig. 3. It
can be seen that the magnitude of the output is substantially
suppressed by the nonlinear feedback control.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

t (sec)

y

by nonlinear feedback
by linear feedback

Fig. 3. Two output responses under unit peak disturbances

VI. Conclusions

We developed LMI-based methods for the construction
of nonlinear feedback laws for linear differential inclusions.
The convex hull quadratic Lyapunov functions are used to

guide the design for achieving a few objectives of robust
stabilization and performance. The advantages of nonlinear
feedback over linear feedback has been demonstrated through
some numerical examples. It is expected that the design
methods can be extended to deal with other performances,
such as the input-to-state, input-to-output and state-to-output
performances studied in [3]. The max quadratic Lyapunov
function may also be suitable for the design of nonlinear
control if its non-differentiability can be handled properly.
Other non-quadratic Lyapunov functions, such as the homo-
geneous polynomial function, may also be explored for the
design of nonlinear control laws.
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