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Stability and performance for saturated systems via
quadratic and non-quadratic Lyapunov functions

Tingshu Hu, Andrew R. Teel, and Luca Zaccarian

Abstract— In this paper we develop a systematic Lyapunov
approach to the regional stability and performance analysis of
saturated systems in a general feedback configuration. The only
assumptions we make about the system are well-posedness of
the algebraic loop and local stability. Problems to be consid-
ered include the estimation of the domain of attraction, the
reachable set under a class of bounded energy disturbances
and the nonlinear L2 gain. The regional analysis is established
through an effective treatment of the algebraic loop and the
saturation/deadzone function. This treatment yields two forms
of differential inclusions, a polytopic differential inclusion (PDI)
and a norm-bounded differential inclusion (NDI) that contain
the original system. Adjustable parameters are incorporated
into the differential inclusions to reflect the regional property.
The main idea behind the regional analysis is to ensure that
the state remain inside the level set of a certain Lyapunov
function where the PDI or the NDI is valid. With quadratic
Lyapunov functions, conditions for stability and performances
are derived as linear matrix inequalities (LMIs). To obtain less
conservative conditions, we use a pair of conjugate non-quadratic
Lyapunov functions, the convex hull quadratic function and the
max quadratic function. These functions yield bilinear matrix
inequalities (BMIs) as conditions for stability and guaranteed
performance level. The BMI conditions cover the corresponding
LMI conditions as special cases, hence the BMI results are
guaranteed to be as good as the LMI results. In most examples,
the BMI results are significantly better than the LMI results.

Index Terms— saturation, deadzone, nonlinearL2 gain, reach-
able set, domain of attraction, Lyapunov functions.

I. I NTRODUCTION

A. Background

Saturation is an ubiquitous nonlinearity in engineering sys-
tems and is the most studied in the literature as compared
with other types of nonlinearities. Intensified efforts have been
devoted to control systems with saturation since the earlier
1990s due to a few notable breakthroughs (see, e.g., [35], [45],
[47]). Saturation exists in different parts of a control system,
such as the actuator, the sensor, the controller and components
within the plant. Most research has been devoted to address-
ing actuator saturation, which involves fundamental control
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problems such as constrained controllability and global/semi-
global stabilization. These problems have been discussed in
great depth, e.g., in [22], [35], [44], [45], [47], [48] (among
which [22] considers exponentially unstable systems). Another
significant problem arising from actuator saturation is anti-
windup compensation, which has attracted tremendous atten-
tion over the past decade (see, e.g., [4]–[6], [8]–[10], [12],
[16]–[18], [28], [33], [34], [38]–[40], [46], [49], [51], [53]).

The approach that is adopted in most of the recent literature
to address saturated systems can be categorized as a Lyapunov
approach. In this approach, some quantitative measures of
stability and performance, such as the size of the domain of
attraction, the convergence rate, and theL2 gain, are char-
acterized by using Lyapunov functions or storage functions.
Then the design parameters (e.g., of a controller or of an anti-
windup compensator) are incorporated into an optimization
problem to optimize these quantitative measures for the closed-
loop system. This approach is mostly fueled by the numerical
success in solving convex optimization problems with linear
matrix inequalities (LMIs) (e.g., see [2]). This is a general
approach which can be applied to deal with systems with
saturation and deadzone occurring at different locations. The
first papers that use LMI-based methods to deal with saturated
systems include [21], [34], [41], where [21], [41] consider state
feedback design and [34] analyzes anti-windup systems. Since
then, extensive LMI-based algorithms have been developed for
analysis and design of saturated systems (see, e.g., [4]–[6],
[10], [13], [16]–[18], [22], [25], [26], [38], [39], [46], [53].)

There are mainly two steps involved in the Lyapunov
approach. The first step is to include the saturation function or
the deadzone function in a sector so that the original system
can be cast into the general framework of absolute stability,
or can be described with a linear differential inclusion (LDI).
The second step applies available tools from absolute stability
theory or from general Lyapunov approaches for LDIs, such as
the circle criterion or the LMI characterizations of stability and
performance in [2]. Roughly speaking, all the analysis tools
used in the aforementioned works are obtained by applying
quadratic Lyapunov/storage functions to the LDIs except that
[38] used a piecewise quadratic function.

Because of the two-step framework, the effectiveness of
a particular method depends on how the original system is
transformed into LDIs and what kind of analysis tools for
LDIs are used. In many works involving anti-windup compen-
sation, global sectors are used to describe saturation/deadzone
functions. It is well known that a global sector can be very
conservative for regional analysis and can only be applied
when the closed-loop system is globally stable or to detect
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global stability. In some other works, regional LDI descriptions
(some based on local sectors) are derived to reduce the
conservatism (see, e.g., [4], [5], [10], [13], [21], [25], [26],
[34], [41]). Along this direction, the regional LDI description
introduced in [25], [26] has proved very effective and easy
to manipulate. It has been used successfully for different
configurations or for different purposes in [4], [5], [10], [13],
[27], [28].

With an effective regional LDI description, there is yet more
potential to be explored in the second step about the analysis
of LDIs. It is now generally accepted that quadratic Lyapunov
functions can be very conservative even for stability analysis
of LDIs (see, e.g., [7], [11], [31], [54]). For this reason,
considerable attention has been paid to the construction and
development of non-quadratic Lyapunov functions (e.g., see
[1], [3], [7], [31], [32], [37], [52], [54]).

Recently, a pair of conjugate Lyapunov functions have
demonstrated great potential in the analysis of LDIs and
saturated linear systems [14], [15], [23], [27]. One is called
the convex hull quadratic function since its level set is the
convex hull of a family of ellipsoids. The other is called max
quadratic function since it is obtained by taking pointwise
maximum over a family of quadratic functions and its level
set is the intersection of a family of ellipsoids. Some conju-
gate relationships about these two functions were established
in [14], [15]. Since these functions are natural extensions
of quadratic functions, they can also be used to perform
quantitative performance analysis beyond stability, such as
to estimate theL2 gain, and the reachable set, for LDIs.
A handful of dual bilinear matrix inequalities (BMIs) have
been derived for these purposes in [14]. As compared with
the corresponding LMIs resulting from quadratic Lyapunov
functions, these BMIs contain extra degrees of freedom in the
bilinear terms, which are injected through the non-quadratic
functions. Experience with low order systems shows that these
BMIs can be solved effectively with the path-following method
in [20]. Although it is possible that numerical difficulties may
arise for higher order systems, the great potential of these non-
quadratic Lyapunov functions has been demonstrated in [14],
[15], [27] through a set of numerical examples.

B. Problem formulation

With the recent developments and effective tools mentioned
in the previous section, we are now able to address more ef-
fectively some stability and performance problems for systems
with saturation/deadzone in the following general form:





ẋ = Ax + Bqq + Bww
y = Cyx + Dyqq + Dyww
z = Czx + Dzqq + Dzww
q = dz(y)

(1)

where x ∈ Rn, q, y ∈ Rm, w ∈ Rr, z ∈ Rp. The deadzone
function dz(·) : Rm → Rm is defined asdz(y) := y − sat(y),
for all y ∈ Rm, where sat(·) is a vector saturation function
with the saturation levels given by a vectorū ∈ Rm, ūi > 0,

i = 1, 2, · · · ,m. In particular

sat(ui) =





ūi, ui ≥ ūi,
ui, ui ∈ [−ūi, ūi],

−ūi, ui ≤ −ūi.
sat(u) =




sat(u1)
...

sat(um)


 .

In this paper we consider symmetric saturation functions1.
System (1) can be graphically depicted in block diagram form
as in Fig. 1, wherew is the exogenous input or disturbance
andz is the output whose performance is under consideration.
Many linear systems with saturation/deadzone components can

H

w

q yc

z

dz

Fig. 1. Compact representation of a system with saturation/deadzone.

be transformed into the above general form through a loop
transformation. This general form has been used to study anti-
windup systems in [16], [34], [39], [53]. WhenDyq = 0, the
system does not contain an algebraic loop, which can simplify
the analysis and implementation. However, it was shown in
[39] that the algebraic loop can be purposely introduced into
the anti-windup configuration to reduce the globalL2 gain.
The importance of the parameterDyq will also be illustrated
in examples at the end of this paper.

We note that most of the previous works imposed various
assumptions on the system, such as exponential stability of
the original open-loop plant in an anti-windup configuration
(e.g., [16], [39], [53]). In these works, the global sector[0, I]
is used to describe the deadzone function. In some other works
such as [4]–[6], [10], [13], [25]–[27], [46] (among which [6],
[13] study theL2 gain), regional LDI descriptions are used
to reduce the conservatism. In these works, the algebraic loop
is absent (Dyq = 0) and the disturbance (in [6], [13]) does
not enter the deadzone function, i.e.,Dyw = 0. In [30], the
algebraic loop has a special structure, namely,Dyq is diagonal.

A recent attempt was made in [51] to perform regional
analysis on the general form without the assumption on
stability of the open-loop plant. The main idea, which had
also been suggested in some other works, was to use a smaller
sector [0,K] with K < I to bound the deadzone function.
However, this idea would not work on the general form if
Dyw 6= 0. As can be seen from the second equation in (1),
y is not necessarily bounded inL∞ norm whenw is only
bounded in theL2 norm. Hence there exists noK < I to
bound the deadzone function even atx = 0. After all, as
commented in [25], [27], even in the absence ofw, this kind
of sector description is not only hard to manipulate, but also

1Asymmetric saturations can be treated with the methods developed here
with some level of conservativeness by takingūi as the minimum absolute
value of the negative and positive saturation levels.
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has a much restricted degree of freedom as compared with the
regional LDI description initiated in [25].

In this paper, we will extend the regional LDI description in
[25] to deal with the general situation whereDyq, Dyw 6= 0,
and to address both stability and performance issues.

The only assumptions that we will make about the system
(1) is its local stability (A is Hurwitz) and the well-posedness
of the algebraic loop, which will be made precise in Section II.
These were also the only assumptions made in our recent paper
[28] and they are clearly basic requirements for the system to
be functional.

The objective of this paper is to carry out a systematic and
comprehensive analysis of system (1) by using quadratic and
non-quadratic Lyapunov functions. The following problems
will be addressed:

1. Estimation of the domain of attraction (in the absence of
w) by using invariant ellipsoids or invariant level sets of
the non-quadratic Lyapunov functions.

2. With a given bound on theL2 norm ofw, i.e, ‖w‖2 ≤ s
for a givens, we would like to determine a setS as small
as possible so that under the conditionx(0) = 0, we have
x(t) ∈ S for all t. This setS will be considered as an
estimate of the reachable set.

3. With ‖w‖2 ≤ s for a givens, we would like to determine
a numberγ > 0 as small as possible, so that under the
conditionx(0) = 0, we have‖z‖2 ≤ γ‖w‖2. Performing
this analysis for eachs ∈ (0,∞), we obtain an estimate
of the nonlinearL2 gain.

To address these problems systematically, we will first
provide an effective treatment of the algebraic loop and the
deadzone function in Section II. In particular, the necessary
and sufficient condition for the well-posedness of the algebraic
loop will be made explicit. Moreover, we will derive two
forms of differential inclusions to describe the original system
(1). The first one is a polytopic differential inclusion (PDI)
involving a certain adjustable parameter or nonlinear function.
This parameter or nonlinear function offers extra degrees of
freedom associated with a local region under consideration. It
will be optimized in conjunction with the Lyapunov functions
in the final analysis problems. The second differential inclu-
sion is a norm-bounded differential inclusion (NDI) which is
derived from the PDI. The NDI is more conservative than the
PDI but may be more numerically tractable for some cases.

In Section III, we will apply quadratic Lyapunov functions
via the PDI and the NDI to characterize stability and per-
formance of the original system (1). We note that quadratic
functions have been used for these purposes in [4]–[6], [10],
[13], [25], [26], [46] under the assumption thatDyq = 0 and
Dyw = 0. In Section IV, we apply the convex hull quadratic
function and the max quadratic function respectively via the
PDI (It turns out that when these nonquadratics are applied
to the NDI, they produce the same results as the quadratics).
In Section V, we use a numerical example to demonstrate
the effectiveness of this paper’s results and the relationship
between them. Section VI concludes this paper.

Notation
- | · |∞: For u ∈ Rm, |u|∞ := maxi |ui|.

- ‖ · ‖2: For u ∈ L2, ‖u‖2 :=
(∫∞

0
uT (t)u(t)dt

) 1
2 .

- I[k1, k2]: For two integersk1, k2, k1 < k2, I[k1, k2] :=
{k1, k1 + 1, · · · , k2}.
- sat(·): The symmetric saturation function with implicit
saturation level given bȳu ∈ Rm.
- Ū := diag{ū1, . . . , ūm} whereūi > 0 is the saturation level
for the ith component of sat(·).
- dz(u): The deadzone function,dz(u) := u− sat(u).
- coS: The convex hull of a setS.
- K: The set of diagonal matrices with0 or 1 at each diagonal
element.
- HeX: For a square matrixX, HeX := X + XT .
- E(P ): For P ∈ Rn×n, P = PT ≥ 0, E(P ) := {x ∈ Rn :
xT Px ≤ 1}.
- L(H): For H ∈ Rm×n, L(H) :=

{
x ∈ Rn : |Hx|∞ ≤ 1

}
.

About the relationship betweenE(P ) andL(Ū−1H), for a
given s > 0, we have (see, e.g., [25]),

sE(P ) ⊆ L(Ū−1H) ⇐⇒
[

ū2
`/s2 H`

HT
` P

]
≥ 0 ∀ `, (2)

where H` is the `th row of H and ū` is the `-th diagonal
element ofŪ .

II. T WO FORMS OF PARAMETERIZED DIFFERENTIAL

INCLUSIONS

Algebraic loops in linear systems can be easily solved (if
they are well-posed). For system (1), the presence of the
deadzone function makes the algebraic loop much harder to
deal with. Theoretically, an explicit solution can be derived
as a piecewise affine function, in terms of bothx and w, by
partitioning the vector spaceRm into 3m polytopic regions
(see Remark 1). However, the complexity of the partition even
for m = 2 or 3 makes the solution almost impossible to
manipulate. In this paper, we would like to use convex sets
to bound all the possible solutions. By doing that, we obtain
differential inclusion descriptions for the original system (1)
and make it more approachable with Lyapunov methods.

Recall that the deadzone function belongs to the[0, I] sector,
i.e., for eachy there exists a diagonal∆ ∈ Rm×m satisfying
0 ≤ ∆ ≤ I and dz(y) = ∆y. Let K be the set of diagonal
matrices whose diagonal elements are either 1 or 0. Then coK
is the set of diagonal∆ satisfying0 ≤ ∆ ≤ I. There are2m

matrices inK and we number them asKi, i = 1, 2, · · · , 2m.
Then we haveK = {Ki : i ∈ I[1, 2m]} and

dz(y) ∈ co{Kiy : i ∈ I[1, 2m]}.
This relation holds for ally ∈ Rm but could be conservative
over a local region where the system operates. In [25], [26],
a flexible description was introduced for dealing with the
saturated state feedback sat(Fx). This description can be
easily adapted for the deadzone function. The main idea
behind this description is the following simple fact:

Fact 1: Supposevi ∈ [−ūi, ūi] (with ūi being theith sat-
uration level). For anyui ∈ R, we have sat(ui) ∈ co{ui, vi},
i.e., sat(ui) = δui + (1 − δ)vi for some δ ∈ [0, 1], and
dz(ui) ∈ co{0, ui − vi}, i.e., dz(ui) = δ(ui − vi) for some
δ ∈ [0, 1].
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This simple fact has also been used in [13] to analyze
the nonlinearL2 gain for a special case of (1), where
Dyq, Dyw, Dzq and Dzw are all zero. For the general case
whereDyq may be nonzero, we have the following algebraic
loop,

y = Cyx + Dyqdz(y) + Dyww. (3)

This algebraic loop is said to be well-posed if there exists a
unique solutiony for eachCyx+Dyww. A sufficient condition
for the algebraic loop to be well-posed is the existence of a
diagonal matrixW > 0 such that2W − DyqW −WDT

yq >
0 (see, e.g., [16], [43]). In what follows, we give a precise
characterization of the well-posedness of the algebraic loop.

Claim 1: Assume thatφ is the deadzone function or the
saturation function. Theny = Dφ(y)+v has a unique solution
for every v ∈ Rm if and only if det(I − D∆) 6= 0 for all
∆ ∈ coK.
Proof. See the Appendix. ¤

Remark 1: If the algebraic loopy = Dφ(y) + v is well-
posed, then the solutiony is a piecewise affine function ofv
with 3m polytopic regions. To understand this, consider the
function g: y 7→ v = y − Dφ(y). It is piecewise affine with
3m polytopic partitions. If there is a unique solutiony for
eachv, then each polytope in the domain ofg is uniquely and
affinely mapped to a polytope in the range ofg. Hence the
inverse function ofg, i.e., the solution of the algebraic loop,
is also piecewise affine, with partition corresponding to that
of the originalg. ◦

Based on Claim 1 we have the following criterion for the
well-posedness of the algebraic loop.

Claim 2: The algebraic loop (3) is well-posed if and only
if the values ofdet(I −DyqKi), i ∈ I[1, 2m], are all nonzero
and have the same sign. In this case, we have

{(I −∆Dyq)−1∆ : ∆ ∈ coK}
⊆ co{(I −KiDyq)−1Ki : i ∈ I[1, 2m]}, (4)

Proof. See the Appendix. ¤
The well-posedness condition in Claim 2 can be easily

verified. The relation (4) will be used to bound the solution
of the algebraic loop with a polytope.

Throughout this paper, we assume that this well-posedness
condition is satisfied. Fori ∈ I[1, 2m], denote

Ti = (I −KiDyq)−1Ki, (5)

Ai = A + BqTiCy, Bi = Bw + BqTiDyw,

Ci = Cz + DzqTiCy, Di = Dzw + DzqTiDyw.

Proposition 1: Let h : Rn → Rm be a given map and let
h` be the`th component ofh. Consider system (1). Ifx ∈ Rn

satisfies|h`(x)| ≤ ū` for all ` ∈ I[1,m], then
[

ẋ
z

]
∈ co

{[
Aix+Biw−BqTih(x)
Cix+Diw−DzqTih(x)

]
: i ∈ I[1, 2m]

}
.

(6)
Proof. Since |h`(x)| ≤ ū` for all ` ∈ I[1,m], by Fact 1, we
have

q = dz(y) = ∆(y − h(x))

for some∆ ∈ coK. Recallingy = Cyx + Dyqq + Dyww, we
obtain q = ∆(Cyx + Dyqq + Dyww − h(x)). It follows that

q = (I −∆Dyq)−1∆(Cyx + Dyww − h(x)). By (4) and (5)
we have

q ∈ co{Ti(Cyx + Dyww − h(x)) : i ∈ I[1, 2m]}. (7)

Applying this relation to the first and the third equations in
(1), we obtain (6). ¤

By taking h(x) = 0 in (6), we obtain a polytopic lin-
ear differential inclusion (PLDI) representation which holds
globally for the original system (1). A nonzero termh(x) is
used to inject additional degrees of freedom in some subset
of the state space to reduce conservatism in regional analysis.
When we use quadratic Lyapunov functions, we will choose
h(x) = Hx whereH can be used as an optimizing parameter.
When we use non-quadratic Lyapunov functions, a nonlinear
h(x) is more effective in general.

The polytopic differential inclusion (PDI) (6) involves2m

vertices. This may present numerical difficulties whenm is
large (e.g.,m > 6) and the order of the system is high.
To reduce this computational burden, we may use a more
conservative description; namely, to approximate the system
(1) we may use a norm bounded differential inclusion (NDI),
which is based on the following result.

Claim 3: Let M be a positive diagonal matrix. Suppose that

2I −M−1DyqM −MDT
yqM

−1 = S2,

whereS is symmetric and nonsingular. Then

co{(I −KiDyq)−1Ki : i ∈ I[1, 2m]}
⊆ {M(S−2 + S−1ΩS−1)M−1 : ‖Ω‖ ≤ 1}, (8)

where ‖Ω‖ is the spectral norm ofΩ (namely its largest
singular value). Furthermore, each vertex of the lefthand side
is on the boundary of the righthand side.
Proof. See the Appendix. ¤

Proposition 2: Assume that there exist a diagonalM > 0
and a symmetric nonsingularS such that

S2 = 2I −M−1DyqM −MDT
yqM

−1.

Let H ∈ Rm×n be given. ForΩ ∈ Rm×m, define[
AΩ BΩ

CΩ DΩ

]
:=

[
A Bw

Cz Dzw

]
+

[
Bq

Dzq

]
M(S−2 + S−1ΩS−1)M−1

[
Cy−H Dyw

]
.

Consider system (1). Ifx ∈ Rn satisfies|Ū−1Hx|∞ ≤ 1, then[
ẋ
z

]
∈

{[
AΩ BΩ

CΩ DΩ

][
x
w

]
: ‖Ω‖ ≤ 1

}
. (9)

Proposition 2 can be proved like Proposition 1 by ap-
plying Claim 3 to (7) with h(x) = Hx (note thatTi =
(I − KiDyq)−1Ki)). Then we obtainq ∈ {M(S−2 +
S−1ΩS−1)M−1((Cy−H)x+Dyww) : ‖Ω‖ ≤ 1}. Applying
this to the original system (1), we obtain (9). We call (9) the
norm bounded differential inclusion (NDI) for (1). Ifm = 1,
then the two sets in (8) are the same and the NDI is the same as
the PDI. Ifm > 1, generally the NDI strictly contains the PDI.
We also note that to obtain the NDI, there must exist a positive
diagonal matrixM such that2I−M−1DyqM−MDT

yqM
−1 >

0, which is a stronger requirement than well-posedness.
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III. A NALYSIS WITH QUADRATIC LYAPUNOV FUNCTIONS

A. Some general results for linear differential inclusions

In [2], extensive results were established for stability and
performance analysis of LDIs by using quadratic Lyapunov
functions. Consider the LDI[

ẋ
z

]
∈

{[
A B
C D

][
x
w

]
:
[

A B
C D

]
∈ Φ

}
, (10)

where Φ is a given convex set of matrices. The following
lemma can be established like in the corresponding results in
[2] by extending a polytopicΦ to a generalΦ.

Lemma 1:Given P = PT > 0, γ > 0, let V (x) = xT Px
and denote byV̇ (x, w) the derivative ofV in any of the
directions of the right hand side of (10). The following holds:

1. V̇ (x,w) < 0 for all x ∈ Rn \ {0} andw = 0, if

AT P +PA < 0 ∀A ∈
{[

I 0
]
X

[
I
0

]
: X ∈ Φ

}
.

2. V̇ (x,w) ≤ wT w for all x ∈ Rn, w ∈ Rr, if

He
[

PA PB
0 −I/2

]
≤ 0

∀ [
A B

] ∈ {[
I 0

]
X : X ∈ Φ

}
.

3. V̇ (x,w) + 1
γ2 zT z ≤ wT w for all x ∈ Rn, w ∈ Rr, if

He




PA PB 0
0 −I/2 0
C D −γ2I/2


 ≤ 0 ∀

[
A B
C D

]
∈ Φ.

(11)
The condition in item 1 guarantees that the ellipsoidE(P )

is contractively invariant in the absence ofw. It will be used
for the estimation of the domain of attraction. The condition
in item 2 guarantees that if‖w‖2 ≤ s, then under the initial
conditionx(0) = 0, we will havex(t) ∈ sE(P ) for all t ≥ 0.
This will be used to determine the reachable set under a class
of bounded energy disturbances. Item 3 gives a condition for
γ to be a bound for theL2 gain, i.e.,‖z‖2 ≤ γ‖w‖2 for all
w andx(0) = 0. The result in item 3 can also be found, e.g.,
in [19]. For the case whereΦ is a polytope, we only need to
verify the conditions at its vertices.

Combining Lemma 1 with the two differential inclusion
descriptions, we will obtain different methods for the analysis
of the original system (1). The crucial point is to guarantee that
the PDI (6) (or the NDI (9)) is valid for all time under the class
of disturbances and the set of initialx(0)’s under considera-
tion. We are mainly concerned about the existence of a matrix
H, such that|Ū−1Hx(t)|∞ ≤ 1, i.e., x(t) ∈ L(Ū−1H), for
all t. To ensure this property, we are going to construct a
quadratic functionV (x) = xT Px, P = PT > 0, and use
Lemma 1 to guarantee thatx(t) ∈ sE(P ) ⊆ L(Ū−1H) for all
t ≥ 0.

B. Analysis based on the polytopic differential inclusion

Whenh(x) = Hx, the PDI (6) can be written as
[

ẋ
z

]
∈ co

{[
Ai −BqTiH Bi

Ci −DzqTiH Di

][
x
w

]
: i ∈ I[1, 2m]

}
.

(12)

which corresponds to (10) with

Φ = co

{[
Ai −BqTiH Bi

Ci −DzqTiH Di

]
: i ∈ I[1, 2m]

}
.

We will restrict our attention to a certain ellipsoidsE(P ).
For the purpose of presenting the results in terms of LMIs, we
state the results usingQ = P−1 andY = HQ. To apply the
PDI description within the ellipsoidsE(P ) = sE(Q−1), we
need to ensure thatsE(P ) ⊆ L(Ū−1H) so that|Ū−1Hx|∞ ≤
1 (i.e., |h`(x)| ≤ ū` for all `) for all x ∈ sE(P ), which is
equivalent to (recall from (2)),

[
ū2

`/s2 H`

HT
` P

]
≥ 0 ∀ ` ∈ I[1,m],

where H` is the `th row of H and ū` is the `-th diagonal
element of Ū . Multiplying on the left and the right by
diag{1, Q}, we obtain the equivalent condition

[
ū2

`/s2 Y`

Y T
` Q

]
≥ 0 ∀ ` ∈ I[1,m]. (13)

Theorem 1:Given Q ∈ Rn×n, Q = QT > 0. Let V (x) =
xT Q−1x. Consider system (1).

1. If there existsY ∈ Rm×n satisfying (13) withs = 1 and

QAT
i +AiQ−Y T TT

i BT
q −BqTiY <0 ∀ i∈I[1, 2m], (14)

then V̇ (x,w) < 0 for all x ∈ E(Q−1) \ {0} andw = 0,
i.e., E(Q−1) is a contractively invariant ellipsoid.

2. Let s > 0. If there existsY ∈ Rm×n satisfying (13) and

He
[

AiQ−BqTiY Bi

0 −I/2

]
≤ 0 ∀ i ∈ I[1, 2m], (15)

then V̇ (x,w) ≤ wT w for all x ∈ sE(Q−1), w ∈ Rr. If
x(0) = 0 and ‖w‖2 ≤ s, then x(t) ∈ sE(Q−1) for all
t ≥ 0.

3. Let γ, s > 0. If there existsY ∈ Rm×n satisfying (13)
and

He




AiQ−BqTiY Bi 0
0 −I/2 0

CiQ−DzqTiY Di −γ2I/2


 ≤ 0

∀ i ∈ I[1, 2m], (16)

thenV̇ (x,w)+ 1
γ2 zT z ≤ wT w for all x ∈ sE(Q−1), w ∈

Rr. If x(0) = 0 and‖w‖2 ≤ s, then‖z‖2 ≤ γ‖w‖2.

Proof. Let P = Q−1 andH = Y P .
1. If we multiply (14) on the left and the right byP , we

obtain (Ai − BqTiH)T P + P (Ai − BqTiH) < 0 ∀ i ∈
I[1, 2m]. Applying item 1 of Lemma 1 to the LDI (12),
this guarantees thaṫV (x,w) < 0 for all x ∈ Rn \ {0} and
w = 0 for (12). Because of (13) withs = 1, we have
E(Q−1) ⊆ L(Ū−1H), i.e., |Ū−1Hx|∞ ≤ 1 for all x ∈ E(P ).
By Proposition 1, system (1) satisfies (12) for allx ∈ E(Q−1).
Hence for system (1), we also havėV (x,w) < 0 for all
x ∈ E(Q−1) \ {0}.

2. If we multiply (15) on the left and the right by
diag{P, I}, we obtain

He
[

PAi − PBqTiH PBi

0 −I/2

]
≤ 0 ∀ i ∈ I[1, 2m].
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By item 2 of Lemma 1, this ensures thatV̇ (x,w) ≤ wT w
for all x and w for (12). Also, the condition (13) ensures
that sE(Q−1) ⊆ L(Ū−1H) and hence (12) is valid within
sE(Q−1). Therefore, we havėV (x,w) ≤ wT w for all x ∈
sE(Q−1), w ∈ Rr for system (1). Ifx(0) = 0 and ‖w‖2 ≤
s, then by integrating both sides oḟV ≤ wT w, we have
V (x(t)) ≤ s2, i.e., x(t) ∈ sE(Q−1) for all t ≥ 0.

3. We note that (16) implies (15). So by item 2, it is ensured
that x(t) ∈ sE(Q−1) for all t ≥ 0 if x(0) = 0 and‖w‖2 ≤ s.
Hence the LDI (12) is valid for system (1) for all‖w‖2 ≤ s
andx(0) = 0. If we multiply (16) on the left and the right by
diag{P, I, I}, we obtain

He




PAi − PBqTiH PBi 0
0 −I/2 0

Ci −DzqTiH Di −γ2I/2


 ≤ 0

for all i ∈ I[1, 2m]. By Lemma 1, this ensures thatV̇ (x,w)+
1
γ2 zT z ≤ wT w for all x ∈ Rn, w ∈ Rr for system (12).
For system (1), the inequality holds for allx ∈ sE(Q−1) and
w ∈ Rr. By integrating both sides of the inequality, we have
‖z‖2 ≤ γ‖w‖2 as long as‖w‖2 ≤ s andx(0) = 0. ¤

It can be verified that for the special case whereDyq =
0, Dyw = 0, Dzq = 0 and Dzw = 0, items 1 and 3 reduce
to the corresponding results in [25] and [13] respectively.
The three parts in Theorem 1 can be respectively used to
estimate the domain of attraction, the reachable set and the
nonlinearL2 gain for system (1). For these purposes, we may
formulate corresponding optimization problems with linear
matrix inequality (LMI) constraints. For the estimation of the
nonlinearL2 gain, we need to minimizeγ for a selections of
s over [0,∞).

Problem 1: Estimation of the domain of attraction. For
the purpose of enlarging the estimation of the domain of
attraction, we may choose a shape reference setXR (see
e.g., [22], [25], [26]) and maximize a scalingα > 0 such
that αXR ⊆ E(Q−1), with Q satisfying (13) and (14). The
optimizing parameters areQ andY . WhenXR is a polygon
or an ellipsoid, the resulting optimization problem has an LMI
formulation.

Problem 2: Estimation of the reachable set.Under the
condition (13) and (15), an estimate of the reachable set
is given by sE(Q−1). Since smaller (or tighter) estimates
are desirable, we may formulate an optimization problem to
minimize the size ofsE(Q−1). There are different measures of
size for ellipsoids, such as the trace ofQ and the determinant
of Q, among which the trace ofQ is a convex measure and
is much easier to handle. In a practical situation, we may be
interested in knowing the size of a certain state or an output
during the operation of the system. For instance, given a row
vector C ∈ R1×n, we would like to estimate the maximal
value of |Cx(t)| for all t ≥ 0. Sincex(t) ∈ sE(Q−1), the
maximal value of|Cx(t)| is less than

ᾱ := (max{xT CT Cx : xT (s2Q)−1x ≤ 1})1/2.

Given α > 0. Consider the setE(CT C/α2) = {x :
xT CT Cx ≤ α2} = {x : |Cx| ≤ α}. It is the region between

the two hyperplanesCx = α and Cx = −α. It can also
be considered as a degenerated ellipsoid corresponding to a
positive semidefinite matrixCT C. Hence we haveα ≥ ᾱ if
and only if E((s2Q)−1) ⊂ E(CT C/α2), which is equivalent
to CT C/α2 ≤ (s2Q)−1. Thus ᾱ = min{α : CT C ≤
α2(s2Q)−1}. Note thatCT C ≤ α2(s2Q)−1 is equivalent to
Q

1
2 CT CQ

1
2 ≤ α2/s2I and toCQCT ≤ α2/s2, we have

ᾱ = min{α : CQCT ≤ α2/s2}.
To minimize ᾱ, we can minimizeα2 satisfying the linear (in
Q andα2) constraintCQCT ≤ α2/s2 with Q satisfying (13)
and (15). Withα determined this way, we have|Cx(t)| ≤ α
for all t ≥ 0. We may choose differentC ’s, such asCi, i =
1, 2, · · · , N , and obtain a boundαi on |Cix(t)| for eachi. The
polytope formed as{x ∈ Rn : |Cix| ≤ αi, i = 1, · · · , N}
will also be an estimate of the reachable set.

Problem 3: Estimation of the nonlinear L2 gain. The
problem of minimizing a bound on theL2 gain follows
directly from item 3 of Theorem 1 by minimizingγ along
with parametersQ and Y satisfying (13) and (16). For each
s > 0, denoteγ∗(s) as the minimalγ, then we have

‖z‖2 ≤ γ∗(‖w‖2)‖w‖2,
for all w. In other words,γ∗(s) serves as an estimate for the
nonlinearL2 gain.

C. Analysis based on the norm-bounded differential inclusion

For easy reference, the NDI description for (1) is repeated
as follows. If |Ū−1Hx|∞ ≤ 1, then

[
ẋ
z

]
∈

{[
AΩ BΩ

CΩ DΩ

][
x
w

]
: ‖Ω‖ ≤ 1

}
, (17)

where[
AΩ BΩ

CΩ DΩ

]
=

[
A Bw

Cz Dzw

]
+

[
Bq

Dzq

]
MS−1(I + Ω)S−1M−1

[
Cy−H Dyw

]
, (18)

andM > 0 is diagonal,S is symmetric and nonsingular such
that S2 = 2I −M−1DyqM −MDT

yqM
−1.

The next lemma will be used to handle the norm-bounded
differential inclusion (17).

Lemma 2:Given X, Y, Z, S of compatible dimensions,
whereS is symmetric and nonsingular. If

He
[

Z X
Y −S2/2

]
≤ 0, (19)

thenHe(Z + XS−1(I + Ω)S−1Y ) ≤ 0 ∀ ‖Ω‖ ≤ 1.
This lemma follows directly using Schur complements and

from MΩN +NT ΩT MT ≤ MMT +NT N for all ‖Ω‖ ≤ 1.

Theorem 2:Given Q ∈ Rn×n, Q = QT > 0. Let V (x) =
xT Q−1x. Consider system (1).

1. If there existY ∈ Rm×n and a diagonalU > 0 satisfying
(13) with s = 1 and

He
[

AQ BqU
CyQ− Y −U + DyqU

]
< 0, (20)
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thenE(Q−1) is a contractively invariant ellipsoid.
2. Given s > 0, if there existY ∈ Rm×n and a diagonal

U > 0 satisfying (13) and

He




AQ Bw BqU
0 −I/2 0

CyQ−Y Dyw −U+ DyqU


 ≤ 0, (21)

then V̇ (x,w) ≤ wT w for all x ∈ sE(Q−1), w ∈ Rr. If
x(0) = 0 and ‖w‖2 ≤ s, then x(t) ∈ sE(Q−1) for all
t ≥ 0.

3. Givenγ, s > 0, if there existY ∈ Rm×n and a diagonal
U > 0 satisfying (13) and

He




AQ Bw 0 BqU
0 −I/2 0 0

CzQ Dzw −γ2I/2 DzqU
CyQ−Y Dyw 0 −U+ DyqU


 ≤ 0,

(22)
thenV̇ (x,w)+ 1

γ2 zT z ≤ wT w for all x ∈ sE(Q−1), w ∈
Rr. If x(0) = 0 and‖w‖2 ≤ s, then‖z‖2 ≤ γ‖w‖2.

Proof. The procedure is very similar to the proof of Theorem 1
except we need to establish that the conditions (20), (21) and
(22) imply the respective conditions in Lemma 1 for the NDI
(17). This is a little more complicated than the counterpart for
Theorem 1.

Here we only show that (22) guarantees (11) when the
differential inclusion (10) is specified to (17). The other
correspondences in item 1 and item 2 are similar and simpler.
For system (17), the condition (11) in Lemma 1 can be written
as

He




PAΩ PBΩ 0
0 −I/2 0

CΩ DΩ −γ2I/2


 ≤ 0 ∀ ‖Ω‖ ≤ 1. (23)

From (18), we have



PAΩ PBΩ 0
0 −I/2 0

CΩ DΩ −γ2I/2


=




PA PBw 0
0 −I/2 0

Cz Dzw −γ2I/2




+




PBq

0
Dzq


 MS−1(I + Ω)S−1M−1

[
Cy−H Dyw 0

]
.

By Lemma 2, to guarantee (23), it suffices to have

He




PA PBw 0 PBqM
0 −I/2 0 0

Cz Dzw −γ2I/2 DzqM
M−1(Cy−H) M−1Dyw 0 −S2/2


≤ 0.

(24)
Multiplying on the left and the right bydiag{Q, I, I, M},
noticing that He(−S2/2) = He(−I + M−1DyqM), Q =
P−1, Y = HQ, (24) is equivalent to

He




AQ Bw 0 BqM
2

0 −I/2 0 0
CzQ Dzw −γ2I/2 DzqM

2

CyQ−Y Dyw 0 −M2+DyqM
2


≤0,

which is (22) withU = M2. ¤

Remark 2: If we take Y = 0 in (22), then the inequality
reduces to (10a) of [16] (with some permutation). A nonzero
parameterY introduces additional degrees of freedom for
regional analysis and makes the results applicable to the case
where the system wrapped around the saturation is not globally
exponentially stable. ◦

As with Theorem 1, different optimization problems with
LMI constraints can be formulated for stability and perfor-
mance analysis of the original system (1) based on the three
parts of Theorem 2. Since the NDI is a more conservative
description than the PDI and since Theorems 1 and 2 are
developed from the same framework, it is easy to see that the
analysis results from using Theorem 2 are more conservative
than those from using Theorem 1. Actually, even for the
special casem = 1 for which the NDI and PDI descriptions
are the same, Theorem 2 could still be more conservative
than Theorem 1 because of using Lemma 2 to derive (24).
The advantage of Theorem 2 is that the conditions involve
fewer LMIs (but of larger size, i.e.,+m more than those in
Theorem 1).

We should note that the results in Theorem 2 were estab-
lished in [28] through the S-procedure. The approach taken in
this paper helps us to understand the relationship between the
results based on two different types of differential inclusions.

IV. A NALYSIS WITH NON-QUADRATIC LYAPUNOV

FUNCTIONS

In this section, we will use a pair of conjugate functions, the
convex hull quadratic function and the max quadratic function
to perform stability and performance analysis of system (1).
For the PDI (6), significant improvement may be achieved with
these non-quadratic functions. However, for the NDI (9), there
is no advantage in using these non-quadratic functions over
quadratic functions. As a matter of fact, this result also applies
to any norm-bounded linear differential inclusion (NLDI) (see
Remark 5). We first review some results about this pair of
conjugate functions.

A. The max quadratic function and the convex hull quadratic
function

Given a family of positive definite matricesPj ∈
Rn×n, Pj = PT

j > 0, j ∈ I[1, J ], the pointwise maximum
quadratic function is defined as

Vmax(x) := max{xT Pjx : j ∈ I[1, J ]}. (25)

Given Qj ∈ Rn×n, Qj = QT
j > 0, j ∈ I[1, J ]. Let

Γ :=
{

γ ∈ RJ : γ1 + γ2 + · · ·+ γJ = 1, γj ≥ 0
}

,

the convex hull quadratic function is defined as

Vc(x) := min
γ∈Γ

xT




J∑

j=1

γjQj



−1

x. (26)

For simplicity, we say thatVc is composed fromQj ’s. It was
shown in [15] that12Vmax is conjugate to1

2Vc if Qj = Pj for
eachj ∈ I[1, J ]. It is evident thatVc and Vmax are homo-
geneous of degree 2, i.e.,Vc(αx) = α2Vc(x), Vmax(αx) =



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, X MONTH, XX YEAR 8

α2Vmax(x). Also established in [15], [23] are thatVc is
convex and continuously differentiable and thatVmax is strictly
convex.

The 1-level set ofVmax and that ofVc are respectively

LVmax :=
{

x ∈ Rn : Vmax(x) ≤ 1
}

,

LVc
:=

{
x ∈ Rn : Vc(x) ≤ 1

}
.

SinceVmax andVc are homogeneous of degree 2, we have

sLVmax =
{

x ∈ Rn : Vmax(x) ≤ s2
}

,

sLVc
=

{
x ∈ Rn : Vc(x) ≤ s2

}
.

It is easy to see thatLVmax is the intersection of the ellipsoids
E(Pj)’s. In [23], It was established thatLVc

is the convex hull
of the ellipsoidsE(Q−1

j )’s, i.e.,

LVc
=





J∑

j=1

γjxj : xj ∈ E(Q−1
j ), γ ∈ Γ



 .

For a compact convex setS, a point x ∈ S is called
an extreme point if it cannot be represented as the convex
combination of any other points inS. Clearly an extreme
point must belong to the boundary ofS (denoted as∂S). For
a strictly convex set, such asLVmax , every boundary point
is an extreme point. In what follows, we characterize the
set of extreme points ofLVc . SinceLVc is the convex hull
of E(Q−1

j )’s, an extreme point must be on the boundaries
of both LVc and E(Q−1

j ) for some j ∈ I[1, J ] (If x ∈
∂LVc\∪J

j=1E(Q−1
j ), thenx must be the convex combination of

at least two points from∪J
j=1E(Q−1

j ) and thus not an extreme
point of LVc ). Denote

Ej := ∂LVc ∩ ∂E(Q−1
j )

=
{
x ∈ Rn : Vc(x) = xT Q−1

j x = 1
}

.

Then
⋃J

j=1 Ej contains all the extreme points ofLVc . The
exact description ofEj is given as follows.

Lemma 3:For eachj ∈ I[1, J ], defineFj = {x ∈ Rn :
xT Q−1

j (Qk − Qj)Q−1
j x ≤ 0 ∀ k ∈ I[1, J ]}. Then Ej =

∂LVc ∩ Fj .
Proof. See Appendix . ¤

It is clear thatαFj = Fj for any α > 0. Since LVc

is convex and contains the origin in its interior, we have
LVc =

⋃
δ∈[0,1] δ(∂LVc). It follows from Lemma 3 that⋃

δ∈[0,1] δEj = LVc ∩ Fj .

The following lemma combines some results from [23],
[24].

Lemma 4:For a givenx0 ∈ Rn, let γ∗ ∈ Γ be an optimal
γ such that

xT
0




J∑

j=1

γ∗j Qj



−1

x0 = min
γ∈Γ

xT
0




J∑

j=1

γjQj



−1

x0 = Vc(x0).

For simplicity and without loss of generality, assume thatγ∗j >
0 for j ∈ I[1, J0] andγ∗j = 0 for j ∈ I[J0 + 1, J ]. Denote

Q0 =
J0∑

j=1

γ∗j Qj , xj = QjQ
−1
0 x0, j ∈ I[1, J0].

Then Vc(xj) = Vc(x0) and xj ∈ Vc(x0)
1
2 Ej , j ∈ I[1, J0].

Moreover,x0 =
∑J0

j=1 γ∗j xj , and

∇Vc(x0) = ∇Vc(xj) = 2Q−1
j xj = 2Q−1

0 x0, j ∈ I[1, J0],

where∇Vc(x) denotes the gradient ofVc at x.
The following lemma is adapted from a result of [27] to the

slightly different definition ofVc andVmax (the two functions
in [27] have the coefficient12 and the saturation levels in̄U
are also included here).

Lemma 5: [27] Let H ∈ Rm×n, Ū ∈ Rm×m be positive
definite diagonal and denote the`-th row of H by H` and the
`-th diagonal element of̄U by ū`. We have,

1) LVc
⊆ L(Ū−1H) if and only if 1

ū`
HT

` ∈ LVmax for all
` ∈ I[1,m];

2) LVmax ⊆ L(Ū−1H) if and only if 1
ū`

HT
` ∈ LVc

for all
` ∈ I[1,m].

B. Analysis with convex hull quadratic functions

In this section, we apply the convex hull quadratic function
to the analysis of system (1) through the polytopic differential
inclusion (6), which is repeated below for easy reference:
[

ẋ
z

]
∈ co

{[
Aix + Biw −BqTih(x)
Cix + Diw −DzqTih(x)

]
: i ∈ I[1, 2m]

}
.

(27)
This PDI is a valid description for (1) as long as
|Ū−1h(x)|∞ ≤ 1. We will restrict our attention to a level
set sLVc , where|Ū−1h(x)|∞ ≤ 1 for all x ∈ sLVc . As with
the case of using quadratic functions, the crucial point is to
guarantee thatx(t) ∈ sLVc under the class of norm-bounded
w and the set of initial states under consideration.

It may appear that choosingh(x) as a linear functionHx
within sLVc should lead to simpler results than choosing it
as a nonlinear function. However, it turns out that a non-
linear h(x) not only reduces conservatism but also leads to
cleaner and numerically more tractable results. As expected,
the derivation of the results is more involved than the former
cases in Section III because of the non-quadratic Lyapunov
function and the nonlinear functionh(x). For this reason, we
present the results separately for the estimation of the domain
of attraction, the reachable set and theL2 gain. Based on
technical considerations, we first present the result about the
reachable set.

Theorem 3:(Reachable set byL2-norm-bounded inputs)
Given Qj = QT

j > 0, j ∈ I[1, J ], let Vc be composed from
Qj ’s as in (26). Givens > 0. System (1) withx(0) = 0
satisfiesx(t) ∈ sLVc for all t ≥ 0 and for all w such
that ‖w‖2 ≤ s if there exist Yj ∈ Rm×n and λijk ≥ 0,
i ∈ I[1, 2m], j, k ∈ I[1, J ] such that

He
[

AiQj −BqTiYj +
∑J

k=1 λijk(Qj−Qk) Bi

0 − I
2

]
≤ 0

∀ i ∈ I[1, 2m], j ∈ I[1, J ], (28)


ū2
`

s2
Yj,`

Y T
j,` Qj


 ≥ 0 ∀ ` ∈ I[1,m], j ∈ I[1, J ], (29)

whereYj,` is the `th row of Yj .
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Proof. We will prove the theorem by showing that for all
x ∈ sLVc

and w ∈ Rr, we haveV̇c(x,w) ≤ wT w, where
V̇c(x,w) is the time derivative ofVc in the direction of the
right hand side of (1), which depends onx andw.

Let Pj = Q−1
j , Hj = YjQ

−1
j . Multiplying (28) on the left

and the right bydiag{Pj , I}, we have

He
[

Pj(Ai−BqTiHj)+
∑J

k=1λijkPj(Qj−Qk)Pj PjBi

0 − I
2

]
≤0.

This implies that for alli ∈ I[1, 2m], j ∈ I[1, J ],

2xT Pj(Aix + Biw −BqTiHjx)− wT w

≤ 2
J∑

k=1

λijkxT Pj(Qk−Qj)Pjx ∀x∈Rn, w∈Rr. (30)

Given j ∈ I[1, J ] and anyδ > 0. Considerx ∈ δEj . By
Lemma 3 we have

J∑

k=1

λijkxT Pj(Qk −Qj)Pjx ≤ 0.

It follows from (30) that

2xT Pj(Aix + Biw −BqTiHjx)− wT w ≤ 0
∀x ∈ δEj , w ∈ Rr, δ > 0. (31)

(In view of (27) and condition (29), this actually shows that
V̇c(x,w) ≤ wT w for all x ∈ s(LVc ∩ Ej), recalling from
Lemma 4 that∇Vc(x) = 2Pjx for x ∈ Ej . More explanation
can be seen below). We proceed to show thatV̇c(x,w) ≤ wT w
holds for allx ∈ sLVc by exploiting the properties ofVc.

Now considerx0 ∈ sLVc . ThenVc(x0) = δ2 for someδ ∈
(0, s]. By Lemma 4, there existxj ∈ δEj , γj > 0, j ∈ I[1, J0]
with J0 ≤ J such that

∑J0
j=1 γj = 1 and x0 =

∑J0
j=1 γjxj

(we note that the indicesj can always be reordered to make
this true for eachx0). Let

Q0 =
J0∑

j=1

γjQj , Y0 =
J0∑

j=1

γjYj , H0 = Y0Q
−1
0 . (32)

Then we also havexT
0 Q−1

0 x0 = Vc(x0) = δ2 and

∇Vc(x0) = 2Q−1
0 x0 = 2Q−1

j xj , j ∈ I[1, J0]. (33)

Applying convex combination to the inequalities in (29), we
have
[

ū2
`/s2 Y0,`

Y T
0,` Q0

]
≥0 ⇔

[
ū2

`/s2 H0,`

HT
0,` Q−1

0

]
≥0 ∀ ` ∈ I[1,m].

By (2), this implies thatsE(Q−1
0 ) ⊆ L(Ū−1H0). Since

xT
0 Q−1

0 x0 = δ2 ≤ s2, we have|Ū−1H0x0| ≤ 1. Thus (27) is
valid at x0 with h(x0) = H0x0. Hence we have

ẋ|x=x0 ∈ co{Aix0 +Biw−BqTiH0x0 : i ∈ I[1, 2m]}. (34)

and

V̇c(x0, w) ∈ co{(∇Vc(x0))T (Aix0+Biw−BqTiH0x0) :
i ∈ I[1, 2m]}. (35)

Recalling that

x0 =
J0∑

j=1

γjxj , xj ∈ δEj ,

∇Vc(x0) = 2Q−1
0 x0 = 2Q−1

j xj = 2Pjxj . (36)

Applying (31) toxj and replacing2xT
j Pj with (∇Vc(x0))T ,

we obtain

(∇Vc(x0))T (Aixj +Biw−BqTiHjxj)−wT w≤0 ∀w ∈ Rr.
(37)

By the definition ofQ0,H0 andY0 in (32),

H0x0 = Y0Q
−1
0 x0 =




J0∑

j=1

γjYj


Q−1

0 x0 (38)

and from (33) we have

Hjxj = YjQ
−1
j xj = YjQ

−1
0 x0, j ∈ I[1, J0]. (39)

Combining (36), (38) and (39), and noting thatγ1 +γ2 + · · ·+
γJ0 = 1, we have

Aix0 + Biw −BqTiH0x0

=
J0∑

j=1

γjAixj +
J0∑

j=1

γjBiw −BqTi

J0∑

j=1

γjYjQ
−1
0 x0

=
J0∑

j=1

γj(Aixj + Biw −BqTiHjxj) ∀w ∈ Rr. (40)

Note that this is satisfied for alli ∈ I[1, 2m]. It follows from
(37) that for eachi ∈ I[1, 2m] andw ∈ Rr,

(∇Vc(x0))T (Aix0 + Biw −BqTiH0x0)− wT w

=
J0∑

j=1

γj [(∇Vc(x0))T (Aixj + Biw −BqTiHjxj)− wT w]

≤ 0.

By (35) we obtainV̇c(x0, w)−wT w ≤ 0 for all w ∈ Rr. Note
that x0 is an arbitrary point insLVc .

Hence we have thaṫVc(x,w) ≤ wT w for all x ∈ sLVc and
w ∈ Rr. Now supposex(0) = 0 and ‖w‖22 ≤ s2. Then for
any t0 > 0, as long asx(t) ∈ sLVc for all t ∈ (0, t0), we have
Vc(x(t0)) ≤

∫ t0
0

wT (τ)w(τ)dτ ≤ s2, i.e., x(t0) ∈ sLVc . On
the other hand, if there existst0 > 0 such thatVc(x(t)) ≤ s2

for all t ∈ (0, t0) and Vc(x(t0)) = s2 then we must have∫∞
t0

wT (τ)w(τ)dτ = 0 and V̇c(x(t), w(t)) ≤ 0 for almost all
t ≥ t0. HenceVc(x(t)) ≤ s2 for all t ≥ t0. Therefore, we
conclude thatx(t) ∈ sLVc for all t ≥ 0. ¤

Remark 3: (Optimization issues) With conditions (28) and
(29), we may formulate an optimization problem to minimize
the estimate of the reachable set as with the quadratic function
case. We observe that (28) is a bilinear matrix inequality
(BMI) which contains some bilinear terms as the product of
a full matrix and a scalar at the (1,1) block of the lefthand-
side matrix. Similar bilinear terms are contained in the matrix
inequalities in [14], [15], [27] for stability and performance
analysis of linear differential/difference inclusions. A direct
method to solve BMI problems is to alternatively fix one
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set of parameters and optimize the other set. In [14], [15],
[27], we adopted the path-following method from [20] and
our experience with a set of numerical examples shows that
the path-following method is much more effective than the
straightforward iterative method. We actually implemented a
two-step algorithm which combines the path-following method
and the direct iterative method. The first step uses the path-
following method to update all the parameters at the same
time. The second step fixesλijk ’s and solves the resulting
LMI problem which includesQj ’s andYj ’s as variables. This
two-step method proves very effective on the BMI problems in
[14], [15], [27] and also works well on the example in Section
V. We also see that if we takeQj = Q andYj = Y for all j,
then the bilinear terms vanish and the conditions reduce to the
LMIs in (13) and (15). In our computation, we first solve the
resulting optimization problem with LMI constraints and then
use the optimalQ∗ and Y ∗ to start the two-step algorithm,
with Qj = Q∗ andYj = Y ∗ for all j andλijk ≥ 0 randomly
chosen. This approach also proves effective for the problems
of estimating theL2 gain and the domain of attraction, which
will be addressed in Theorems 4 and 5.

Although there is no guarantee that the global optimal
solution can be located, the convergence of the algorithms
is satisfactory. Furthermore, since the initial value of the opti-
mizing parameters can be inherited from the optimal solution
obtained with quadratic functions, the algorithms ensure that
the results are at least as good as those from using quadratic
functions in Theorem 1. The above discussion also applies to
the optimization problems resulting from Theorems 4 and 5.

◦
Remark 4: (About the nonlinear functionh(x)) From the

proof of Theorem 3, we see that a nonlinear function
h(x0) = H0(x0)x0 is constructed fromQj ’s andYj ’s so that
|Ū−1H0(x0)x0| ≤ 1 for all x0 ∈ sLVc (see (32) whereH0

is constructed and the subsequent discussion up to (34)). This
makes the proof more complicated than with a linear function
Hx but the result turns out to be cleaner and more easily
tractable numerically. If we attempt to use a linear function
h(x) = Hx such that|Ū−1Hx|∞ ≤ 1 for all x ∈ sLVc ,
we would haveYj in (28) replaced withHQj and Yj,` in
(29) replaced withH`Qj . When we formulate an optimization
problem to estimate the reachable set by takingH and Qj ’s
as optimizing parameters, this would result in more complex
BMI terms includingHQj which may cause difficulties in the
algorithms, such as slow convergence or getting stuck easily
at a local solution. ◦

Remark 5: (Discussion about results based on NDIs) With
similar developments as in the proof of Theorem 3, we can
obtain a corresponding condition by using the norm-bounded
differential inclusion (9) instead of using the PDI (6). The
resulting condition involves the existence ofYj ’s, λjk ≥ 0,
and a diagonalU > 0 satisfying (29) and

He




AQj +
∑J

k=1 λjk(Qj−Qk) Bw BqU
0 −I/2 0

CyQj−Yj Dyw −U+DyqU


 ≤ 0

(41)
for all j ∈ I[1, J ]. The bilinear terms in the first block seem

to inject extra degrees of freedom as compared with (21)
in Theorem 2 but they actually wouldn’t help to reduce the
conservatism. In other words, (41) implies the existence of a
Q satisfying (21). To see this, we form a matrix

Ψ=




−∑J
k=2 λ1k λ21 · · · λJ1

λ12 −∑J
k=1,k 6=2 λ2k · · · λJ2

...
...

...
...

λ1J λ2J · · · −∑J−1
k=1 λJk




.

ThenΨ is a Metzler matrix. Since the sum of each column of
Ψ is 0, the eigenvalue with the maximal real part is0. Hence
there exists a vectorc 6= 0 with ci ≥ 0 such thatΨc = 0 (e.g.,
see [36]) and in particular we assume

∑J
j=1 cj = 1 (i.e., c ∈

Γ). If we let Q =
∑J

j=1 cjQj , andY =
∑J

j=1 cjYj , thenQ
andY will satisfy (21) and (13). Furthermore,sE(Q) ⊆ sLVc

is a smaller estimate of the reachable set. This means that with
the NDI description, using the convex hull quadratic Lyapunov
function offers no advantage to using the quadratic Lyapunov
function. The same situation occurs for the estimation of the
L2 gain or the domain of attraction, or, when applying a max
quadratic function to NDIs.

For the special case whereH = 0, the regional NDI (9)
becomes a global norm-bounded linear differential inclusion
(NLDI). Thus we can conclude that for any NLDI, the convex
hull quadratic function or the max quadratic function offers no
advantage over quadratic functions when these stability and
performance issues are concerned. ◦

We next address the problems of estimating theL2 gain
and the domain of attraction.

Theorem 4:(L2 gain for norm-boundedw) Given Qj =
QT

j > 0, j ∈ I[1, J ], let Vc be composed fromQj ’s as in
(26). Consider system (1). Givens, γ > 0. If there exist
Yj ∈ Rm×n and λijk ≥ 0, i ∈ I[1, 2m], j, k ∈ I[1, J ] such
that

He




AiQj−BqTiYj +
∑J

k=1λijk(Qj−Qk) Bi 0
0 − I

2 0
CiQj −DzqTiYj Di −γ2I

2


≤0

∀ i ∈ I[1, 2m], j ∈ I[1, J ], (42)


ū2
`

s2
Yj,`

Y T
j,` Qj


 ≥ 0 ∀ ` ∈ I[1,m], j ∈ I[1, J ], (43)

then for all w such that‖w‖2 ≤ s and x(0) = 0, we have
‖z‖2 ≤ γ‖w‖2.

Proof. We will prove the theorem by showing that for all
x ∈ sLVc andw ∈ Rr, V̇c(x,w)+ 1

γ2 zT z ≤ wT w. Since (42)
implies (28), by Theorem 3, we havex(t) ∈ sLVc for all t
and for all ‖w‖2 ≤ s, x(0) = 0. Also, all the relationships
established in the proof of Theorem 3 are true under the
conditions of the current theorem.

Let Pj = Q−1
j , Hj = YjQ

−1
j and

Wij = PjAi − PjBqTiHj +
J∑

k=1

λijkPj(Qj−Qk)Pj .
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Multiplying (42) on the left and the right bydiag{Pj , I, I},
we have

He




Wij PjBi 0
0 − I

2 0
Ci −DzqTiHj Di −γ2I

2


 ≤ 0.

By Schur complements, this is equivalent to

He
[

Wij PjBi

0 − I
2

]

+
1
γ2

[
(Ci−DzqTiHj)T

DT
i

]
[Ci−DzqTiHj Di] ≤ 0. (44)

Denote

fij(x,w) = Aix + Biw −BqTiHjx,

gij(x, w) = Cix + Diw −DzqTiHjx.

Then (44) implies that for allx ∈ Rn, w ∈ Rr,

2xT Pjfij(x, w) +
1
γ2

gT
ij(x, w)gij(x, w)− wT w

≤ 2
J∑

k=1

λijkxT Pj(Qk−Qj)Pjx. (45)

Consider x ∈ δEj for δ > 0. Like in the proof of
Theorem 3, we have

J∑

k=1

λijkxT Pj(Qk−Qj)Pjx≤ 0 ∀x∈ δEj , w∈ Rr, δ> 0.

It follows from (45) that

2xT Pjfij(x,w) +
1
γ2

gT
ij(x,w)gij(x,w)− wT w ≤ 0,

∀x ∈ δEj , w ∈ Rr, δ > 0. (46)

We note that this is true for alli ∈ I[1, 2m] and j ∈ I[1, J ].
Now considerx0 ∈ sLVc . Then Vc(x0) = δ2 for some

δ ∈ (0, s]. Like in the proof of Theorem 3, there existxj ∈
δEj , γj > 0, j ∈ I[1, J0] such that

∑J0
j=1 γj = 1 and x0 =∑J0

j=1 γjxj . Let H0, Q0, Y0 be defined as in (32). Then we
also have|Ū−1H0x0| ≤ 1. Applying Proposition 1 atx0, we
have[

ẋ
z

]
∈ co

{[
Aix0+Biw−BqTiH0x0

Cix0+Diw−DzqTiH0x0

]
: i ∈ I[1, 2m]

}
.

Let

fi0(x0, w) = Aix0 + Biw −BqTiH0x0,

gi0(x0, w) = Cix0 + Diw −DzqTiH0x0.

Then

V̇c(x0, w) +
1
γ2

zT z − wT w

≤ max{(∇Vc(x0))T fi0(x0, w)+
1
γ2
|gi0(x0, w)|2−wT w :

i ∈ I[1, 2m]}. (47)

Since 2xT
j Pj = 2xT

0 Q−1
0 = (∇Vc(x0))T (see (33) ),

applying (46) atxj , we obtain

(∇Vc(x0))T fij(xj , w) +
1
γ2
|gij(xj , w)|2 − wT w ≤ 0,

∀w ∈ Rr, i ∈ I[1, 2m].

Like in (40), we have

fi0(x0, w) =
J0∑

j=1

γjfij(xj , w),

gi0(x0, w) =
J0∑

j=1

γjgij(xj , w).

It follows that

(∇Vc(x0))T fi0(x0, w) +
1
γ2
|gi0(x0, w)|2 − wT w ≤ 0,

and from (47)

V̇c(x0, w) +
1
γ2

zT z − wT w ≤ 0, (48)

which is satisfied for allx0 ∈ sLVc
andw ∈ Rr. Sincex(0) =

0, x(t) ∈ sLVc
for all t and for all‖w‖2 ≤ s, integrating both

sides of (48), we have‖z‖22 ≤ γ2‖w‖22. This completes the
proof. ¤

Theorem 5:(Estimation of the domain of attraction) Given
Qj = QT

j > 0, j ∈ I[1, J ], let Vc be composed fromQj ’s as
in (26). Consider system (1) withw ≡ 0. We haveV̇c(x) < 0
for all x ∈ LVc \ {0} if there existλijk ≥ 0, Yj ∈ Rm×n, i ∈
I[1, 2m], j, k ∈ I[1, J ] such that

He(AiQj −BqTiYj +
J∑

k=1

λijk(Qj−Qk)) < 0

∀ i ∈ I[1, 2m], j ∈ I[1, J ],[
1 Yj,`

Y T
j,` Qj

]
≥ 0 ∀ ` ∈ I[1,m], j ∈ I[1, J ].

Proof. The proof can be adapted from the proof of Theorem 3
by assuming thatBi = 0. Then with the same procedure, it
can be shown thaṫVc(x) < 0 for all x ∈ LVc \ {0}. ¤

Remark 6:Note that the condition in Theorem 5 is similar
to (but less conservative than) that of Theorem 4 in [27], which
is developed for a special case without algebraic loops. Similar
numerical complexity can be expected. ◦

C. Analysis with max quadratic functions

The max quadratic function is not differentiable everywhere.
Following the definition of [42] (page 215), a subgradient of
a convex functionf : Rn → R at x0 is a vectorv ∈ Rn such
that

f(x)− f(x0) ≥ vT (x− x0) ∀x ∈ Rn, (49)

and the subdifferential, denoted as∂f(x0) (not to be confused
as the boundary of a set) , is the set of all subgradient at
x0. The functionf(x) is differentiable atx0 if and only if
∂f(x0) is single valued. We use∂Vmax(x) to denote the sub-
differential of Vmax at x.

Lemma 6:Considerx0 ∈ Rn. Suppose that there exists
J0 ∈ I[1, J ] such thatVmax(x0) = xT

0 Pjx0 for j ∈ I[1, J0]
andVmax(x0) > xT

0 Pjx0 for j > J0. Then

1) ∂Vmax(x0) = co{2Pjx0 : j ∈ I[1, J0]}.
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2) For a vectorζ ∈ Rn, the directional derivative atx0 along
ζ is,

lim
t→0+

Vmax(x0 + tζ)− Vmax(x0)
t

= max
ξ∈∂Vmax(x0)

{ξT ζ}.
(50)

Proof. See Appendix. ¤
For simplicity and with some abuse of notation, forẋ given

by (1), denote

V̇max(x,w) := max
ξ∈∂Vmax(x)

{ξT ẋ}

= max
ξ∈∂Vmax(x)

{ξT (Ax + Bqq + Bww)}.

Then by Lemma 6 withζ = ẋ, Vmax is decreasing alonġx if
and only if V̇max(x,w) < 0.

Theorem 6:(Reachable set by bounded inputs) GivenPj =
PT

j > 0, j ∈ I[1, J ], let Vmax be the max quadratic function
formed by Pj ’s as in (25). Givens > 0. System (1) with
x(0) = 0 satisfiesx(t) ∈ sLVmax for all t ≥ 0 and for all
w such that‖w‖2 ≤ s if there existH ∈ Rm×n, λijk ≥ 0,
α`j ≥ 0, j, k ∈ I[1, J ], i ∈ I[1, 2m], ` ∈ I[1, m], such that∑J

j=1 α`j = 1, and

He
[

PjAi − PjBqTiH +
∑J

k=1 λijk(Pj−Pk) PjBi

0 − I
2

]
≤ 0

∀ i ∈ I[1, 2m], j ∈ I[1, J ], (51)


ū2
`

s2
H`

HT
`

∑J
j=1 α`jPj


 ≥ 0 ∀` ∈ I[1, m]. (52)

Proof. By the definition ofVc, condition (52) implies that
Vc( s

ū`
H`) ≤ 1 for all ` ∈ I[1,m]. By Lemma 5, this implies

that LVmax ⊆ L(sŪ−1H) = (1/s)L(Ū−1H), i.e., sLVmax ⊆
L(Ū−1H). Hence|Ū−1Hx|∞ ≤ 1 for all x ∈ sLVmax . By
Proposition 1, we have

ẋ ∈ co{Aix+Biw−BqTiHx : i ∈ I[1, 2m]} ∀x ∈ sLVmax .

On the other hand, it can be verified that (51) implies that

2xT Pj(Aix + Biw −BqTiHx)− wT w

≤ 2
J∑

k=1

λijkxT (Pk − Pj)x, (53)

for all j ∈ I[1, J ], i ∈ I[1, 2m].
The state space ofx can be partitioned as the following

subsets:

Sj = {x ∈ Rn : xT (Pk − Pj)x ≤ 0, k ∈ I[1, J ]}, j ∈ I[1, J ].

If x ∈ Sj \∪k 6=jSk, thenVmax(x) = xT Pjx and∂Vmax(x) =
2Pjx. If x ∈ ∩J0

j=1Sj \ ∪J
j=J0+1Sj , then Vmax(x) =

xT Pjx, j ∈ I[1, J0] and∂Vmax(x) = co{2Pjx : j ∈ I[1, J0]}.
We first considerx ∈ Sj \ ∪k 6=jSk. Then

J∑

k=1

λijkxT (Pk − Pj)x ≤ 0, (54)

and

V̇max(x,w)− wT w

≤ max
i∈I[1,2m]

(2xT Pj(Aix + Biw −BqTiHx)− wT w).

If x ∈ ∩J0
j=1Sj \ ∪J

j=J0+1Sj , then (54) is satisfied for allj ∈
I[1, J0] and we have

V̇max(x, w)− wT w

≤ max
j∈I[1,J0]

max
i∈I[1,2m]

(2xT Pj(Aix+Biw−BqTiHx)−wT w).

It follows from (53) and (54) thatV̇max(x,w) − wT w ≤ 0.
The remaining part of the proof is similar to the proof of
Theorem 3. ¤

Theorem 7:(L2 gain for norm-boundedw) Given Pj =
PT

j > 0, j ∈ I[1, J ]. Consider system (1) ands, γ > 0. If
there existH ∈ Rm×n, λijk ≥ 0, α`j ≥ 0, j, k ∈ I[1, J ],
i ∈ I[1, 2m], ` ∈ I[1,m], such that

∑J
j=1 α`j = 1 and

He




Pj(Ai−BqTiH)+
∑J

k=1λijk(Pj−Pk) PjBi 0
0 − I

2 0
Ci −DzqTiH Di −γ2I

2


≤0

∀ i ∈ I[1, 2m], j ∈ I[1, J ], (55)


ū2
`

s2
H`

HT
`

∑J
j=1 α`jPj


 ≥ 0 ∀ ` ∈ I[1,m], (56)

then for all w such that‖w‖2 ≤ s and x(0) = 0, we have
‖z‖2 ≤ γ‖w‖2.

Proof. Like in the proof of Theorem 6, we havex(t) ∈ sLVmax

for all t ≥ 0 under the condition‖w‖2 ≤ s andx(0) = 0. Also
we have|Ū−1Hx|∞ ≤ 1 for all x ∈ sLVmax . By Proposition 1,

[
ẋ
z

]
∈ co

{[
fi(x,w)
gi(x, w)

]
: i ∈ I[1, 2m]

}
,

wherefi(x, w) = Aix + Biw − BqTiHx, gi(x,w) = Cix +
Diw−DyqTiHx. Using Schur complements, it can be verified
that (55) implies

2xT Pjfi(x,w) +
1
γ2
|gi(x,w)|2 − wT w

≤ 2
J∑

k=1

λijkxT (Pk − Pj)x

for all j ∈ I[1, J ], i ∈ I[1, 2m]. With similar arguments
as in the proof of Theorem 6, it can be shown that for all
x ∈ sLVmax and w ∈ Rr, V̇max(x,w) + 1

γ2 zT z − wT w ≤ 0.
The remaining part of the proof is similar to the proof of
Theorem 4. ¤

The following result can be derived by adapting the proof
of Theorem 6.

Theorem 8:(Estimation of the domain of attraction) Given
Pj = PT

j > 0, j ∈ I[1, J ]. Consider system (1) withw ≡ 0.
We haveV̇max(x, 0) < 0 for all x ∈ LVmax \ {0} if there exist
H ∈ Rm×n, λijk ≥ 0, α`j ≥ 0, j, k ∈ I[1, J ], i ∈ I[1, 2m],
` ∈ I[1,m], such that

∑J
j=1 α`j = 1 and

He

(
PjAi − PjBqTiH +

J∑

k=1

λijk(Pj−Pk)

)
< 0

∀ i ∈ I[1, 2m], j ∈ I[1, J ], (57)[
ū2

` H`

HT
`

∑J
j=1 α`jPj

]
≥ 0 ∀ ` ∈ I[1,m]. (58)
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As compared with the counterpart results from using convex
hull quadratic functions, the conditions (51), (55) and (57) in
Theorems 6 to 8 appear to be less tractable because of the
bilinear termPjBqTiH in the first blocks of the matrices.
Also, the sameH for all Pj ’s seems to offer fewer degrees
of freedom as compared with differentYj ’s for different Qj ’s
in Theorems 3 to 5. However, numerical examples show that
Theorems 6 to 8 may produce better results in some cases.

V. EXAMPLES

Example 1:Consider system (1) with the following param-
eters:




A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw


=




0 0 −1 1 0 0 1
1 0 −2 0 1 1 0
0 1 −3 1 −1 1 1
1 0 1 −3 −1 1 −1
0 1 0 −2 −4 0 1
0 1 0 1 0 −1 0
0 0 1 0 1 0 −1




.

The well-posedness of the system is easily verified through
Claim 2. We use the four methods in Theorems 1, 2, 4 and
7 to estimate the nonlinearL2 gain. The resulting estimates
are plotted in Fig. 2, where the dotted curve is from applying
quadratics via NDI (Theorem 2), the dash-dotted one is from
applying quadratics via PDI (Theorem 1), the dashed one
is from applying max quadratics (withJ = 2) via PDI
(Theorem 7) and the solid one is from applying convex hull
quadratics (J = 2) via PDI (Theorem 4). Each of the four
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Fig. 2. Different estimates of the nonlinearL2 gain: Case 1.

curves tends to a constant value as‖w‖2 goes to infinity. This
constant value will be an estimate of the globalL2 gain. As
expected, applying quadratics via PDI always leads to better
results than applying quadratics via NDI, and applying one
of the two non-quadratics always leads to better results than
applying quadratics. However, the relationship between the
results from applying the two non-quadratic functions is not
definite. The situation exhibited in Fig. 2 can be reversed if
we change the parameters of the system. In what follows,
we present several scenarios through some adjustments of the
parameters.

Case 2: If we changeDyq to Dyq =
[ −3 −1.3
−2.3 −4

]

(well-posedness ensured), then the globalL2 gain by us-
ing quadratics via NDI is unbounded (or, global stability is
not confirmed), while that by using quadratics via PDI is
170.1473. By using max quadratics and convex hull quadrat-
ics, the globalL2 gains are respectively 20.7833 and 19.3307.

Case 3: If we change Dyq to Dyq =
[ −3 −2
−2 −4

]

(well-posedness ensured), then the globalL2 gain by using
quadratics via either NDI or PDI is unbounded. By using max
quadratics and convex hull quadratics, the globalL2 gains are
respectively 42.3354 and 31.6731.

The above two situations also show how the stability and
performance results by the same method can be affected by
the parameterDyq which describes the algebraic loop. As
discussed in [39], this parameter is one of the two key design
parameters in static anti-windup synthesis and can have a
dramatic impact on anti-windup performance.

Due to space limitation, we will not present computational
results about the estimation of the domain of attraction or the
estimation of the reachable set. Interested readers are referred
to [27] for some numerical results. From the different situa-
tions exhibited through theL2 gain, it is not hard to infer that
the difference among the estimations by using quadratics/non-
quadratics via NDI/PDI can be made arbitrarily large through
adjusting the four elements ofDyq. For instance, Case 2
suggests that the estimate of the domain of attraction by using
quadratics via NDI is bounded while that by using quadratics
via PDI is the whole state space. Case 3 suggests that the
domain of attraction estimated by non-quadratic functions is
the whole state space while that by quadratics (via PDI or NDI)
is bounded. On the other hand, the estimate of the reachable
set by non-quadratics can be bounded while that by quadratics
is not.

We should remark that for this particular example, the
algorithm for applying convex hull quadratics converges very
well for all the values ofs that we considered in our numerical
computation, even under different parameter changes. The
algorithm for applying max quadratics generally converges
well but for some values ofs it showed some difficulties
where we needed to stop the algorithm and restart it from
different initial values ofλijk which are randomly generated.
In any case, improvement is expected from the non-quadratic
functions.

Example 2:We adopt Example 2 from [16]. The plant is
a cart-spring-pendulum system with one control input, one
disturbance input, four states and one measurement output.
The plant and controller parameters can be found in [16].
For this example, the closed-loop system without anti-windup
compensation is not globally stable. Also, there exists no
static anti-windup compensation to make the globalL2 gain
bounded. With dynamic anti-windup augmentation, an upper
bound for the achievable globalL2 gain is found to be
181.1424 (by using quadratic Lyapunov functions). When
this achievable gain is approached, some parameters of the
anti-windup compensator will approach infinity. To make the
parameters within a reasonable range, we have to allow a
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slightly larger globalL2 gain. A particular dynamic anti-
windup compensator is given as follows, with notation adopted
from [16],

Λ1 =




−10.0484 −8.6696 5.9466 −34.8168
16.7846 −0.0077 −50.5254 33.3906
27.2580 12.9076 −176.8422 −20.1985
6.8086 9.5653 −54.0989 −35.0035


 ,

Λ3 =




0.0157 −0.0010 −0.0148 0.0105
0.3209 −0.1315 0.1458 0.6281
0.0972 −0.0763 0.1102 −0.0196
7.4719 −5.0878 2.7569 −1.0528

−0.1152 −0.0367 0.5992 0.0387



× 104,

Λ2 =




0.6253
0.2146
1.5342
0.4100


× 103, Λ4 =




0.1467
0.3452

−0.6949
2.4840

−5.4618



× 104.

When quadratic Lyapunov functions are used via the PDI,
the estimated globalL2 gain is 182.3080. WhenVc (with
J = 2) is used via the PDI, a slightly smaller estimate
is given as 181.2326. For other values of bound on‖w‖2,
the improvement by usingVc is also small. However, if we
change some parameters of the system, the difference between
estimates by quadratics and nonquadratics can be arbitrarily
large.

For this particular system, we haveDyq = Λ4(5). Hence
the algebraic loop is directly affected byΛ4(5). Suppose that
we changeΛ4(5) from −54618 to −52618. Two estimates
of the nonlinearL2 gain are plotted in Fig. 3, where the
dashed curve corresponds to the estimate obtained by applying
quadratic functions and the solid one to that obtained by
applying Vc (with J = 2), both via PDI description. Also
plotted as a dash-dotted curve is the estimate obtained by
using Vc when Λ4(5) = −54618. The above computational
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results suggest that nonquadratic functions may also have

advantage for analyzing robust performance under parameter
perturbations. This will motivate further research problems.

The order of the closed-loop system for this example is 12,
including the state of the plant, the controller and the dynamic
anti-windup compensator. The BMI problem forVc with J = 2
involves 189 variables (the two matricesQ1 and Q2 for Vc

contain 156 variables). It takes about 2 hours to generate the
solid curve (a connection of 18 points). The smoothness of
the curve suggests the uniformity of the convergence to some
optimal or suboptimal solutions, considering that the algorithm
was run only once for each value of‖w‖2 and the initial values
of λijk ’s were chosen randomly.

VI. CONCLUSIONS

For a general system with saturation or deadzone compo-
nents, regional stability and performance analysis relies on
an effective regional treatment of the algebraic loop and the
deadzone function. This paper provides such a treatment which
yields two forms of parameterized differential inclusions.
Applying available tools based on quadratic Lyapunov func-
tions to these differential inclusions, we obtained conditions
for stability and performance in the form of LMIs. These
conditions are easily tractable but could be conservative in
view of the quadratic Lyapunov functions applied. Further
improvement relies on using non-quadratic Lyapunov func-
tions. We explored a pair of conjugate Lyapunov functions
in this paper and reduced the conservatism of the conditions
with a series of BMI conditions. Numerical experience shows
that these BMI conditions can be effectively solved with the
path following method. Although there is no guarantee that the
global optimal solutions will be obtained, the great potential of
these non-quadratic Lyapunov functions has been revealed by
numerical examples. The effectiveness demonstrated through
these examples motivates further investigation on these non-
quadratic Lyapunov functions and the development of more
efficient algorithms to handle them for more complicated
situations. This paper’s results lay foundations for the design
of saturated controllers and for the design of anti-windup
compensators. Preliminary results have been obtained in [29]
for regional dynamic anti-windup design which is based on
the analysis result by applying quadratic functions via NDI.
The analysis results based on PDI and nonquadratic functions
can be applied for design purposes by incorporating controller
design parameters into the existing optimization problem. In
this regard, main efforts will be devoted to making the op-
timization problems more tractable through careful algebraic
manipulation and appropriate parameter transformations.

APPENDIX

Proof of Claim 1. The sufficiency was shown in [53].2 Here
we show the necessity. Letφi be a saturation function. It is
easy to verify that for eachδ ∈ [0, 1], and eachd ∈ [−1, 1],
there exista, b ∈ R, a−b = d such thatφi(a)−φi(b) = δ(a−
b). We have the same property ifφi is a deadzone function.
Now suppose thatdet(I −D∆) = 0 for a certain∆ ∈ coK.

2Note that in [53] a necessary assumption on the radial unboundedness of
the function has inadvertently been omitted (compare also with [50]).
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Then there existδi ∈ [0, 1], i ∈ I[1,m], and a nonzero vector
s ∈ Rm, si ∈ [−1, 1] such that

(I −Ddiag[δ1, δ2, · · · , δm])s = 0. (59)

Note thats can always be scaled to satisfysi ∈ [−1, 1]. Let
ai, bi ∈ R be chosen such thatai − bi = si and φi(ai) −
φi(bi) = δi(ai − bi) = δisi. Defineu1 := [a1 a2 · · · am]T ,
andu2 := [b1 b2 · · · bm]T and letv1 = u1−Dφ(u1), v2 =
u2 −Dφ(u2). Thenu1 − u2 = s 6= 0 and

φ(u1)− φ(u2) = diag[δ1, δ2, · · · , δm]s. (60)

It follows from (59) and (60) thatv1 − v2 = s−D(φ(u1)−
φ(u2)) = (I −Ddiag[δ1, δ2, · · · , δm])s = 0. This shows that
there are two solutionsu1 andu2 corresponding to the same
v1 = v2. Therefore we conclude that well-posedness implies
that det(I −D∆) 6= 0 for all ∆ ∈ coK. ¤
Proof of Claim 2. We first show that

co{det(I −Dyq∆) : ∆ ∈ coK}
= co{det(I −DyqKi) : i ∈ I[1, 2m]}. (61)

Let the diagonal elements of∆ be d1, d2, · · · , dm. Then
det(I − Dyq∆) is a multi-linear function of di’s. This
means thatdet(I − Dyq∆) = f1(d2, d3, · · · , dm)d1 +
f0(d2, d3, · · · , dm) for some multi-linear functionsf1 andf0.
Hence the maximum or the minimum ofdet(I − Dyq∆) is
obtained atd1 = 1 or d1 = −1. Same can be said for
d2, d3, · · · , dm. This verifies (61) and the first part of the
claim.

The relation (4), repeated below,

co{(I −∆Dyq)−1∆ : ∆ ∈ coK}
⊆ co{(I −KiDyq)−1Ki : i ∈ I[1, 2m]}, (62)

can be shown with arguments similar to those in [2, page
57-58]. Recall that for a subsetS of a vector space,x0 ∈
S is an extreme point of co{S} if and only if there exists
a vectorc such that〈c, x〉 < 〈c, x0〉 for all x ∈ S \ {x0}.
Let C ∈ Rm×m be an arbitrary matrix and consider bothC
and (I − ∆Dyq)−1∆ as real vectors. The inner product of
C and (I −∆Dyq)−1∆, i.e., trace(CT (I −∆Dyq)−1∆), can
be expressed as(a1d1 + a0)/(b1d1 + b0), wherea1, a0, b1, b0

are functions ofd2, · · · , dm. By the well-posedness condition,
b1d1 + b0 6= 0 for all d1 ∈ [−1, 1]. It can be easily verified
that (a1d1 + a0)/(b1d1 + b0) either increases or decreases
over the interval. Hence the maximum or the minimum of
trace(CT (I −∆Dyq)−1∆) is obtained atd1 = 1 or d1 = −1.
Same can be said ford2, d3, · · · , dm. This means that every
extreme point of the set on the lefthand side of (62) belongs
to the set on the righthand side. This completes the proof.¤
Proof of Claim 3. We first consider the case whereM = I
and assume that2I−Dyq−DT

yq = R2, whereR is symmetric
and nonsingular. We will show that

co{(I −KiDyq)−1Ki : i ∈ I[1, 2m]}
⊆ {R−2 + R−1ΩR−1 : ‖Ω‖ ≤ 1}. (63)

Since the set on the righthand side of (63) is convex, to prove
(63) and that(I −KiDyq)−1Ki is on the boundary of the set

on the righthand side, it suffices to show that there existsΩi,
‖Ωi‖ = 1, such that

Ki(I −DyqKi)−1 = R−2 + R−1ΩiR
−1. (64)

Let
Ωi = RKi(I −DyqKi)−1R− I.

Then clearly it satisfies (64). We need to prove that‖Ωi‖ = 1.
SinceKi is a diagonal matrix with0 or 1 at each diagonal,

we haveKi = K2
i . Hence

KiR
2Ki = 2KiI −KiDyqKi −KiD

T
yqKi

= Ki(I −DyqKi) + (I −DyqKi)T Ki.

Multiplying on the left byR(I −DyqKi)−T (whereX−T =
(XT )−1) and on the right by(I −DyqKi)−1R we have

R(I −DyqKi)−T KiR
2Ki(I −DyqKi)−1R

= R(I −DyqKi)−T KiR + RKi(I −DyqKi)−1R.

This leads to (RKi(I − DyqKi)−1R − I)T (RKi(I −
DyqKi)−1R − I) = I, i.e., ΩT

i Ωi = I. This not only proves
(63) but also shows thatKi(I−DyqKi)−1 is on the boundary
of the set on the righthand side of (63).

Now consider an arbitrary diagonal positive matrixM . Then
Ki = MKiM

−1 and

Ki(I −DyqKi)−1 = MKiM
−1(I −DyqMKiM

−1)−1

= MKi(I −M−1DyqMKi)−1M−1,

where we have used the fact thatX(I − Y X)−1 = (I −
XY )−1X. Applying (63) by replacingDyq with M−1DyqM
we have

Ki(I −DyqKi)−1∈{M(S−2 + S−1ΩS−1)M−1 : ‖Ω‖ ≤ 1},
where S2 = 2I − M−1DyqM − MDT

yqM
−1. It is also

straightforward to conclude thatKi(I −DyqKi)−1 is on the
boundary of the set at the righthand side. ¤
Proof of Lemma 3.Without loss of generality, considerj = 1.
Note that

Vc(x) = min





xT


Q1 +

J∑

j=2

γk(Qk −Q1)



−1

x :

J∑

k=2

γk ≤ 1, γk ≥ 0

}
.

It is implied here thatγ1 = 1−∑J
k=2 γk. For a fixedx, define

φ(γ2, · · · , γJ) := xT

(
Q1 +

J∑

k=2

γk(Qk −Q1)

)−1

x.

Then by Schur complements, for anyc > 0, the set
{

(γ2, · · · , γJ ) : φ(γ2, · · · , γJ) ≤ c,

J∑

k=2

γk ≤ 1, γk ≥ 0

}

(65)
is convex. Hence the optimal(γ2, · · · , γJ)’s that minimizeφ
form a convex set.
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If x ∈ E1, then Vc(x) = xTQ−1
1 x = 1, implying that the

minimal value ofφ is reached at(γ2, · · · , γJ) = (0, · · · , 0).
This means that at this point,∂φ/∂γk ≥ 0 for all k ∈ I[2, J ],
i.e.,

xTQ−1
1 (Qk −Q1)Q−1

1 x ≤ 0 ∀ k ∈ [2, J ]. (66)

On the other hand, it is also clear that (66) implies that the
minimal value ofφ is reached at(0, · · · , 0) by the convexity of
the set in (65). Hence, (66) is equivalent toVc(x) = xTQ−1

1 x.
In summary, we have

E1 = {x ∈ ∂LVc : xTQ−1
1 (Qk −Q1)Q−1

1 x ≤ 0, ∀ k}
= ∂LVc

∩ F1.

¤
Proof of Lemma 6. 1) Note that for any positive definite
matrix Pj , we have

xT Pjx− xT
0 Pjx0 − 2xT

0 Pj(x− x0) = (x− x0)T Pj(x− x0).
(67)

SinceVmax(x0) = xT
0 Pjx0 for j ∈ I[1, J0], we obtain

Vmax(x) ≥ xT Pjx ≥ Vmax(x0) + 2xT
0 Pj(x− x0)

∀j ∈ I[1, J0], x ∈ Rn.

Applying convex combination of the above inequalities,

Vmax(x) ≥ Vmax(x0) + cT (x− x0)
∀ c ∈ co{2Pjx0 : j ∈ I[1, J0]}, x ∈ Rn.

This shows co{2Pjx0 : j ∈ I[1, J0]} ⊂ ∂Vmax(x0). To show
the converse, we consider an arbitraryc /∈ co{2Pjx0 : j ∈
I[1, J0]}. Then there existζ ∈ Rn, |ζ|2 = 1, andε > 0 such
that

cT (αζ) > 2xT
0 Pj(αζ) + αε ∀α > 0, j ∈ I[1, J0]. (68)

Let x = x0 + αζ, then from (67) and (68) we obtain

xT Pjx− Vmax(x0) < cT (x− x0)− εα + α2ζT Pjζ,

∀α > 0, j ∈ I[1, J0].

It is clear that there always exists a sufficiently smallα > 0
such that

xT Pjx− Vmax(x0) < cT (x− x0) ∀j ∈ I[1, J0].

Also note that whenx−x0 = αζ is sufficiently small, we still
have Vmax(x) = max{xT Pjx : j ∈ I[1, J0]}. In summary,
there exists anx ∈ Rn such that

Vmax(x)− Vmax(x0) < cT (x− x0).

This shows that c /∈ ∂Vmax(x0) and confirms that
∂Vmax(x0) ⊂ co{2Pjx0 : j ∈ I[1, J0]}. Therefore, we
conclude that∂Vmax(x0) = co{2Pjx0 : j ∈ I[1, J0]}.

2) By (67), with x = x0 + tζ, we have

xT Pjx− xT
0 Pjx0 = 2txT

0 Pjζ + t2ζT Pjζ. (69)

Again, for sufficiently small t, we have Vmax(x) =
max{xT Pjx : j ∈ I[1, J0]}. Ignoring the second order term
for sufficiently smallt, we obtain

Vmax(x) = Vmax(x0) + tmax{2xT
0 Pjζ : j ∈ I[1, J0]}.

This leads to (50). ¤
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