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Stability and performance for saturated systems via
guadratic and non-quadratic Lyapunov functions

Tingshu Hu, Andrew R. Teel, and Luca Zaccarian

Abstract—In this paper we develop a systematic Lyapunov problems such as constrained controllability and global/semi-
approach to the regional stability and performance analysis of global stabilization. These problems have been discussed in
saturated systems in a general feedback configuration. The only great depth, e.g., in [22], [35], [44], [45], [47], [48] (among
assumptions we make about the system are well-posedness of | . SR ' ! ’ ' '
the algebraic loop and local stability. Problems to be consid- Wh'Ch [22] considers e>.(p_0nent|ally unstable systems). Anothgr
ered include the estimation of the domain of attraction, the Significant problem arising from actuator saturation is anti-
reachable set under a class of bounded energy disturbanceswindup compensation, which has attracted tremendous atten-
and the nonlinear £, gain. The regional analysis is established tion over the past decade (see, e.g., [4]-[6], [8]-[10], [12],
through an effective treatment of the algebraic loop and the [16]-[18], [28], [33], [34], [38]-]40], [46], [49], [51], [53])
saturation/deadzone function. This treatment yields two forms Th ’ ,h th 't' ’d ted i ’ t, fth, ' i ; t
of differential inclusions, a polytopic differential inclusion (PDI) e approac aL Is adopted In MOst o (_3 recent literature
and a norm-bounded differential inclusion (NDI) that contain t0 address saturated systems can be categorized as a Lyapunov
the original system. Adjustable parameters are incorporated approach. In this approach, some quantitative measures of
into the differential inclusions to reflect the regional property. stability and performance, such as the size of the domain of
The main idea behind the regional analysis is to ensure that attraction, the convergence rate, and e gain, are char-

the state remain inside the level set of a certain Lyapunov . . - .
function where the PDI or the NDI is valid. With quadratic acterized by using Lyapunov functions or storage functions.

Lyapunov functions, conditions for stability and performances 1hen the design parameters (e.g., of a controller or of an anti-
are derived as linear matrix inequalities (LMIs). To obtain less windup compensator) are incorporated into an optimization

conservative conditions, we use a pair of conjugate non-quadratic problem to optimize these quantitative measures for the closed-
Lyapunov functions, the convex hull quadratic function and the loop system. This approach is mostly fueled by the numerical

max quadratic function. These functions yield bilinear matrix ) Vi timizati bl ith Ii
inequalities (BMIs) as conditions for stability and guaranteed SUCCESS In Solving convex oplimization probiems with finear

performance level. The BMI conditions cover the corresponding Matrix inequalities (LMIs) (e.g., see [2]). This is a general
LMI conditions as special cases, hence the BMI results are approach which can be applied to deal with systems with

guaranteed to be as good as the LMI results. In most examples, saturation and deadzone occurring at different locations. The
the BMI results are significantly better than the LMI results. first papers that use LMI-based methods to deal with saturated
Index Terms—saturation, deadzone, nonlinearC; gain, reach- systems include [21], [34], [41], where [21], [41] consider state
able set, domain of attraction, Lyapunov functions. feedback design and [34] analyzes anti-windup systems. Since
then, extensive LMI-based algorithms have been developed for
analysis and design of saturated systems (see, e.g., [4]-[6],
[10], [13], [16]-[18], [22], [25], [26], [38], [39], [46], [53].)
A. Background There are mainly two steps involved in the Lyapunov
Saturation is an ubiquitous nonlinearity in engineering syspproach. The first step is to include the saturation function or
tems and is the most studied in the literature as comparie deadzone function in a sector so that the original system
with other types of nonlinearities. Intensified efforts have be@an be cast into the general framework of absolute stability,
devoted to control systems with saturation since the earlier can be described with a linear differential inclusion (LDI).
1990s due to a few notable breakthroughs (see, e.g., [35], [4Biie second step applies available tools from absolute stability
[47]). Saturation exists in different parts of a control systertheory or from general Lyapunov approaches for LDls, such as
such as the actuator, the sensor, the controller and componémescircle criterion or the LMI characterizations of stability and
within the plant. Most research has been devoted to addregsrformance in [2]. Roughly speaking, all the analysis tools
ing actuator saturation, which involves fundamental controked in the aforementioned works are obtained by applying
qguadratic Lyapunov/storage functions to the LDIs except that
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global stability. In some other works, regional LDI descriptions= 1,2, --- ,m. In particular

(some based on local sectors) are derived to reduce the

conservatism (see, e.g., [4], [5], [10], [13], [21], [25], [26], Ui, u; > U, safuy)
[34], [41]). Along this direction, the regional LDI descriptionsa(u;) = ui, u; € [—U;, ), salu) = :
introduced in [25], [26] has proved very effective and easy —Uj, U < —Uje salu,,)

to manipulate. It has been used successfully for different

configurations or for different purposes in [4], [5], [10], [13], In this paper we consider symmetric saturation functibns

[27], [28]. System (1) can be graphically depicted in block diagram form
With an effective regional LDI description, there is yet mor@s in Fig. 1, wherew is the exogenous input or disturbance

potential to be explored in the second step about the analydil= is the output whose performance is under consideration.

of LDIs. It is now generally accepted that quadratic Lyapundviany linear systems with saturation/deadzone components can

functions can be very conservative even for stability analysis

of LDIs (see, e.g., [7], [11], [31], [54]). For this reason, W g | o 2
considerable attention has been paid to the construction and

development of non-quadratic Lyapunov functions (e.g., see H

(41, [31, [7], [31], [32], [37], [52], [54]). d Ye

Recently, a pair of conjugate Lyapunov functions have
demonstrated great potential in the analysis of LDIs and
saturated linear systems [14], [15], [23], [27]. One is called dz
the convex hull quadratic function since its level set is the
convex hull of a family of ellipsoids. The other is called max;y ;.
guadratic function since it is obtained by taking pointwise

maximum over a family of quadratic functions and its levale yansformed into the above general form through a loop
set is the intersection of a family of ellipsoids. Some conjyz,nsformation. This general form has been used to study anti-
gate relationships about these two functions were establls%ﬂdup systems in [16], [34], [39], [53]. WheM,,, = 0, the

. . . . L} ) i) - yq - 1

in [14], [15]. Since these functions are natural extensiongsiem does not contain an algebraic loop, which can simplify
of quadratic functions, they can also be used to perforffle analysis and implementation. However, it was shown in
quantitative performance analysis beyond stability, such @) that the algebraic loop can be purposely introduced into
to estimate thel, gain, and the reachable set, for LDIsy,q anti-windup configuration to reduce the gloal gain.

A handful of dual bilinear matrix inequalities (BMIs) haverpq importance of the parameter,, will also be illustrated
been derived for these purposes in [14]. As compared with examples at the end of this paper.

the corresponding LMIs resulting from quadratic Lyapunov \ye note that most of the previous works imposed various

functions, these BMIs contain extra degrees of freedom in tagsumptions on the system, such as exponential stability of

biline_ar terms, WhiCh are injected through the non-quadrattlﬁe original open-loop plant in an anti-windup configuration
functions. Experience with low order systems shows that th 3., [16], [39], [53]). In these works, the global secfy!]

BMIs can be solved effectively with the path-following metho used to describe the deadzone function. In some other works
in [20]. Although it is possible that numerical difficulties Mayg,ch as [4]-[6], [10], [13], [25]-[27], [46] (among which [6],
arise for higher order systems, the great potential of these n ] study theZ, gain), regional LDI descriptions are used
quadratic Lyapunov functions has been demonstrated in H%Eeduce the conservatism. In these works, the algebraic loop
[15], [27] through a set of numerical examples. is absent D,, = 0) and the disturbance (in [6], [13]) does
not enter the deadzone function, i.€),,, = 0. In [30], the
algebraic loop has a special structure, namsly, is diagonal.
B. Problem formulation A recent attempt was made in [51] to perform regional
a%alysis on the general form without the assumption on

Compact representation of a system with saturation/deadzone.

With the recent developments and effective tools mentioned | ;. S X
. . . Stability of the open-loop plant. The main idea, which had
in the previous section, we are now able to address more €j- :
. " also been suggested in some other works, was to use a smaller
fectively some stability and performance problems for systems

: . . . >~ 'sector [0, K] with K < I to bound the deadzone function.
with saturation/deadzone in the following general form: o ;
However, this idea would not work on the general form if

D,., # 0. As can be seen from the second equation in (1),
y is not necessarily bounded 6., norm whenw is only
(1) bounded in the£s; norm. Hence there exists N < I to
bound the deadzone function evenaat= 0. After all, as
commented in [25], [27], even in the absenceugfthis kind
of sector description is not only hard to manipulate, but also

= Az + Byq+ Byw

= Cyz+ Dyeq+ Dypw
= C.x+D.oq+ D, yw
= dz(y)

QN e R

wherex € R" ¢,y € R™ w € R",z € RP. The deadzone

functiondz(-) : R™ — R™ is defined aslz(y) := y — saly), 1 _ _ _
f I Rm h t) is a vector saturation function Asymmetric saturations can be treated with the methods developed here
orally e , Where sgt) i A uratl uncton yith some level of conservativeness by taking as the minimum absolute

with the saturation levels given by a vectore R™, u; > 0, value of the negative and positive saturation levels.
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has a much restricted degree of freedom as compared with - [|2: For u € £a, [|ull2 == ([~ uT(t)u(t)dt)%.
regional LDI description initiated in [25]. - Ilk1, ko]: For two integersky, ko, k1 < ko, I[k1, ko] :=

In this paper, we will extend the regional LDI description ifky, k1 + 1, -+ , ko2 }.

[25] to deal with the general situation whef&,,, D,,, # 0, - sa{-): The symmetric saturation function with implicit
and to address both stability and performance issues. saturation level given by, € R™.

The only assumptions that we will make about the systenU := diag{@y, ..., %, } Wherew,; > 0 is the saturation level
(1) is its local stability A is Hurwitz) and the well-posednessfor the ith component of s&f).
of the algebraic loop, which will be made precise in Section i.dz(u): The deadzone functionlz(u) := u — sa{u).

These were also the only assumptions made in our recent papeoS: The convex hull of a ses.
[28] and they are clearly basic requirements for the system-téC: The set of diagonal matrices withor 1 at each diagonal
be functional. element.

The objective of this paper is to carry out a systematic anddeX: For a square matriX’, HeX := X + X 7.
comprehensive analysis of system (1) by using quadratic and(P): For P € R"*" P = PT > 0, £(P) := {z € R" :
non-quadratic Lyapunov functions. The following problems” Pz < 1}.
will be addressed: - L(H): For H € R™", £(H) = {x ER": |Hi|w < 1}.

1. Estimation of the domain of attraction (in the absence of Apout the relationship betweef( P) and £(U ' H), for a

w) by using invariant ellipsoids or invariant level sets ofjiven s > 0, we have (see, e.g., [25]),
the non-quadratic Lyapunov functions. 9o
2. With a given bound on thé; norm ofw, i.e, w2 < s sE(P) C L(U'H) < { “f/ﬁ H, } >0 Ve (2
for a givens, we would like to determine a sétas small H; P
as possible so that under the conditiei®) = 0, we have where H, is the ¢th row of H and @, is the (-th diagonal
x(t) € S for all ¢t. This setS will be considered as an element ofU.
estimate of the reachable set.
3. With [lw||2 < s for a givens, we would like to determine || Two FORMS OF PARAMETERIZED DIFFERENTIAL
a numbery > 0 as small as possible, so that under the INCLUSIONS
conditionz(0) = 0, we have||z||2 < v|lw||2. Performing

this analysis for each € (0,00), we obtain an estimate Algebraic loops in linear systems can be easily solved (if

they are well-posed). For system (1), the presence of the

of the nonlinearZ, gain. . :
To add h 2 9 bl call i f deadzone function makes the algebraic loop much harder to
0 address these problems systematically, we will firghq) \yith, Theoretically, an explicit solution can be derived

provide an effective treatment of the algebraic loop and the piecewise affine function, in terms of bathand w, by
deadzone function in Section Il. In particular, the necessaﬂ(ﬁ&rtitioning the vector spacﬁ”" into 3™ polytopic reg}ions

and sufficient condition fc_)r_the WeII-posedness_of the_ algebr Cee Remark 1). However, the complexity of the partition even
loop will be made explicit. Moreover, we will derive WO . — 9 or 3 makes the solution almost impossible to

forms of differential inclusions to describe the original systerH1anipulate In this paper, we would like to use convex sets

,(1)' T.he first one is a polytopic differential inc'lusion (PD,I)to bound all the possible solutions. By doing that, we obtain
involving a certain adjustable parameter or nonlinear functloa- erential inclusion descriptions for the original system (1)

This parameter or nonlinear function offers extra degrees of y' -\« it more approachable with Lyapunov methods.
freedom associated with a local region under consideration. ItRecaII that the deadzone function belongs to[thé] sector
will be optimized in conjunction with the Lyapunov functions, , ., eachy there exists a diagonah € R™*™ ’satisfying,
in the final analysis problems. The second differential incly- < A < T anddz(y) = Ay. Let K be the set of diagonal
sion is a norm-bounded differential inclusion (NDI) which ig .. < \whose diagonal elements are either 1 or 0. Thn co
derived from the PDI. The NDI is more conservative than the o <at of diagonal satisfyingd < A < I. There are™
PDI but may be more numerically tractable for some cases, ,iices inC and we number them_aB’i_i —19... 9m

In Section I1I, we will apply quadratic Lyapunov functionsrpan we havec — (Ki:ieI[1,27)} ant’j .
via the PDI and the NDI to characterize stability and per- ’
formance of the original system (1). We note that quadratic dz(y) € co{ K,y : i € I[1,2™]}.

functions have been used for these purposes in [4]-[6], [1q1 . . .
: - his relation holds for ally € R™ but could be conservative
[13], [25], [26], [46] under the assumption thaL,, = 0 and over a local region where the system operates. In [25], [26],

D,, =0.1In ion 1V, w ly th nvex hull rati ) L . . ;
yw = 0. In Section IV, we apply the convex hull quadratic flexible description was introduced for dealing with the

function and the max quadratic function respectively via th ) o
PDI (It turns out that when these nonquadratics are appligamlrate‘(jj sttat(;a ffee(:tt:acl(; (S%t)' Th'fs d(te.scrlp_trl(;n can b%
to the NDI, they produce the same results as the quadraticgsgi'i: d atlhiip discr?prtioneis tii ;)?Igsvinlé]n(s:i:;ie fa((:at' main idea

In Section V, we use a numerical example to demonstral Fact 1: Supposen: € [, ;] (with @, being theith sat-
the effectiveness of this paper’s results and the reIationshiP . I. |pF|): e ]lg ¢ h L 9 -
between them. Section VI concludes this paper. uration level). For any; € R, we have sd;) € co{u;, vi},
i.e., safu;) = du; + (1 — d)v; for somed € [0,1], and
Notation dz(u;) € co{0,u; — v;}, i.e., dz(u;) = d(u; — v;) for some
- | oot FOru € R™, |u|oo := max; |u;]. 5 €10,1].
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This simple fact has also been used in [13] to analyze= (I — AD,,) 'A(Cyz + D,,w — h(z)). By (4) and (5)
the nonlinear £, gain for a special case of (1), wherewe have
Dy, Dyw, D.q and D,,, are all zero. For the general case : B . m
where D,,, may be nonzero, we have the following algebraic ¢ € Co{Ti(Cyx + Dyww — h(@)) - 1 € I[1,27]}. (7)
loop, Applying this relation to the first and the third equations in

y = Cyx + Dyedz(y) + Dyw. (3) (1), we obtain (6). O

This algebraic loop is said to be well-posed if there exists aBY taking i(z) = 0 in (6), we obtain a polytopic lin-
unique solutiony for eachC,z+ D,,,w. A sufficient condition €ar differential inclusion (PLDI) representation which holds
for the algebraic loop to be well-posed is the existence ofdebally for the original system (1). A nonzero terhx) is
diagonal matrixi’ > 0 such thaW — D,,W — WD > used to inject additional degrees of freedom in some subset
0 (see, e.g., [16], [43]). In what follows, we give ayfarecisé’f the state space to reduce conservatism in regional analysis.
characterization of the well-posedness of the algebraic looVhen we use quadratic Lyapunov functions, we will choose
Claim 1: Assume thatp is the deadzone function or the/2(¥) = Hz whereH can be used as an optimizing parameter.
saturation function. Thep = D¢(y)+v has a unique solution When we use non-quadratic Lyapunov functions, a nonlinear

for everyv € R™ if and only if det(I — DA) # 0 for all h(z) is more effective in general. _
A € cok. The polytopic differential inclusion (PDI) (6) involvex™

Proof. See the Appendix. [ vertices. This may present numerical difficulties Wr_)anis_
] ) large (e.g.,m > 6) and the order of the system is high.

Remark 1:1f the algebraic loopy = D¢(y) + v is well- - 14 yeduce this computational burden, we may use a more
posed, then the solutiop is a piecewise affine function of conservative description; namely, to approximate the system
with 3™ polytopic regions. To understand this, consider th@) we may use a norm bounded differential inclusion (NDI),
function g: y — v = y — Do(y). It is piecewise affine with \ynich is based on the following result.
3™ polytopic partitions. If there is a unique solutionfor  cjaim 3: Let M be a positive diagonal matrix. Suppose that
eachv, then each polytope in the domain @fs uniquely and . — )
affinely mapped to a polytope in the range pfHence the 21 =M™ DygM — MDy M~ = 5%,
inverse function ofy, i.e., the solution of the algebraic loop,where S is symmetric and nonsingular. Then
is also piecewise affine, with partition corresponding to that co{(I — Kiqu)_lKi Cie [, 2m)

of the originalg. ° 2 ) L .
Based on Claim 1 we have the following criterion for the C{M(S™+57Q5 )M~ - [|Qf <1}, (8)
well-posedness of the algebraic loop. where ||Q|| is the spectral norm of2 (namely its largest

_ Claim 2: The algebraic loop (3) is well-posed if and onlysingylar value). Furthermore, each vertex of the lefthand side
if the values ofdet(/ — D, K;),i € I[1,2™], are all nonzero g on the boundary of the righthand side.

and have the same sign. In this case, we have Proof. See the Appendix. 0

{(I-AD,) 'A: A€ cok} Proposition 2: Assume that there exist a diagonal > 0
C co{(I — Kiqu)_lKi c i€ I1,2™)}, (4) and a symmetric nonsinguladf such that
Proof. See the Appendix. o . O ' S2 —of _ M‘lquM _ MD;qu‘l.
The well-posedness condition in Claim 2 can be easily y _ y .
verified. The relation (4) will be used to bound the solutiok€t H € R™*" be given. For2 € R™*™, define

of the algebraic loop with a polytope. Aq Bq A By,
Throughout this paper, we assume that this WeII-posedness{ Ca Dq ] = [ C, D, } ™
condition is satisfied. Fotr € I[1,2™], denote B
. { a }M(s2 +S57'QS M Cy—H Dy .
T; = (I — K;Dyy) 'K, (5) Dzq ‘ *
A; = A+ B,T;,Cy, B;= By, + B,T;Dyy, Consider system (1). it € R satisfie§U ' Hz|,, < 1, then
1= €t DiiCy D= Dawt DD HEER B
Proposition 1: Let 4 : R — R™ be a given map and let o Q@ Fa Jlw
he be the/th component of.. Consider system (1). lf € R” Proposition 2 can be proved like Proposition 1 by ap-
satisfies|hy ()| < @, for all £ € I[1,m], then plying Claim 3 to (7) withh(z) = Hz (note thatT; =

. (I — KiDy,)"'K;)). Then we obtaing € {M(S72 +
|: T :| c CO{|: AiCC—FBiU)—BqTih(l’) :| = 1[172771]} ) Silgsil)Mfl((Cy7H)I+Dyww) . HQ” < 1}' Applylng
o Ciz+Diw—DzyTih(z) ©) this to the original system (1), we obtain (9). We call (9) the
. _ norm bounded differential inclusion (NDI) for (1). th = 1,
Eg?/gf' Sincehe(x)| < @ for all £ € I1,m], by Fact 1, we then the two sets in (8) are the same and the NDI. is the same as
— da(y) = Aly — h(z)) the PDI. Ifm > 1, generally the NDI strictly contains the PDI.
4 4 y— e We also note that to obtain the NDI, there must exist a positive
for someA e cok. Recallingy = Cyz + D,q + Dy,,w, we  diagonal matrix\/ such thal—M ~' D, M—~MD] M~" >
obtaing = A(Cyx + Dyqq + Dy,w — h(x)). It follows that 0, which is a stronger requirement than well-posedness.
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I1l. ANALYSIS WITH QUADRATIC LYAPUNOV FUNCTIONS  which corresponds to (10) with
A. Some general results for linear differential inclusions _ A, —B/;H B; | . .

In [2], extensive results were established for stability and CO{{ Ci—D.,T;H D, } ielll2 ]}
performance analysis of LDIs by using quadratic Lyapunov e will restrict our attention to a certain ellipsoid (P).

functions. Consider the LDI For the purpose of presenting the results in terms of LMIs, we
{ & } . H A B } { T } _ [ A B ] c <I>} (10) state the results using = P~ andY = HQ. To apply the

z C D | ¢ D ’ PDI description within the ellipsoid&(P) = s£(Q1), we
where ® is a given convex set of matrices. The foIIowmg{I1eeol to ensure that'(P) C LU~ H) so thatj ! H | <
lemma can be established like in the corresponding resultslifti-€- [7(z)| < @, for all ¢) for all z € s&(P), which is
[2] by extending a polytopied to a generalb. equwalent to (recall from (2)),

Lemma 1:Given P = P > 0,7 > 0, let V(z) = 2" Pz { u?/s®> Hy
and denote byV (x,w) the derivative ofV in any of the HI P
directions of the right hand side of (10). The following holds: Where H, is the (th row of H and, is the (-th diagonal

] >0 Ve I[l,m]

1. V(z,w) <0 forallz € R*\ {0} andw = 0, if element of U. Multiplying on the left and the right by
diag{1, @}, we obtain the equivalent condition
ATPLPA<O VAe{[I o]x[”-x @}. ing{l, Q} e q
_ { “’Y/ﬁ Ye } >0 Ve I[l,m)]. (13)
2. V(z,w) <wlTw for all z € R*,w € R", if ¢ Q
PA PB Theorem 1:Given Q € R™*" Q = QT > 0. Let V(x) =
He { 0 —I/2 } <0 2T Q~'x. Consider system (1).
v[ A B ] c {[ I 0 ]X X e q)}~ 1. If there existsy” € R™*™ satisfying (13) withs = 1 and

3. V(z,w)+ 5272 < wlw for all z € R*, w e R”, if QAiT_FAiQ_YTTiTBqT_BqE'Y<O Vielll,2™], (14)
bl 72 = I ) .

PA  PB 0 thenV (z,w) < 0 for all z € £(Q ') \ {0} andw = 0,

} <0y { A B i.e., £(Q~1) is a contractively invariant ellipsoid.

2. Lets > 0. If there existsY € R"™*" satisfying (13) and

(112) o { A;,Q-B, ;Y B
The condition in item 1 guarantees that the ellips6{d®) ¢ 0 —1/2
is contractively invariant in the absence of It will be used
for the estimation of the domain of attraction. The condition
in item 2 guarantees that jfw||2 < s, then under the initial 20
conditionz(0) = 0, we will havex(t) € s€(P) for all ¢ > 0. = . L

This will be( u)sed to determine th((a)reach;bl)e set under a class L6175 > 0. If there existsy” € R™*" satisfying (13)
of bounded energy disturbances. Item 3 gives a condition for

He| 0 -I/2 0 e D]edx

c D —~%)2

<0 VielIll,2™], (15)

then V(z,w) < wTw for all z € s£(Q~"),w € R". If
z(0) = 0 and ||w|]2 < s, thenz(t) € s€(Q!) for all

7 to be a bound for thel, gain, i.e.,||z|2 < v||w|- for all A4,Q - B/ Y B 0

w andz(0) = 0. The result in item 3 can also be found, e.g., He 0 —1/2 0 <0

in [19]. For the case wher@ is a polytope, we only need to CiQ—D. ;Y D; —~*1/2

verify the conditions at its vertices. Vi e I1,2™], (16)

. Cor_nb_lnlng Lemma 1 ywth_ the two differential |ncIu5|on_ thent (z, w) + L 272 < wTw for all € sE(Q~1), w €

escriptions, we will obtain different methods for the analysis R” 1 2(0) — 0 'and < th <

of the original system (1). The crucial point is to guarantee that 2(0) =0 and [[wll> < s, then|z[lz < v/lwll2.

the PDI (6) (or the NDI (9)) is valid for all time under the clas®roof. Let P = Q~! and H = Y P.

of disturbances and the set of initia(0)’s under considera- 1. If we multiply (14) on the left and the right by’, we

t|on We are mainly concerned about the eX|stence of a matdktain (4; — B,T;H)TP + P(A; — B,T;H) < 0 Vi €
H, such thatlU *Hz(t)|s < 1, i€, z(t) € LU'H), for I[1,2™]. Applying item 1 of Lemma 1 to the LDI (12),

aII t. To ensure this property, we are going to construct this guarantees that (x,w) < 0 for all z € R™ \ {0} and

quadratic functionV(z) = 27 Pz, P = PT > 0, and use w = 0 for (12). Because of (13) withs = 1, we have

Lemma 1 to guarantee thaft) € s§(P) C L(U'H) forall &£(Q ') C LU 'H),ie., U 'Hz|x < 1forall z € E(P).

t>0. By Proposition 1, system (1) satisfies (12) forak £(Q~1).

Hence for system (1), we also hawé(z,w) < 0 for all

B. Analysis based on the polytopic differential inclusion = € (@) \ {0}.

Whenh(xz) = Hz, the PDI (6) can be written as 2. If we multiply (15) on the left and the right by
[ i ] eco{[ A~ BTH B ] [ - ] e 2m]} diag{P, I'}, we obtain
P C;—D.,,iH D; || w]|" : : PA; — PB,T;H PB; ‘ m
q (12) He{ 0 “1/2 <0 Viell1,2™].
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By item 2 of Lemma 1, this ensures thet(z,w) < wTw the two hyperplane'z = o and Cz = —a. It can also

for all x and w for (12). Also, the condition (13) ensuresbe considered as a degenerated ellipsoid corresponding to a
that s€(Q~1) € L(U~'H) and hence (12) is valid within positive semidefinite matrix’”C. Hence we haver > & if
s£(Q™1). Therefore, we havé/ (z,w) < w"w for all z € and only if £((s*Q)~!) c £(CTC/a?), which is equivalent
s€(Q71),w € R” for system (1). Ifz(0) = 0 and |Jw|s < to CTC/a? < (s?Q)~!. Thusa = min{a : CTC <

s, then by integrating both sides df < w”w, we have a2(82Q)_1‘}. Note thatCTC < o?(s?Q)~! is equivalent to
V(x(t)) < 8%, ie.,z(t) € s€(QL) for all ¢ > 0. Q:0TCQ? < a?/s2I and toCQCT < o?/s2, we have

3. We note that (16) implies (15). So by item 2, it is ensured a =min{a : CQCT < o?/s*}.
thatz(t) € s€(Q~1) forall t > 0 if 2(0) = 0 and||wl| < s. L T T . .
Hence the LDI (12) is valid for system (1) for gjo||> < s To minimize a, we can minimizex satllsfylng the I!near (in
andz(0) = 0. If we multiply (16) on the left and the right by ¢ @nd a?) constraintCQC™ < o?/s* with Q satisfying (13)

diag{P, 1,1}, we obtain and (15). Witha determined thi; way, we haj€'z(¢)| <a

for all £ > 0. We may choose different"’s, such asC;,i =

PA; - PB,T;H PB; 0 1,2,---, N, and obtain a bound; on |C;z(t)| for eachi. The

He 0 —1/2 0 <0 polytope formed a§z € R" : |Ciz| < oy,i = 1,--- , N}
Ci—D.,T;H D; —*I/2 will also be an estimate of the reachable set.

for all i € I[1,2™]. By Lemma 1, this ensures th&t(x,w)+ Problem 3: Estimation of the nonlinear £, gain. The
227z < whw for all z € R*,w € R” for system (12). problem of minimizing a bound on the, gain follows
For system (1), the inequality holds for alle s€(Q~!) and directly from item 3 of Theorem 1 by minimizing along
w € R". By integrating both sides of the inequality, we havevith parameterg) andY satisfying (13) and (16). For each

| z]l2 < ~]Jwll2 as long as|w|2 < s andz(0) = 0. O s> 0, denotey*(s) as the minimaly, then we have

It can be verified that for the special case whérg, = Izll2 < v*(Jwl]2)]|w]l2,
0,Dyy =0,D,, =0andD,, =0, items 1 and 3 reduce )
to the corresponding results in [25] and [13] respectivelfP" @l w. In other wordsy*(s) serves as an estimate for the
The three parts in Theorem 1 can be respectively used¥gnlinearLs gain.
estimate the domain of attraction, the reachable set and the
nonlinearL, gain for system (1). For these purposes, we mdy. Analysis based on the norm-bounded differential inclusion
formulate corresponding optimization problems with linear For easy reference, the NDI description for (1) is repeated
matrix inequality (LMI) constraints. For the estimation of theys follows. If |~ Hz|., < 1, then
nonlinearL, gain, we need to minimize for a selections of

s over [0, c0). z Ao Bo T,
0.0) DA | DA R TR St
Problem 1: Estimation of the domain of attraction. For

the purpose of enlarging the estimation of the domain
attraction, we may choose a shape reference Xgt (see Ag Ba | _| A By n
e.g., [22], [25], [26]) and maximize a scaling > 0 such Ca Daq C. Dy
thataXr C £(Q~1), with Q satisfying (13) and (14). The B 1 a1

optimizing parameters ar@ andY. When Xy is a polygon [ ! ]MS I+Q)s5" M [Cy_H Dyw]v (18)

D.,
or an ellipsoid, the resulting optimization problem has an LMI . . . .
formulatign gop P and M > 0 is diagonal,S is symmetric and nonsingular such

that $* = 21 — M~'Dy,M — MD] M~".
Problem 2: Estimation of the reachable set.Under the  The next lemma will be used to handle the norm-bounded
condition (13) and (15), an estimate of the reachable sifferential inclusion (17).
is given by s€(Q~'). Since smaller (or tighter) estimates Lemma 2:Given X,Y,Z,S of compatible dimensions,
are desirable, we may formulate an optimization problem {ghere S is symmetric and nonsingular. If
minimize the size 0£€£(Q ). There are different measures of 7 ¥
size for ellipsoids, such as the trace@fand the determinant He[ Y —$%/2 ] <0,
of @, among which the trace af is a convex measure and
is much easier to handle. In a practical situation, we may keenHe(Z + XS~ (I +Q)S7'Y) <0 V|Q| < 1.
interested in knowing the size of a certain state or an outputThis lemma follows directly using Schur complements and
during the operation of the system. For instance, given a rdwem MQN + NTQTMT < MMT + NTN for all ||Q]] < 1.
1xn i H i
vector C' € R**", we would like to estimate the maximal Theorem 2:Given Q € R™",Q = QT > 0. Let V(x) =

- > H 71
value of |Cz(t)| for all ¢ > 0. Sincez(t) € s€E(Q™), the 2Oz, Consider system (1).

maximal value of|Cx(¢)| is less than , _ o
1. If there exist” € R™*" and a diagonal/ > 0 satisfying
& = (max{z7CTCx : 27 (s*’Q)~'x < 1})V/2 (13) with s = 1 and

Given o > 0. Consider the se€(CTC/a?) = {z AQ B,U
2TCTCx < a?} = {z : |Cx| < a}. Itis the region between °l c,Q-Y -U+D,U

&fhere

(19)

H <0, (20)
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then£(Q ') is a contractively invariant ellipsoid. Remark 2:If we takeY = 0 in (22), then the inequality
2. Givens > 0, if there existY € R™*" and a diagonal reduces to (10a) of [16] (with some permutation). A nonzero
U > 0 satisfying (13) and parameterY introduces additional degrees of freedom for
regional analysis and makes the results applicable to the case

He A(? _1?72 BSU <0 1) where the system wrapped around the saturation is not globally
C,Q-Y Dy, —U+ DU - exponentially stable. o

As with Theorem 1, different optimization problems with
LMI constraints can be formulated for stability and perfor-
mance analysis of the original system (1) based on the three
parts of Theorem 2. Since the NDI is a more conservative
description than the PDI and since Theorems 1 and 2 are
developed from the same framework, it is easy to see that the
analysis results from using Theorem 2 are more conservative

then V(z,w) < wTw for all z € s£(Q~"),w € R". If
z(0) = 0 and ||w|j2 < s, thenz(t) € s€(Q!) for all
t>0.

3. Given~,s > 0, if there existy € R™*™ and a diagonal
U > 0 satisfying (13) and

AQ By 0 BgU than those from using Theorem 1. Actually, even for the

He 0 —1/2 S 0 <0, special casen = 1 for which the NDI and PDI descriptions
C.Q  D.w —7°1)2 D:U are the same, Theorem 2 could still be more conservative
C,Q=Y  Dyu 0 —U+ DyU 22) than Theorem 1 because of using Lemma 2 to derive (24).

The advantage of Theorem 2 is that the conditions involve
fewer LMIs (but of larger size, i.e4+m more than those in
Theorem 1).

Proof. The procedure is very similar to the proof of Theorem 1 We should note that the results in Theorem 2 were estab-
except we need to establish that the conditions (20), (21) dighed in [28] through the S-procedure. The approach taken in
(22) imply the respective conditions in Lemma 1 for the NDthis paper helps us to understand the relationship between the

thenV (z,w)+ %272 < wlwforall z € s£(Q1),w €
R™. If 2(0) = 0'and [w]|s < s, then|z[l2 < y[[ws.

(17). This is a little more complicated than the counterpart foesults based on two different types of differential inclusions.

Theorem 1.

Here we only show that (22) guarantees (11) when the
differential inclusion (10) is specified to (17). The other

IV. ANALYSIS WITH NON-QUADRATIC LYAPUNOV
FUNCTIONS

correspondences in item 1 and item 2 are similar and simpleryn this section, we will use a pair of conjugate functions, the
For system (17), the condition (11) in Lemma 1 can be writtefbnvex hull quadratic function and the max quadratic function

as to perform stability and performance analysis of system (1).
PAq PBqg 0 For the PDI (6), significant improvement may be achieved with
He 0 —1/2 0 <0 v|Q|<1. (23) these non-quadratic functions. However, for the NDI (9), there
Cq Do —~%I/2 is no advantage in using these non-quadratic functions over
guadratic functions. As a matter of fact, this result also applies
From (18), we have to any norm-bounded linear differential inclusion (NLDI) (see
PAq PBqg 0 PA PB, 0 Remark 5). We first review some results about this pair of
0 -I/2 0 =| 0 -=I/2 0 conjugate functions.
Cqo Do —~%I/2 C, D., —~%I/2
PB, A. The max quadratic function and the convex hull quadratic
+| 0 |MST'U+Q)S ‘MY C,~H D, 0]. function
D, Given a family of positive definite matrices?; ¢

By Lemma 2, to guarantee (23), it suffices to have

R™" P; = PI' > 0,5 € I[1,J], the pointwise maximum
guadratic function is defined as

PA PB,, 0 PBM . ,
0 _1/2 0 0 ‘/max(x) = max{a: le‘ S I[l, J]} (25)
He 2 <0. .
C. D, - I/2 quM leean ERan’Qj :Q;‘F > 0,7 EI[l,J] Let
MY C,—H) M™'D,, 0  —52/2
(24) FZZ{VERJZ 71+72+---+w=1,7j20},
Multiplying on the left and the right byliag{Q,I,I, M}, ) o .
noticing that He(—S2/2) = He(—I + M~1D,,M), Q = the convex hull quadratic function is defined as
P~1Y = HQ, (24) is equivalent to 7 -1
AQ B, 0 BqM2 Vc(l') = 211611{1 2T Z 'Yij x. (26)
He 0 -I/2 0 0 <0 s
C.Q  D., —*I/2 gquQ S ’ For simplicity, we say thal/. is composed fron®);’s. It was
CyQ—=Y Dy, 0 —M=+Dy M shown in [15] thatl Vi,.x is conjugate to}V, if Q; = P; for
which is (22) withU = M?2, 0 eachj € I[1,J]. It is evident thatV, and V,,., are homo-

geneous of degree 2, i.e/,.(ax) = a?V.(x), Vinax(ax)
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0*Viax(z). Also established in [15], [23] are thdf, is Then V.(z;) = V.(xzo) andz; € Vu(z0)2E;,j € I[1,Jo].
convex and continuously differentiable and thaf, is strictly Moreover,z, = Z'j]il QPET and

convex.
The 1-level set ol and that ofV, are respectively  VVe(z0) = VVe(z;) = 2Q; ' = 2Qq o, j € I[1, Jo],
Ly = {x ER™: Viax(z) < 1} , whereVV,(z) denotes the gradient df. at x.
The following lemma is adapted from a result of [27] to the
Ly, = {x ER™: Vi(z) < 1} . slightly different definition ofV. and V., (the two functions

in [27] have the coefficien§ and the saturation levels itf

Since V.« andV, are homogeneous of degree 2, we have .
are also included here).

sLy,. = {x ER": Viax(z) < 52}, Lemma 5: [27] Let H € R™*", U € R™*™ be positive
. ) definite diagonal and denote tlieh row of H by H, and the
sLy, = {90 ER": Vi(z) <s } ¢-th diagonal element of/ by .. We have,
It is easy to see thaty, ., is the intersection of the ellipsoids 1) Lv, € L(U'H)ifand only if & H/ € Ly,,, for all
E(P;)'s. In [23], It was established thdty, is the convex hull CelIll,m];
of the ellipsoids€(Q; ')'s, i.e., 2) Ly,, CLWU'H)ifandonlyif = H/ € Ly, forall
; ¢ e I[1,m].
Ly, = vix;: 2, €E(Q7Y),y €T
; e ! B. Analysis with convex hull quadratic functions
For a compact convex sef, a pointz € S is called In this section, we apply the convex hull quadratic function

an extreme point if it cannot be represented as the convéxthe analysis of system (1) through the polytopic differential
combination of any other points 5. Clearly an extreme inclusion (6), which is repeated below for easy reference:
point must belong to the boundary §f(denoted a$)S). For P Asz + Byw — B,Tih(x) ‘ .

a strictly convex set, such aby,, , every boundary point i ]6 CO{ |:Cil‘+Di’LU _ D, Tih(m)] pielfl,2 ];~

is an extreme point. In what follows, we characterize th ! 27)
set of extreme points ofy,. Since Ly, is the convex hull This PDI is a valid description for (1) as long as
of £(Q;')'s, an extreme point must be on the boundarie§/—!1(x)|., < 1. We will restrict our attention to a level
of both Ly, and £(Q;") for somej € I[1,J] (If © € setsLy,, where|U 'h(z)|s < 1 for all z € sLy,. As with
aLVC\szlé(ijl), thenz must be the convex combination ofthe case of using quadratic functions, the crucial point is to
at least two points frormjzle(Qj‘l) and thus not an extremeguarantee that(t) € sLy, under the class of norm-bounded

point of Ly ). Denote w and the set of initial states under consideration.
_ It may appear that choosing(x) as a linear function x
E; = 0Ly, NoEQ;! L ; Co
/ Ve (@) I within sLy, should lead to simpler results than choosing it
= {zeR": V() =2"Q; 'z =1}. as a nonlinear function. However, it turns out that a non-

ThenJ;_, E; contains all the extreme points dfy,. The Ilrear h(z) ant only reﬁjuces C(insetrv;tlsm blljtt a}:o Ieadstt(()j
exact description of s given as follows. cleaner and numerically more tractable results. As expected,

Lemma 3:For eachj € I[1,J], define F; = {z € R™ : the derivation of the results is more involved than the former
: ,J], i = :

P1Q Qe = Q)T S 0 W € TILT) Then ;= e e e ) For i ronson e
dLy, N Fj. x). or this reason, we
Proof. See Appendix .  Present the results separately for the estimation of the domain

It is clear thataF; = F; for any @ > 0. Since Ly, of attraction, the reachable set and thg gain. Based on
is convex and contg\ins th]e origin in its interior, we }]a\,@chnical considerations, we first present the result about the
Ly, = Uscpo(dLv,). 1t follows from Lemma 3 that reachable set. _
Us 0.1] SE; — Ly nF, Theorem 3:(Reachable set by;-norm-bounded inputs)
€10, c )

Given Q; = QT > 0,5 € I[1,.J], let V. be composed from
The following lemma combines some results from [23]@-’3 agjin (%) Givéyns >[ 0 ]System 1) Withg;(o) -0
j . . =

[2?_]' 4F . R let~* € T b iimal satisfiesz(t) € sLy, for all ¢ > 0 and for all w such
err;]n:r? N oragivenro € k7, 1ty € L be an oplimal yhat |lwll, < s if there existy; € R™*™ and \;j, > 0,
v such tha i€ I[1,2™], j, k € I[1,J] such that
¢ - . B AiQ; — BT + 50 Ajn(Qi—Qr) B
| S5 ) =it (0@ | =it e[ AT @m0 B ] <
For simplicity and without loss of generality, assume that> L Vi€ I[l,27),j € I, J), (28)
0 for j € I1, Jo] and~f = 0 for j € I[Jy + 1, J]. Denote Uy ,
g [J ol and7; 7 €1l ] 52 Yie | >0 veell,m],je L, J], (29)
0 Y: Q;
« , . N J
Qo= _7Qj x;=0Q;Q; w0, j€I1,Jo]. ’

= whereY; , is the (th row of Y.
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Proof. We will prove the theorem by showing that for allRecalling that

z € sLy, andw € R”, we haveV,(z,w) < ww, where
Vc(x,w) is the time derivative ofi. in the direction of the
right hand side of (1), which depends erand w.

Let P, = Q; ', H; = Y;Q; . Multiplying (28) on the left
and the right bydiag{P;, I'}, we have

He {Pj (Ai=BTHj) +3 001 Aiji P Q5 —Qu) Py FiBil <o,

0 2

This implies that for alk € I[1,2™],5 € I[1, J],

227 Pj(Ajx + Byw — B,T;Hjz) — wlw
J
<2 Z )\ijkl‘TPj(Qk —Qj)le‘ YV ER“, weR". (30)
k=1
Given j € I[1,J] and anyd > 0. Considerz € 0E;. By
Lemma 3 we have
J
Z )\ijkxTPj (Qk — Qj)Pja: <0.
k=1
It follows from (30) that

ZxTPj(AZ-x + B;w — BT;Hjx) — wlw <0

Vo edE;,weR", §>0. (31)

(In view of (27) and condition (29), this actually shows that

Ve(z,w) < wlw for all z € s(Ly, N Ej), recalling from
Lemma 4 thatVV,(z) = 2P;z for = € E;. More explanation
can be seen below). We proceed to show thét, w) < w”w
holds for allz € sLy, by exploiting the properties of..

Now considerz, € sLy.. ThenV,(zg) = §2 for somed €
(0, s]. By Lemma 4, there exist; € dE;, v; > 0,7 € I[1, Jy]
with Jo < J such thatz;‘]‘):1 v =1 andxzy = Z}JL VT

(we note that the indiceg can always be reordered to make <0

this true for eachr,). Let
JO JO
Qo=> 7%Q; Yo=Y Y, Ho=YQy' (32)
j=1 j=1

Then we also havel Q,'z¢ = V.(zo) = 62 and

VVe(o) = 2Qq 'wo = 2Q; 'a;,  j €11, 0] (33)

Jo

o = Z’ijj, T; € (5Ej,
Jj=1

VVc(a:o) = 2Q61$0 = 2Q;1$j = 2Pj.’L‘j. (36)

Applying (31) tox; and replacingz] P; with (VV,(x0))7,
we obtain

(VVi(20))" (Asz;+ Byw—B T, Hjz ;) —w w<0Vw e R".

(37)
By the definition ofQq, Hy andYj in (32),
J()
Hozo = YoQy 'wo = | Y %Y; | Qo'zo  (38)
j=1
and from (33) we have
Hjz; =Y;Q; 'w; = Y;Qp ' wo, jelI[l,Jo].  (39)

Combining (36), (38) and (39), and noting that+~ys+- - -+
v, = 1, we have

A;xo + Biw — BQCE'HO:L‘U

Jo Jo Jo
= yAiw; + > vBiw— BT Y 7;Y;Qq5 xo
j=1 j=1 j=1

Jo
= 7i(Aiz; + Biw — ByT;H;z;) YweR". (40)
j=1
Note that this is satisfied for alle I[1,2™]. It follows from
(37) that for each € I[1,2™] andw € R",

(v‘/c((E(]))T(Ai(E() + Blw — BqTiH().’E()) — wTw

Jo
=Y l(VVe(wo)) " (Asw; + Byw — BT, Hy;) — w”w)

j=1

By (35) we obtainV,(zy, w) —w”w < 0 for all w € R". Note
thatz, is an arbitrary point insLy, .

Hence we have that.(z, w) < w”w for all z € sLy, and
w € R". Now supposer(0) = 0 and ||w|3 < s%. Then for
anyty > 0, as long as:(t) € sLy, forall t € (0,t), we have
Ve(x(to)) < [, wT (T)w(r)dr < s, i.e., z(to) € sLy,. On
the other hand, if there exists > 0 such thatV,(z(¢)) < s*

Applying convex combination to the inequalities in (29), wéor all ¢t € (0,ty) and V,(z(tg)) = s* then we must have

have
—2 /.2 =2 /2
/s You > { uy/s* Hoy }
0< 1 | >0Vl e I[l,m].
[ YoTe Qo }_ HoT,e Q' = [1,m]

By (2), this implies thats€(Q;') C L(U~'Hy). Since
25 Qg = 6% < 52, we have|U ' Hyxo| < 1. Thus (27) is
valid atxzg with h(xg) = Hoxo. Hence we have

i'm:ro S CO{Aiwo—l—Biw—BqTiHol‘o 11 E I[l, 2m]}. (34)
and

V;;(.%‘o, w) S CO{(V‘/YC(JI()))T(Aixo—f—Biw—BqTiHoxo) :
i€ 1[1,2™)). (35)

[ w" (T)w(r)dr = 0 and V(z(t), w(t)) < 0 for almost all
t > to. HenceV,(z(t)) < s? for all t > to. Therefore, we
conclude thatr(t) € sLy, for all ¢t > 0. O

Remark 3:(Optimization issues) With conditions (28) and
(29), we may formulate an optimization problem to minimize
the estimate of the reachable set as with the quadratic function
case. We observe that (28) is a bilinear matrix inequality
(BMI) which contains some bilinear terms as the product of
a full matrix and a scalar at the (1,1) block of the lefthand-
side matrix. Similar bilinear terms are contained in the matrix
inequalities in [14], [15], [27] for stability and performance
analysis of linear differential/difference inclusions. A direct
method to solve BMI problems is to alternatively fix one
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set of parameters and optimize the other set. In [14], [153] inject extra degrees of freedom as compared with (21)
[27], we adopted the path-following method from [20] andh Theorem 2 but they actually wouldn't help to reduce the
our experience with a set of numerical examples shows tl@inservatism. In other words, (41) implies the existence of a
the path-following method is much more effective than th@ satisfying (21). To see this, we form a matrix
straightforward iterative method. We actually implemented a 5

two-step algorithm which combines the path-following method | — >_k—2 A1k A21 e An

and the direct iterative method. The first step uses the path- A12 - Ei:l,k;ﬁQ Aok AJ2

following method to update all the parameters at the sante" . .

time. The second step fixes;;,'s and solves the resulting ) ) ) Jo1

LMI problem which includes?;’s andY’s as variables. This As Az T T 2=t AT
two-step method proves very effective on the BMI problems ify, o s is a Metzler matrix. Since the sum of each column of
[14], [15], [27] and also works well on the example in Sectiog ig () he eigenvalue with the maximal real partisHence

\:]' Wehali(_)l_see that if we t_al:]@j Tj Qh andYé__: Y fordall J» there exists a vectar# 0 with ¢; > 0 such that¥c = 0 (e.g.,
then the bilinear terms vanish and the conditions reduce to [36]) and in particular we assubg._, ¢; = 1 (ie.,c ¢

LMIs in (13) and (15). In our computation, we first solve th

resulting optimization problem with LMI constraints and the%)' I we let Q =2 =1 6@y andY =3 5, ¢;¥;, then@

use the optimalp* and Y* to start the two-step algorithm andY” will satisfy (21) and (13). Furthermore£ (Q) € sLv.

with Q; = Q* andY; = Y* for all j and \;; > 0 randomly "is a smaller estimate of the reachable set. This means that with
J— J = ijk =

chosen. This approach also proves effective for the proble N.DI description, using the convex hull quadratip Lyapunov
of estimating theC, gain and the domain of attraction, which unction offers no advantage to using the quadratic Lyapunov

will be addressed in Theorems 4 and 5. function. The same situation occurs for the estimation of the

. . Lo gain or the domain of attraction, or, when applying a max
Although there is no guarantee that the global Opt'méiuadratic function to NDIs.

solution can be located, the convergence of the algorithr%s ) .
) ) : N~ . For the special case wheté = 0, the regional NDI (9

is satisfactory. Furthermore, since the initial value of the Optt'a_ecomes a%lobal norm-bounded linear difgf]erential inc(lui;ion
mizing parameters can be inherited from the optimal soluti LDI). Thus we can conclude that for any NLDI, the convex
obtained with quadratic functions, the algorithms ensure tm j y !

the results are at least as good as those from using quadra!t”c! quadratic function or the max quadratic function ofiers no

functions in Theorem 1. The above discussion also appliesatdvam"Jlge over quadratic functions when these stability and

0 :
o . erformance issues are concerned. o
the optimization problems resulting from Theorems 4 and B

We next address the problems of estimating the gain
and the domain of attraction.

Theorem 4:(£, gain for norm-boundedv) Given Q; =
&jT > 0,7 € I[1,J], let V. be composed fronf);'s as in

o
Remark 4:(About the nonlinear functiork(z)) From the
proof of Theorem 3, we see that a nonlinear functio

h(zo) = Ho(zo)xo is constructed fron@);'s andY;’s so that . i .
|U=YHo(xo)xo| < 1 for all zy € sLy, (see (32) whered (26). Iggﬂi'derdsi’smf (()1)_' G?’?n;rz > IS If;f;e{rje eX|sht
is constructed and the subsequent discussion up to (34)). T 'ste and Aij, > 0, ¢ € I[1,2™], 5,k € I[1, J] suc
makes the proof more complicated than with a linear functidh®

Hzx but the result turns out to be cleaner and more easily Ain—BqTiEJrE;Cl/\ijk(Qj—Qk) B, 0
tractable numerically. If we attempt to use a linear functiopy, ' o ' _I 9 |<op
h(x) = Hz such that|U 'Hz|, < 1 for all z € sLy,, C.O. - D.TY DQ- | T
we would haveY; in (28) replaced withH@; andYj, in vd A ¢ 2

(29) replaced with7,Q;. When we formulate an optimization VieI[1,2™],j € I[1, J], (42)
problem to estimate the reachable set by takihgnd Q);'s u? v

as optimizing parameters, this would result in more complex 2 TPt >0 Veel[l,m],jelIl,J], (43)
BMI terms includingH @; which may cause difficulties in the YJTz Qj

algorithms, such as slow convergence or getting stuck easily
at a local solution. then for allw such that||w|s < s and z(0) = 0, we have

Remark 5: (Discussion about results based on NDIs) with=l2 < 7llwll2.
similar developments as in the proof of Theorem 3, we caoof. We will prove the theorem by showing that for all
o_btain a correqunding cpndition by us_ing the norm-bounded- sLy, andw € R”, Vc(x,w) + 1.7, < wTw. Since (42)
dn‘fergnual mc!qsmq (9) instead of using the PDI (6). Th‘?mplies (28), by Theorem 3, wevha\ae(t) € sLy, for all ¢
resulting condition involves the existence Bf's, \jx > 0, and for all lwlla < s, z(0) = 0. Also, all the relationships

and a diagonal/ > 0 satisfying (29) and established in the proof of Theorem 3 are true under the
AQ +ZJ A(Qi—Qr) B BU conditions of the current theorem.
J k=1 Vk\&5 — &k w q —07 ! H. =Y.0!
He 0 ~1/2 0 <o LetF =0, H;=Y;Q; and
CyQ;—-Y; Dy, —-U+DyU J
(41) Wi = PjA;i — PiBTH; + Y A\iji Py (Q;— Q) P;.

for all j € I[1, J]. The bilinear terms in the first block seem =
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Multiplying (42) on the left and the right bdiag{P;,I,I}, Like in (40), we have

we have o
Wij Pjéi 0 fio(wo, w) :Z'ijij(xjaw)a
He 0 -5 0 <0. J=1
2
Ci— D, TiH; D; -%! o
By Schur complements, this is equivalent to gio(wo, w) = Z%’gii(mi’ w).
j=1
Wi, P;B;
He[ 0 i% } It follows that
_ 17 \T 1
+712[ (Ci DBQTTZHJ) ] [Ci—D.qT;H; D;] < 0. (44) (VVe(0))" fio(wo,w) + ¥|gio($07w)\2 —whw <0,
Denote and from (47)
fij(@,w) = Az + Biw — B, T; Hjx, Ve(zo, w) + R 0, (48)
gij(z,w) = Ciz + Dyw — D, T; Hjx. ) 72 B
Then (44) implies that for alt € R", w € R, which is satisfied for alky € sLy, andw € R". Sincex(0) =
1 0, z(t) € sLy, for all ¢ and for all||w]||2 < s, integrating both
2207 P fij(x,w) + — g5 (x, w)gs; (x,w) — ww sides of (48), we havéiz||3 < +2||w|3. This completes the
; " proof. O
<2)  Nijea” Pi(Qr—Q;) Pjx. (45)  Theorem 5:(Estimation of the domain of attraction) Given
_ k=1 o Q; =QF >0,jelI[l,J], letV, be composed fron®;’s as
Considerz € dE; for § > 0. Like in the proof of iy (26). Consider system (1) withh = 0. We haveV,(z) < 0
Theorem 3, we have for all z € Ly, \ {0} if there exist\;;, >0, Y; € R™*" i €

I[1,2™],4,k € I[1, J] such that

J

He(A;Q; — B T;Y; +Z Aijr(Qj—Qr)) <0
k=1

1 ; m]
2:cTijij(33,w)—l—?g;";-(:c,w)gij(:zc,w)—wTw§O7 vieI[1,2"],5 € I1,J],

1 Y]/} ,
>0 VeelIlml] eI
L 4|z veemmsen

Proof. The proof can be adapted from the proof of Theorem 3
by assuming thaf3; = 0. Then with the same procedure, it

J
> Xijra" Pi(Qr—Q;)Pjz< 0 Vo€ JE;, we R, 5> 0.
k=1
It follows from (45) that

Veedk;,weR",J§>0. (46)

We note that this is true for alle I[1,2™] andj € I[1,J].
Now considerzg € sLy,. Then V,(zo) = 6% for some
d € (0, s]. Like in the proof of Theorem 3, there exist €

, S can be shown that,.(z) < 0 for all = € Ly, \ {0}. O

6Ej;, v; > 0,5 € I[1,Jo] such thaty 2, v; = 1 andzo = o S
S>% x5, Let Hy,Qo, Y, be defined as in (32). Then we Remark 6:Note that the condition in Theorem 5 is similar
alsfo haive|(7‘1H0xo| < 1. Applying Proposition 1 at:, we to (but less conservative than) that of Theorem 4 in [27], which
have - is developed for a special case without algebraic loops. Similar

i Ao+ Baw— BT, Hox numerical complexity can be expected. o
[ ]eco{[clo ’ s 00}.16[[1,27"]}.

¢$0+Diw—D2qrfiHQIo
Let C. Analysis with max quadratic functions
Fio(@o, w) = Agwo + Byw — ByT;Hoxo, The max quadratic function is not differentiable everywhere.

Following the definition of [42] (page 215), a subgradient of
a convex functionf : R — R at ¢ is a vectorv € R™ such
Then that

Velwo, w) + %ZTZ—wTw f(@) = fxo) > 0" (x — m0) Va €R", (49)
Y

gqu(ZEo, w) = Cixo + Dyw — ququHoxo.

. 1 - and the subdifferential, denoted @&g(z,) (not to be confused
< max{(VV(zo)) fio(xo,w)+$\gio($o,w)| —w w:  as the boundary of a set) , is the set of all subgradient at
xo. The function f(z) is differentiable atz, if and only if

;€ I[1,2™]}). 47 L
_ ) pe I 2my (“7) df (o) is single valued. We us@V,.x(x) to denote the sub-
Since 227 P; = 2150, = (VVe(z))" (see (33) ), differential of Vinax ata.
applying (46) atr;, we obtain Lemma 6:Considerz, € R™. Suppose that there exists

1 Jo € I[1,J] such thatVi,.x(z0) = a2 Pjxo for j € I[1, Jo]
T 2 T ’ J ’
(VVe(wo))™ fig (x5, w) + —519i3 (x5, w) I = w w <0, anq v, (o) > 2T Pyg for j > Jo. Then

Yw e RT7 1€ I[].,Qm] 1) 8Vmax(a:0) = CO{QPjLC() ] S I[l, J()]}.
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2) Foravecto( € R", the directional derivative at, along If = € ﬁj;lSj \Uj:JOHSj, then (54) is satisfied for all €

Cis, I[1, Jo] and we have
Vmax t - Vmax Y —wT
lir(% (wo + i) (20) =, 51‘513)(( ){£T<}~ Vinax (2, w) — w* w ., :
t— €Vimax( (A qv— . _
0 (50) Sjerﬂ?ffo]ieg‘r[lﬁ}ziﬂ(% Pj(Aiz+Bw—B,/T;Hx)—w" w).
Proof. See Appendix. O

It follows from (53) and (54) thal/yay(z, w) — wTw < 0.

For simplicity and with some abuse of notation, fogiven o max\*
The remaining part of the proof is similar to the proof of

by (1), denote

. . Theorem 3. O
Vinea (@ w) - := 5661%/1[?3,(((:6){6 ) Theorem 7:(£, gain for norm-boundedv) Given P; =
= max {¢7(Az + Byq + By,w)}. Pl > 0,j € I[1, J]. Consider system (1) ang~y > 0. If

£€0Vmax () there existH € R™*", \jjx > 0, ag; > 0, 5,k € I[1,J],

Then by Lemma 6 with{ = &, Vi, is decreasing along if i € I[1,2™], £ € I[1,m], such thaty %, ay; =1 and
and only if Vijax (z, w) < 0.

Theorem 6:(Reachable set by bounded inputs) Givgn— P(Ai=ByTiH) + 35—y Xiji (P — Pr) Pj?i 0

PT' > 0,5 € I[1,J], let Vyux be the max quadratic function He 0 -3 0 =<0

formed by P;’'s as in (25). Givens > 0. System (1) with C; — D.,I;H D; 777]

x(0) = 0 satisfiesz(t) € sLy, . forall ¢t > 0 and for all Vielll,2™],jeI[1,J], (55)

w such that|w|s < s if there existH € R™*™, A\;;; > 0, 72

ag > 0, j,k € I[1,J], i € I[1,2™], £ € I[1,m], such that = H, >0 vee Il m), (56)

Z;’]:I Qg = 1’ and HeT Zj:l angj

He| Fidi = Pi BT H + S Nijk(Pj—P.) P;B; ] <o then for allw such that||wll, < s andz(0) = 0, we have

0 =3 17zl < Allwlle-
VieI[1,2™],j € I[1, J], (1) Proof. Like in the proof of Theorem 6, we havét) € sLy. _

ﬁj I for all t > 0 under the conditiofjw||> < s andz(0) = 0. Also
52 ; ¢ >0 Veel[l,m]. (52) wehavgU 'Hz|,, < 1forallz € sLy, . By Proposition 1,
HKT Zj:l o P 7 iz, w)

Proof. By the definition of V., condition (52) implies that [ . ] € CO{[ gi(x:w) ] S 1[1727"’]}»

Ve(2-H,) < 1forall ¢ € I[1,m]. By Lemma 5, this implies

that Ly, C L(sU~'H) = (1/s)L(T~1H), i.e., sLy, where fi(z, w) = Aiz + Biw — ByTiHz, gi(z,w) = Ciz +

ﬁ(U,lﬁS‘ I_-|ence|(7*1Hx| <1 for all :E c ;L ‘“"*B;, D;w—D,,T;Hx. Using Schur complements, it can be verified
' > = Vinase: that (55) implies

Proposition 1, we have

1
i € co{Ajw+Byw—B,TyHz : i € I[1,2™)} Va € sLy,__. 220" P; fi(x,w) + §|gi(ac,w)|2 —w'w
On the other hand, it can be verified that (51) implies that J .
<23 N\ P, — P;
QxTPj(Aix + B,w — B;T;Hzx) — wlw - I; ik (P i)e
J
for all j € I[1,J],i € I[1,2™]. With similar arguments
<92 Ai' T P. — P , 53 . J ) ) ) ;
- ; s (Pe = Fy) (®3) as in the proof of Theorem 6, it can be shown that for all
, o r € sLy,. andw € R", Vyax(z,w) + %272 — wTw < 0.
for all j € I11, J],i € I[1,27]. . . The remaining part of the proof is s?milar to the proof of
The state space aof can be partitioned as the l‘ollowmg.l.heorem 4 O

subsets:
n T ) The following result can be derived by adapting the proof
Sj={z eR" 12" (P, — Pj)x <0,k € I[1,J]}, j € I[L,J]. ¢ Theorem 6.

If 2 € S;\Ukz;Sk, thenViax(z) = 27 Pjz and0Viax (z) = Theorem 8:(Estimation of the domain of attraction) Given
2Pjx. If © € m;-](J:lSj \ U3‘7=J0+1Sj’ then Vaax(z) = Pj= PjT > 0,5 € I[1,J]. Consider system (1) witlv = 0.
2T Pjx,j € I[1, Jo] anddViax(z) = cO{2P;z : j € I[1, Jo]}. We haveViax(z,0) <0 forall z € Ly, \ {0} if there exist
We first consider: € S; \ Uy, Sk. Then H e R™™ Niji 20, ag5 >0, 4,k € I[1,J],i € I[1,2™],
; ¢ € I[1,m)], such thaty"7_, ay; = 1 and
> Aigra” (Py — Py)z <0, (54) J
k=1 He <Pin - P;B,T;H —|—Z Aijk(Pj_Pk)> <0
and k=1
Vinax (7, w) — wlw a2 e 15727%]7]. <Al &7
< iex}r[%m](zﬂpj(Aix + Bijw — B,T;Hz) — wlw). [ HET s O‘%Pj } >0 VYeel[l,m]. (58)
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As compared with the counterpart results from using convexcase 2 If we changeD,, to D,, = —3 1.3
hull quadratic functions, the conditions (51), (55) and (57) ~23 4

i :
Theorems 6 to 8 appear to be less tractable because of .(gp{gll-posed'ness.ensure.d), then the glolial gain by us-
bilinear term P;B,T;H in the first blocks of the matrices. "9 quadratlcs via '.\IDI IS unbouqded (or, glqbal S.tab"'ty IS
Also, the samel for all P;'s seems to offer fewer degreesnot Conflrmed),_whlle that by using quadratics via PDI is
of freedom as compared with differel’s for different Q,'s 170.1473. By using max quadratics and convex hull quadrat-

in Theorems 3 to 5. However, numerical examples show tH&P" the globalc, gains are respectively 20.7833 and 129'3307'
Theorems 6 to 8 may produce better results in some cases. Case 3 If we change D,, to D,, = -3 -

-2 -4
(well-posedness ensured), then the gloBal gain by using
V. EXAMPLES guadratics via either NDI or PDI is unbounded. By using max
Example 1:Consider system (1) with the following param-duadratics and convex hull quadratics, the glabalgains are
eters: respectively 42.3354 and 31.6731.
00 -1 1 ol o 117 The above two situations also show how the stability and
10 -2/ 0o 1/ 1 o performance results by the same method can be affected by
A B, B, 01 -3 1 -1 1 1 the parameterD,, which describes the algebraic loop. As
C. D Dywl=1"1T 0 113 —1 1 —1 discussed in [39], this parameter is one of the two key design
CZ qu Dzw 0 1 0l -2 _4 0 1 parameters in static anti-windup synthesis and can have a
! 0 1 0 1 01 0 dramatic impact on anti-windup performance.
oo 11 o 11 0 =1 Due to space limitation, we will not present computational

gle‘ Wzll—s\?sedness Off the sy';te(;n IS _erﬁsny verlflledzth:loug timation of the reachable set. Interested readers are referred
7 am 2. We uie the l'our met 0 S_Ilﬂ eorlgms e [27] for some numerical results. From the different situa-
to estimate the nonlineat, gain. The resulting estimatesy;,,q gypipjted through th€, gain, it is not hard to infer that

are plotted in Fig. 2, where the dotted curve is from applyin[gle difference among the estimations by using quadratics/non-

quadr_at|cs via NDI (Theorem 2), the dash-dotted one is froabadratics via NDI/PDI can be made arbitrarily large through
applylng quad_raucs via PDI ('I_'heorem 1), the dgshed OQBjusting the four elements ab,,. For instance, Case 2

is from applying max q_uadranf:s (with’ = _2) via PDI uggests that the estimate of the domain of attraction by using
(Theore_m 7) and th? solid one is from applying convex hull, -y atics via NDI is bounded while that by using quadratics
quadratics { = 2) via PDI (Theorem 4). Each of the four ;s pp) js the whole state space. Case 3 suggests that the
domain of attraction estimated by non-quadratic functions is

‘rgsults about the estimation of the domain of attraction or the

50

quadratiés via NDI | | the whole state space while that by quadratics (via PDI or NDI)
B 7" 1 is bounded. On the other hand, the estimate of the reachable
40 — V, viaPDI [ set by non-quadratics can be bounded while that by quadratics
a5l : is not.
30 1 We should remark that for this particular example, the

/ i algorithm for applying convex hull quadratics converges very
well for all the values of that we considered in our numerical
computation, even under different parameter changes. The
algorithm for applying max quadratics generally converges
well but for some values of it showed some difficulties
where we needed to stop the algorithm and restart it from
different initial values of);;; which are randomly generated.

>25r

10" 10° Hlvgli 10° 10° In any case, improvement is expected from the non-quadratic
’ functions.
Fig. 2. Different estimates of the nonlinedl gain: Case 1. Example 2:We adopt Example 2 from [16]. The plant is

a cart-spring-pendulum system with one control input, one
curves tends to a constant value|jas|, goes to infinity. This disturbance input, four states and one measurement output.
constant value will be an estimate of the gloldal gain. As The plant and controller parameters can be found in [16].
expected, applying quadratics via PDI always leads to betteor this example, the closed-loop system without anti-windup
results than applying quadratics via NDI, and applying oreompensation is not globally stable. Also, there exists no
of the two non-quadratics always leads to better results thstatic anti-windup compensation to make the gloBalgain
applying quadratics. However, the relationship between tbeunded. With dynamic anti-windup augmentation, an upper
results from applying the two non-quadratic functions is ndtound for the achievable globals gain is found to be
definite. The situation exhibited in Fig. 2 can be reversed 181.1424 (by using quadratic Lyapunov functions). When
we change the parameters of the system. In what followhjs achievable gain is approached, some parameters of the
we present several scenarios through some adjustments ofaht-windup compensator will approach infinity. To make the
parameters. parameters within a reasonable range, we have to allow a



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X, X MONTH, XX YEAR

14

slightly larger global£, gain. A particular dynamic anti- advantage for analyzing robust performance under parameter
windup compensator is given as follows, with notation adoptexrturbations. This will motivate further research problems.

from [16], The order of the closed-loop system for this example is 12,
including the state of the plant, the controller and the dynamic
_12%% :Sgg?g _582322 _gggégg anti-windup compensator. The BMI problem figr with .J = 2
A= 27.2580 12'9076 7176.8422 720.1985 , mvolv_es 189 va_rlables (the two matricé€y, and Q. for V,
: ' ’ ’ contain 156 variables). It takes about 2 hours to generate the
6.8086  9.5653  —54.0989 —35.0035 solid curve (a connection of 18 points). The smoothness of
0.0157 —0.0010 —00148  0.0105 the.curve sugges.ts the uniformity of _the convergence to some
03209 —0.1315 01458  0.6281 optimal or suboptimal solutions, considering thr':\t't'he algorithm
As = 00972 —0.0763 01102 —0.0196 | x 10t wasrun only once for each value |pi||» and the initial values
74719 —5.0878 27569 —1.0528 " Of Ayji's were chosen randomly.
—0.1152 —0.0367  0.5992  0.0387
VI. CONCLUSIONS
0.6253 0.1467 For a ggneral sys'Fgm with saturation or deadzpne compo-
0.2146 0.3452 nents, re_g|onal .stablllty and performance angly3|s relies on
Ay = 15342 | % 103, Ags=| —0.6949 | x 10%. an effective reglonal treatment of 'Fhe algebraic loop and the
0'4100 2.4840 d_eadzone function. This paper prpwdes _such a_trea_ltment_ which
' —5.4618 yields two forms of parameterized differential inclusions.

) . ) Applying available tools based on quadratic Lyapunov func-
When quadratic Lyapunov functions are used via the PQjyn<s 1o these differential inclusions, we obtained conditions

the est|m'ated globgtg gain is 182.3080. Wherv, (Wlf[h for stability and performance in the form of LMIs. These
J = 2)is used via the PDI, a slightly smaller estimateqnqitions are easily tractable but could be conservative in
is given as 181.2326. For other values of bound|@n2, yjew of the quadratic Lyapunov functions applied. Further
the improvement by using. is also small. However, if We jmnrovement relies on using non-quadratic Lyapunov func-
change some parameters of the system, the difference betwggt, e explored a pair of conjugate Lyapunov functions
estimates by quadratics and nonquadratics can be arbitrafiMis paper and reduced the conservatism of the conditions
large. _ with a series of BMI conditions. Numerical experience shows
For this particular system, we havg,, = A4(5). Hence that these BMI conditions can be effectively solved with the
the algebraic loop is directly affected by, (5). Suppose that path following method. Although there is no guarantee that the
we changeA,(5) from —54618 to —52618. Two estimates g|oha| optimal solutions will be obtained, the great potential of
of the nonlinearL, gain are plotted in Fig. 3, where theyhese non-quadratic Lyapunov functions has been revealed by
dashed curve corresponds to the estimate obtained by applyiignerical examples. The effectiveness demonstrated through
quadratic functions and the solid one to that obtained Riese examples motivates further investigation on these non-
applying Ve (with .J = 2), both via PDI description. Also gy adratic Lyapunov functions and the development of more
plqtted as a dash-dotted curve is the estimate obta_med cient algorithms to handle them for more complicated
using V. when A4(5) = —54618. The above computational gjtations. This paper’s results lay foundations for the design
of saturated controllers and for the design of anti-windup
compensators. Preliminary results have been obtained in [29]

350 __ quadratics for for regional dynamic anti-windup design which is based on
300 perturbed D, SRS i the analysis result by applying quadratic functions via NDI.
—— V forperturbed D, e The analysis results based on PDI and nonquadratic functions
50| — — Ve for non—perturbed D |/ | can be applied for design purposes by incorporating controller
) design parameters into the existing optimization problem. In
200t ! : this regard, main efforts will be devoted to making the op-
> timization problems more tractable through careful algebraic
150 1 manipulation and appropriate parameter transformations.
1001 1 APPENDIX
sol | Proof of Claim 1. The sufficiency was shown in [53.Here
we show the necessity. Let; be a saturation function. It is
0 easy to verify that for each < [0, 1], and eachi € [-1,1],
107 107 ||1?|0 10? 10" there existz, b € R,a—b = d such thatp;(a) — ¢;(b) = §(a—
Wil

b). We have the same property df;, is a deadzone function.

Fig. 3. Different estimates of2 gain under parameter perturbation. Now suppose thaﬂet(I N DA) = 0 for a certainA € cok..

. ) 2Note that in [53] a necessary assumption on the radial unboundedness of
results suggest that nonquadratic functions may also hanefunction has inadvertently been omitted (compare also with [50]).
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Then there exist; € [0,1],7 € I[1,m], and a nonzero vector on the righthand side, it suffices to show that there eXists

s € R™,s; € [-1,1] such that

(I_Ddiag[61a627"' 76771])8 =0. (59)

Note thats can always be scaled to satisfy € [—1,1]. Let
a;,b; € R be chosen such that; — b; = s; and ¢;(a;) —
¢z<bz> = 6i(ai — bl) = 9;8;. Defineu1 = [a1 as . am]T,
andug = [bl by . bm}T and |et1}1 = Uy — D¢(U1),U2 =
us — Do (ug). Thenuy — ug = s # 0 and

d(u1) — ¢(ug) = diag[dy, da, -+, Om]s. (60)

It follows from (59) and (60) thaty — vo = s — D(¢(u1) —
(]5(’[1,2)) = (I — Ddiag[él, (527 e

,0m])s = 0. This shows that

[I€2:]] = 1, such that
Ki(I =Dy K;)) ' =R *+R 'R (64)
Let
Q; = RK;(I — DyyK;) 'R —I.

Then clearly it satisfies (64). We need to prove th@t|| = 1.
Since K; is a diagonal matrix witt) or 1 at each diagonal,
we havek; = K2. Hence
K:R°K; = 2K,I — K;Dy,K; — K;D] K;
= Ki(I — Dy K;)+ (I — D, K;))"K;.

there are two solutions; andu corresponding to the samemultiplying on the left byR(I — Dy K;)~T (where X7 =
v1 = vy. Therefore we conclude that well-posedness impliegs(T)—l) and on the right by(7 — quKi)‘lR we have
O

thatdet(I — DA) # 0 for all A € cok.
Proof of Claim 2. We first show that

co{det(I — Dy A) : A € coK}
= co{det(I — Dy K;): i€ I[1,2™]}. (61)

Let the diagonal elements oA\ be di,ds, - ,d,,. Then
det(I — DyA) is a multi-linear function ofd,’s. This
means thatdet(I — Dy,A) = fi(da,ds, -~ ,dm)d1 +
fo(da,ds, -+ ,dy,,) for some multi-linear functiong; and fy.
Hence the maximum or the minimum akt(I — D, A) is
obtained atd; = 1 or d; =
do,ds, -
claim.
The relation (4), repeated below,

co{(I — AD,,)"*A: A € cok}
Cco{(I — K;Dy,) 'K;: i€ I[1,2™]}, (62)

—1. Same can be said for
,dm. This verifies (61) and the first part of the

R(I — Dy K;) " "K;R*K;(I — DyyK;) 'R
= R(I - D, K;)""K;R+ RK;(I — D,,K;)"'R.
This leads to (RK;(I — Dy,K;)"*R — I)T(RK;(I —
Dy, K;))"*R—1)=1,i.e.,QlQ; = I. This not only proves
(63) but also shows thdt;(I — D,,K;)~* is on the boundary
of the set on the righthand side of (63).
Now consider an arbitrary diagonal positive matkik Then
K, = MKiM_l and
K,(I - Dy,K;))™" = MK;M™ (I — DyyMK;M~")~!
= MK;I—-M'D,yMK;)"*M™*,
where we have used the fact that(/ — YX)™! = (I —
XY)~1X. Applying (63) by replacingD,, with M ~'D,,M
we have

Ki(I = DygK;) te{M(S2+ S Qs HM 1t |Q| <1},

can be shown with arguments similar to those in [2, paggéhere S2 = 2] — M='D,,M — MDI M~ 1t is also

57-58)]. Recall that for a subset of a vector spacez, €

straightforward to conclude thdt; (I — D,,K;)~! is on the

S is an extreme point of &} if and only if there exists boundary of the set at the righthand side. O

a vectorc such that{c,z) < (c,zo) for all z € S\ {zo}.
Let C € R™*™ be an arbitrary matrix and consider bath

Proof of Lemma 3. Without loss of generality, considgr= 1.

and (I — AD,,)"'A as real vectors. The inner product ofVOte that

C and(I — AD,,) A, ie., traceC” (I — AD,,)'A), can
be expressed &1 di + ag)/(bidi + bo), Whereay, ag, b, by
are functions ofl,, - - -

, d.n. By the well-posedness condition,

-1

J
Ve(w) =minQ " [ Q1+ > w(@Qx—Q1)| =

j=2
bidy + by # 0 for all d; € [-1,1]. It can be easily verified !

that (a1d; + ag)/(b1dy + bo) either increases or decreases J

over the interval. Hence the maximum or the minimum of Z% <Lz 0}'

traceC? (I — AD,,)~'A) is obtained at/; = 1 or d; = —1. k=2

Same can be said fafy, ds, - - - ,dp,. This means that every It is implied here thaty; = 1—Zg:2 ~. For a fixedz, define

extreme point of the set on the lefthand side of (62) belongs
to the set on the righthand side. This completes the prdof.

Proof of Claim 3. We first consider the case wheid = I

J 1
O(v2, ) =t (Ql + > (Qk — Ql)) z.

k=2

T _ p2 H :
and assume that/ — Dy, — D, = R*, whereR is Symmetric e 1y schur complements, for any> 0, the set

and nonsingular. We will show that
co{(I — K;D,,) 'K, : i€ I[1,2™]}

C{R2+R QR Q| <1} (63)

J
{('727"' 77]): (b(’YQa 77]) gc?Z’Yk S 1)71@ 20
k=2
65)

Since the set on the righthand side of (63) is convex, to proieconvex. Hence the optimély,, - -- ,~;)’s that minimize¢
(63) and that/ — K,;D,,,) "' K; is on the boundary of the setform a convex set.
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If € By, thenV.(z) = 27Q; 'z = 1, implying that the
minimal value of¢ is reached atvs, -+ ,vs) = (0,---,0).
This means that at this pointip/dy, > 0 for all k € 1]2, J],
ie.,

(1]

e _ [2]
2'QTN(Qr — Q)R <0 Vke[2,J].  (66)

On the other hand, it is also clear that (66) implies that they
minimal value of¢ is reached af0, - - - , 0) by the convexity of
the set in (65). Hence, (66) is equivalentitg(z) = z'Q; ‘.

[4]
In summary, we have

E, = {z€dLly,: 2°Q7 (Qr — Q1)Q7 'z <0,Vk} 5]
== 3ch N Fl.
O 16
Proof of Lemma 6. 1) Note that for any positive definite

matrix P;, we have [7]

2T Pix — ol Pjzg — 228 Pj(x — 20) = (v — 20)" Pj(x — x0).

67 ®

Since Vinax(z0) = 2 Pjzo for j € I[1, Jo], we obtain
Vinax(2) > 27 Pjz > Vigax(z0) + 228 Pj(x — x0)
Vj e I[1, Jo),x € R™.
Applying convex combination of the above inequalities,
Vinax() 2 Vinax(20) + ¢! (z — o)
Ve e co{2Pjxg - j € I1, o)}, € R™.

This shows c§2P;x¢ : j € I[1, Jy]} C OVimax(xo). To show
the converse, we consider an arbitrary co{2P;z : j €
I[1, Jo]}. Then there exist € R™, |(|]» = 1, ande > 0 such
that

T (a€) > 20F Pj(a¢) + as Ya > 0,5 € I]1, Jo).
Let x = xg + «a(, then from (67) and (68) we obtain
2T Pix — Vipax (w0) < ¢ (z — 20) — ea + o*¢T Py,
Va > 0,5 € I[1, Jo].

It is clear that there always exists a sufficiently smalt- 0
such that

acTPjac — Vinax (o) < c¥'(x —x0) Vj € I[1,.Jo].

Also note that when: —zy = «( is sufficiently small, we still
have Vipax () = max{zTPjz : j € I[1,Jy]}. In summary, [19]
there exists an: € R™ such that

Vmax(x) - Vmax(x()) < CT(x - (E()).

This shows thate ¢ OViux(zg) and confirms that
OVimax(xo) C co{2Pjzg : j € I[1,Jo]}. Therefore, we [21]
conclude thabViax(z0) = CO{2P;x¢ : j € I[1, Jo]}.
2) By (67), withz = z( + t(, we have
2T Pix — af Pjxg = 2tag Pj¢ +t2¢T P;C.

Again, for sufficiently small ¢, we have Vi.x(z)
max{z? Pjz : j € I[1,Jo]}. Ignoring the second order termjzs
for sufficiently small¢, we obtain

Vinax () = Vinax (o) + tmax{2zf P;¢ : j € I[1,Jo]}.
This leads to (50).
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