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Constrained Control Design for
Magnetic Bearing Systems1

We study control problems in magnetic bearing systems that are subject to both input and
state constraints. Apart from the usual restrictions on voltages and currents in the circuit
systems, most magnetic bearing systems are subject to a severe state constraint: the
motion of the rotor (the suspended object) is only allowed in an extremely small airgap,
otherwise the collision of the rotor and the stator would cause severe damages. Tradi-
tional methods for avoiding a collision include increasing the airgap and increasing the
currents, which would usually result in unnecessarily large capacity of power supply and
power loss. In this paper we present a systematic approach for dealing with all the input
and state constraints by using some recently developed tools for constrained control
design. Issues on the stability region, robustness, disturbance rejections, and transient
response are addressed. We hope that by dealing with the constraints properly, safety
operation can be ensured with relatively small currents and power consumption. Experi-
ments on the balance beam test rig in our laboratory show that the design techniques are
effective. �DOI: 10.1115/1.2101850�
1 Introduction

Active magnetic bearings �AMB� have several appealing ad-
vantages over traditional bearings, such as very low power loss,
very long life, the elimination of the oil supply, low weight, the
reduction of a fire hazard, vibration control, and diagnostic capa-
bility �1�. They have been utilized in a variety of rotating ma-
chines, ranging from artificial heart pumps, compressors, high-
speed milling spindles to flywheel energy storage systems �see,
e.g., �2–7��. This work is intended to develop a systematic design
approach to the control of magnetic bearing systems through a
simple experimental setup at the University of Virginia. A key
feature of our approach is that it takes state and control constraints
into account in the design of feedback laws.

The experimental system we use in this paper is a beam bal-
ancing test rig �see Fig. 1 for a picture of the test rig and Fig. 2 for
an illustrative diagram�. It consists of a beam free to rotate on a
pivot at its center of mass, and stabilized by electromagnets lo-
cated at both ends of the beam. This experiment mimics the dy-
namics of a single axis AMB system. It captures the fundamental
features of many magnetic bearing systems yet is quite simple
from a mechanical viewpoint. Recently, in �8�, we attempted to
characterize the relationship between several performances and
the biasing level through the numerical optimization method.

The dynamics of the beam can be modeled by the following
differential equation �see, e.g., �9��:
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J�̈ = − D�̇ + T2 − T1, �1�

where � is the angle between the beam and the horizontal direc-
tion, and T1 and T2 are the torques generated by the two electro-
magnets. The total torque provided by the electromagnets is T2
−T1¬T. The system parameters are J—moment of inertia and
D—system damping due to air and pivot friction.

The two electromagnetic circuits are described by the following
differential equations:

L1İ1 = v1 − I1L̇1 − R1I1, �2�

L2İ2 = v2 − I2L̇2 − R2I2, �3�

where

L1 =
L0g0

g0 + �
, L2 =

L0g0

g0 − �
,

L0 is the inductance of the coil when the beam is balanced ��
=0� and g0 is the maximal angle that is reached when one end of
the beam touches an electromagnet. The torques are determined
from the airgap fluxes in terms of I1 , I2, and � as follows,

T1 = ct1� g0I1

g0 + �
�2

, T2 = ct2� g0I2

g0 − �
�2

,

where ct1 and ct2 are constants. In our test rig, R1=R2=R and
ct1=ct2=ct.

Different magnetic bearing systems can be modeled similarly to
the above balance beam system. For example, �10� considered a
rotor whose one dimensional position was controlled by a pair of
electromagnets. The model in �10� is mathematically the same as

the one in this paper. Similar models were studied in �11,12�, etc.
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More complicated magnetic bearings are usually composed of
several pairs of electromagnets as modeled above.

The magnetic bearing system �1�–�3� is a control system subject
to both input and state constraints. First, the voltage supplies are
always bounded, so we have �v1� , �v2��vM, for some vM. The
relation between the bound on the voltages and the performances
of magnetic bearings was studied in �13�. Second, the peak of the
currents I1 and I2 is restricted to within certain bound IM to pre-
vent flux saturation, and the average of each current is restricted to
prevent overheating �or excessive power loss�. Note that the peak
current also has an implementation constraint when the constant
current sum scheme �I1= I0+ I , I2= I0− I� is used. In this case, the
control current I is subject to �I�� I0 to ensure I1 , I2�0. Finally
but most importantly, the displacement � must be kept within
����g0−� �for certain small number �� to prevent the contact of
the beam with the stator. The state constraints are often the most
severe and must be observed. In rotational machinery suspended
by magnetic bearings, the rotor usually spins at a very high speed
and the collision of the rotor with the stator will cause severe
damage to the whole system. A factor that makes the control de-
sign even more difficult is that the displacement of the rotor is
restricted to an extremely small value due to the usually very
small airgap.

It appears to us that these constraints in the magnetic bearing
systems have not been addressed systematically in the literature
and in the industry. Although the voltage bound and the current
bound can be selected according to the required force slew rate,
the load tolerance and other performance requirements through
estimation, this selection could be conservative and could lead to
an oversized power supply. Some efforts have been made toward
dealing with the voltage bound and the current bound, for in-
stance, in Refs. �14,15�. However, the state constraints, as far as
we know, have not been paid sufficient attention. A common strat-
egy is to restrict the motion of the rotor to a small portion of the
airgap to avoid collision and to weaken the nonlinearity. This
generally would result in an unnecessarily large airgap and hence
unnecessarily large currents, since the electromagnetic force is
proportional to the inverse of the distance. We hope that, by deal-
ing with all these constraints properly, the rotor would be allowed
to move in almost the full airgap without causing a collision and
the currents and the capacity of power supply would be reduced
considerably.

Fig. 1 The beam balancing test rig
Fig. 2 An illustration diagram for the test rig
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Recently, we developed a set of analysis and design tools to
deal with input constraints �or actuator saturation� in control sys-
tems. These results are contained in the book �16� and some jour-
nal articles, e.g., �17,18�. In this paper, we will extend the results
in �16–18� and develop some tools to deal with both input and
state constraints in magnetic bearing systems. To use these tools,
we need to obtain a linearized model. There are different ways to
linearize a magnetic bearing system, including Jacobian lineariza-
tion, feedback linearization, and other approaches �see, e.g.,
�12,19��. We first adopt the conventional Jacobian linearization
approach and will explain through stability analysis why it only
works well under a large bias current. We will then present an
exact linearization approach based on a nonlinear current alloca-
tion strategy. We also present an almost linearization approach for
the voltage mode. From our experience with the balance beam test
rig, among these three linearization methods, the exact lineariza-
tion approach appears to lead to the best results: full utilization of
the airgap, small bias current, and robustness against parameter
uncertainties.

The remainder of the paper is organized as follows. In Sec. 2,
we present some design tools for linear systems with input and
state constraints, including stabilization and performance im-
provement. In Sec. 3 we design controllers to enlarge the stability
region through three linearization approaches. These three design
approaches are compared through theoretical analysis and experi-
mental verification. In Sec. 4 we address the issue of improving
the transient performances. The effectiveness of the design tech-
niques are also illustrated with experimental results. In Sec. 5 we
conclude the paper.

Notation: For a real vector u, denote �u��=maxi�ui�. We use
sat:Rm→Rm to denote the standard vector-valued saturation
function, i.e., for u�Rm, the ith component of sat�u� is
sign�ui�min�1, �ui�	.

2 Tools For Constrained Control Design
Virtually all control systems are subject to input saturation and

state constraint. In a magnetic bearing system, the control inputs
are voltages or currents. The voltage supplies are always bounded
and the currents are restricted to within certain bounds to avoid
flux saturation and overheating. The displacement of the sus-
pended object is usually restricted to a very small value due to the
usually small airgap. In this section, we develop some design tools
to deal with the input and state constraints by extending some of
the results in �16–18�.

2.1 Systems With Input and State Constraints. Consider a
linear system subject to input saturation and state constraint,

ẋ = Ax + Bu, x � Rn, u � Rm. �4�

The input constraint is imposed as �u���1 and the state constraint
is x�Xc, where Xc�Rn is usually a polytope �a subset sur-
rounded by hyperplanes� containing the origin in its interior. Our
objective in this paper is to design a feedback law such that the
closed-loop system possesses a large stability region and a good
transient response. To design a feedback law such that the closed-
loop system has a large stability region, we may construct a large
invariant set, usually an invariant ellipsoid, that is inside the sta-
bility region.

An ellipsoid is associated with a positive definite matrix P
= PT�Rn�n�P�0�. Given a P�0, define a Lyapunov function
candidate as V�x�=xTPx and denote

E�P� ª �x � Rn:xTPx � 1	 .

We are interested in the control of system �4� by saturated linear
feedback of the form u=sat�Fx�. The closed-loop system under
this feedback law is

ẋ = Ax + B sat�Fx� . �5�
An ellipsoid E�P� is invariant for system �5� if and only if
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V̇�x� = 2xTP�Ax + B sat�Fx�� � 0, ∀ x � �E�P� .

In this case, all the trajectories starting from E�P� will stay inside
it. If we further have

V̇�x� = 2xTP�Ax + B sat�Fx�� � − �xTPx, ∀ x � E�P� ,

for some positive number �, then all the trajectories starting from
E�P� will stay inside and converge to the origin. The number �
can be considered as an indication of the convergence rate of the
trajectories. A large � usually results in good transient perfor-
mances: fast response and small overshoot.

For a matrix F�Rm�n, let Fi be its ith row and denote

L�F� ª �x � Rn:�Fix� � 1,i = 1,2,…,m	 .

We see that L�F� is a symmetric polytope, i.e., a subset of Rn

surrounded by hyperplanes Fix= ±1, i=1,2 ,… ,m. If the feedback
control is u=sat�Fx�, then L�F� is the region where u is linear in
x. For simplicity, we assume that the state constraint set is a sym-
metric polytope,

Xc = L�G� = �x � Rn:�Gix� � 1,i = 1,2,…,p	 ,

for some matrix G�Rp�n. To ensure that the state constraint x
�L�G� is satisfied all the time, we can construct an invariant
ellipsoid E�P� such that E�P��L�G�.

2.2 Design For Large Stability Region. For any F such that
A+BF is Hurwitz, it is easy to see that the closed-loop system �5�
is locally asymptotically stable. In the presence of a state con-
straint, the stability region is the set of initial conditions from
which the state trajectories will stay inside Xc=L�G� and con-
verge to the origin. One approach to enlarge the stability region is
to design an F such that �5� has a large invariant ellipsoid inside
L�G�. The largeness of an ellipsoid can be measured with respect
to a group of reference points x1 ,x2 ,…x�, by the number 	R de-
fined as follows:

	R�P� ª max�	 � 0:	xi � E�P� ∀ i	 .

For example, suppose that the state of the system in �1� is x

= �� �̇�T and we would like to achieve stabilization for a large
initial angular displacement. We can then choose x1= �1 0�T.

The problem of searching for an F that maximizes the invariant
ellipsoid can be described as the following optimization problem

sup
P�0,F

	 �6�

s.t. �a� 	xi � E�P�,i = 1,2,…,� ,

�b� �A + BF�TP + P�A + BF� � − �P ,

�c� E�P� � L�F� ,

�d� E�P� � L�G� .

Under constraints �b� and �c�, E�P� is an invariant ellipsoid. Con-
straint �d� guarantees that the state constraint is satisfied inside
this ellipsoid. The number 	 in constraint �a� indicates the size of
the ellipsoid. A positive � ensures a certain margin of stability.

The optimization problem �6� can be transformed into an LMI
problem by using the tools developed in �17� �see also Chaps. 7
and 8 of �16��. Introducing new variables Q= P−1, H=FQ, and

=1/	2, the optimization problem can be equivalently written as

inf
Q�0,H


 �7�

s.t. �a�

 xi

T

� 0, i = 1,2,…,� ,


xi Q

�
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�b� QAT + AQ + HTB + BH � − �Q ,

�c� 
 1 hj

hj
T Q

� � 0, j = 1,2,…,m ,

�d� gkQgk
T � 1, k = 1,2,…,p ,

where hj is the jth row of H and gk is the kth row of G. The above
problem can be solved efficiently with the LMI technique in �20�.
For systems subject to external disturbances, we can use the meth-
ods in �18� to design a large invariant ellipsoid where a certain
degree of disturbance rejection is achieved. There also exist other
approaches to dealing with input and state constraints, for in-
stance, in �21�, where the control input is computed at each step
by solving an LMI problem under the framework of model pre-
dictive control.

2.3 Design For Performance Improvement. As we will see
in Example 2, Sec. 3.2, the controller designed by solving �6� may
result in a slow transient response of the closed-loop system. To
improve the transient response, we may try to maximize the num-
ber � in �b� of �6�. Meanwhile, we would like to guarantee a
certain desired stability region, for example, to ensure that the
invariant ellipsoid E�P� include some desired points, x1 ,x2 ,…x�.

The problem of performance improvement with guaranteed sta-
bility region can thus be described by the following optimization
problem:

sup
P�0,F

� �8�

s.t. �a� xi � E�P�, i = 1,2,…,� ,

�b� �A + BF�TP + P�A + BF� � − �P ,

�c� E�P� � L�F� ,

�d� E�P� � L�G� .

As in the treatment of the optimization problem �6�, we let Q
= P−1 and H=FQ to obtain an LMI problem:

sup
Q�0,H

� �9�

s.t. �a� 
1 xi
T

xi Q
� � 0, i = 1,2,…,� ,

�b� QAT + AQ + HTB + BH � − �Q ,

�c� 
 1 hj

hj
T Q

� � 0, j = 1,2,…,m ,

�d� gkQgk
T � 1, k = 1,2,…,p .

The constraint E�P��L�F� indicates that �Fx���1 and hence
sat�Fx�=Fx for all x�E�P�, which means that the system �5�
operates linearly inside the ellipsoid. Because of this, we have
�Fx���1 for almost all x�E�P�. This means that the control input
is almost always below the saturation level. To fully explore the
control capacity, we may try to use a controller of the form

u = − sat�kBTPx� . �10�

Theoretically, by letting k→�, the convergence rate of the
Lyapunov function xTPx is optimized �see Chap. 11 of �16��.
However, all the practical systems have measurement noises, i.e.,
what we use for feedback is x+� rather than the exact x, and the
feedback control u is actually u=−sat�kBTP�x+���. By increasing
k, the effect of noises is also magnified, as we will see in Example
4, Sec. 4. If the noises are of high frequency and the state is close

to the origin, excessively large k will cause the control to switch
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between 1 and −1 constantly, causing an implementation issue.
Hence it is important to choose a suitable k to achieve a desired
convergence rate while keeping the effect of measurement noises
acceptable.

2.4 Possible Reduction of the Actuator Capacity. By solv-
ing the optimization problem �6� or �8�, we obtain an invariant
ellipsoid E�P��L�G��L�F�. The set inclusion relations
E�P��L�G� and E�P��L�F� are generally not equally tight. This
means that there may exist �G ,�F� �0,1� such that
E�P���GL�G� and E�P���FL�F�. We maintain that at least one
of �G and �F must be 1 by optimality. The reason is as follows.
Suppose that �	 , P ,F� satisfy constraints �a�–�d�. If both �F and
�G are less that 1, then we can increase the size of the ellipsoid by
a factor 	0�1, such that 	0E�P��L�G� and 	0E�P��L�F�, or,
equivalently, E�P /	0

2��L�G� and E�P /	0
2��L�F�. It is clear that

if we replace P with P /	0
2, the constraints �b�, �c�, and �d� are all

satisfied. For constraint �a�, it is still satisfied if 	 is replaced with
	0	�	. In summary, �	0	 , P /	0

2 ,F� will also satisfy constraints
�a�–�d�. This shows that if both �F and �G are less than 1, then
�	 , P ,F� is not the optimal solution.

If �G��F=1, then the input constraint is tighter. If �F��G
=1, then the state constraint is tighter, indicating that within the
ellipsoid E�P�, �Fx���F�1, hence the actuator capacity can be
reduced. In magnetic bearing systems, due to the extremely small
airgap, we usually have a tighter state constraint than an input
constraint. In that case, the size of the power supply can be re-
duced.

3 Stabilization
To use the design tools in Sec. 2, we need to obtain a linear

model of the magnetic bearing system. There are different ap-
proaches to linearization. Beside the conventional Jacobian linear-
ization, feedback linearization and other approaches have been
developed recently �12,19�. In this section, we will present three
linearization approaches and the corresponding constrained con-
trol designs.

3.1 The Jacobian Linearization Under the Current Mode.
The dynamics of the beam balancing test rig under the current
mode can be modeled by the following differential equation,

J�̈ = − D�̇ + ct
� g0I2

g0 − �
�2

− � g0I1

g0 + �
�2� , �11�

where J ,D ,ct, and g0 are constants and g0 is the maximal angular
displacement that is reached when the beam touches one of the
electromagnets. So we have ����g0. It is assumed that �I1� , �I2�
� IM to avoid flux saturation and overheating of the coils.

In the current mode, a circuit feedback law has been designed
such that the actual current will closely follow a reference signal.
We assume that the circuit dynamics can be ignored and the dif-
ference between the actual I1 and I2 and the desired I1 and I2 is
sufficiently small. In this case, we consider I1 and I2 as the control
inputs.

3.1.1 The Linearized Model and the Feedback Law. In �11�,
the currents appear in the form of I1

2 and I2
2, which are highly

nonlinear for a control system. A conventional way to reduce this
nonlinearity is to introduce a bias current Ib�0 and let I1 and I2
operate symmetrically around Ib, i.e.,

I1 = Ib + I, I2 = Ib − I , �12�

where I is considered as a control input that produces a net torque
on the beam. Because of the bounds on the currents, we impose
the constraint �I�� IM − Ib for simplicity. It should be noted that

this constraint is more conservative than the original constraint
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�I1� , �I2�� IM.
With I1 and I2 determined from �12�, the dynamical relation

between the input I and the output � is,

J�̈ = − D�̇ + ct
�g0�Ib − I�
g0 − �

�2

− �g0�Ib + I�
g0 + �

�2� , �13�

which is still a nonlinear system. Performing Jacobian lineariza-

tion at �� , �̇�= �0,0� and I=0, we obtain


�̇

�̈
� = � 0 1

4ctIb
2

Jg0

−
D

J

�

�̇
� + � 0

−
4ctIb

J
I . �14�

Denoting x= �� �̇�T and

AL = � 0 1

4ctIb
2

Jg0

−
D

J
, BL = � 0

− 4ctIb

J
 ,

we obtain the linearized system

ẋ = ALx + BLI, �I� � IM − Ib. �15�

We notice that the open-loop linearized system �15� has an un-
stable pole since det�AL��0.

Usually, a saturated linear feedback law I= �IM − Ib�sat�Fx� is
adopted, with F being designed based on the linearized model.
The linearized closed-loop system is then given by

ẋ = ALx + BL�IM − Ib�sat�Fx� . �16�

Under the feedback law I= �IM − Ib�sat�Fx�, the actual nonlinear
closed-loop system is

J�̈ = − D�̇ + ct
�g0�Ib − �IM − Ib�sat�Fx��
g0 − �

�2

− �g0�Ib + �IM − Ib�sat�Fx��
g0 + �

�2� . �17�

Based on the linearized model �15�, we use the method in Sec.
2.2 to design an F for enlarging the stability region. In the opti-
mization problem �6�, we may choose �=1 and x1= �1,0�. By
solving �6�, we will maximize the initial displacement of the beam
that can be brought to the balance position. However, this only
guarantees the stability of the linearized system �16�. In what
follows, we will examine how well the behavior of the linearized
system �16� predicts that of the nonlinear system �17�. By doing
so, we will obtain some quantitative measure of the effect of the
biasing current on the difference between the linearized model and
the original nonlinear system.

3.1.2 Stability Analysis. The linearized model approximates
the nonlinear system �13� very well when � is close to zero. When
� is close to g0, the nonlinearity gets stronger and usually causes
the beam to hit one of the electromagnets and stay there. Experi-
mental experience shows that for large Ib, it is easy to find an
initial position such that the beam will be balanced by the con-
troller. If Ib is too small, it is very hard to manipulate the beam �by
hand� into a proper position so that it can be balanced by the
controller. In what follows, we would like to explain this through
a stability analysis of the linearized closed-loop system �16� and
the actual closed-loop system �17�.

Example 1. The parameters of the balance beam test rig are:

J = 0.0948 kg m2, g0 = 0.004 rad, ct = 0.1384 Nm/A2.

Since the damping parameter D is very small, we assume that it is
0. We choose IM =1 A and use the method in Sec. 2.2 to design
feedback laws. We take A=AL, B=BL�IM − Ib�, where B absorbs
the actual bound on the input I. The state constraint ����0.004 is

1 /0.004 0
equivalent to x�L�G� with G= � �. The controller will
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be of the form I= �IM − Ib�sat�Fx�. In solving �6�, we set �=1 and
choose x1= �1,0�. To ensure certain stability margin, we choose
�=0.01. We designed feedback laws for Ib=0.5 A and Ib=0.1 A.
The actual stability region of the nonlinear closed-loop system
�17� can be computed by the numerical method, for example, by
simulating the time responses under different initial conditions.

For Ib=0.5 A, the optimal solution to �6� is 	=0.0028. The
control law is

I = 0.5 sat�357.7337� + 16.4353�̇� ,

and the invariant ellipsoid is E�P� with

P = 105 � 
1.2797 0.0588

0.0588 0.0062
� .

Figure 3 plots the boundary of the estimated stability region of the
linearized closed-loop system �16� in a dashed curve �the bound-
ary of E�P�� and the boundary of the actual stability region of the
nonlinear closed-loop system �17� in solid curves. We see that the
estimated stability region based on the linearized model is well
inside the actual stability region of the nonlinear system and is a
valid �though conservative� estimate.

For Ib=0.1 A, the optimal solution to �6� is 	=0.004. Notice
that g0=0.004 rad. This means that the beam should be balanced
from the initial position where it touches one of the electromag-
nets. The control law is

I = 0.9 sat�172.4701� + 9.8791�̇� ,

Fig. 3 The stability region un
and the invariant ellipsoid is E�P� with
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P = 104 � 
6.2501 0.0016

0.0016 0.0859
� .

Figure 4 plots the boundary of the estimated stability region of the
linearized closed-loop system �16� in a dashed curve and the
boundary of the actual stability region of the nonlinear closed-
loop system �17� in solid curves. In contrast to the case where
Ib=0.5 A, most of the estimated stability region is outside the
actual stability region. This means that most initial conditions will
lead to unstable responses even if we predict stable responses
based on the linearized model. For example, the beam will not be
balanced by the controller if it is initially in touch with the elec-
tromagnets, as is verified by the experiment.

For comparison, we plot the boundary of the actual stability
regions under Ib=0.1 A �in solid curves� and that under Ib

=0.5 A �in dash-dotted curves� in Fig. 5. This explains why it is
easier to balance the beam with a larger bias current. In the ex-
periment, with Ib=0.5 A, the beam will be balanced even if it is
initially in touch with one of the electromagnets. However, with
Ib=0.1 A, it is very hard to manipulate the beam into an initial
condition that can be balanced.

The above example shows that the relation between the esti-
mated stability region of the linearized closed-loop system �16�
and the actual stability region of the nonlinear closed-loop system
�17� is quite complicated. The estimated stability region could be
a subset of the actual stability region for large Ib. However, for
small Ib, this relation does not hold. Because of this, it is hard to
achieve a large stability region by designing the stabilizing feed-
back law based on Jacobian linearization, especially when the bias

Ib=0.5 A and a valid estimate
der
current is small.
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Fig. 4 The stability region under I =0.1 A and an invalid estimate
Fig. 5 The stability regions under Ib=0.1 A and 0.5 A

606 / Vol. 127, DECEMBER 2005 Transactions of the ASME

aded 21 Jun 2007 to 129.63.204.27. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



Downlo
3.2 Exact Linearization Through Nonlinear Current
Allocation. The simple linear relation between I1 , I2, and I in
�12� results in a nonlinear dynamical relation �13� between I and
�. This makes it hard to design a stabilizing controller for small
bias current. In this section, we use the following nonlinear cur-
rent allocation strategy,

I1 = �Ib + I�
g0 + �

g0
, I2 = �Ib − I�

g0 − �

g0
. �18�

Under this nonlinear current allocation, we have

� g0I2

g0 − �
�2

− � g0I1

g0 + �
�2

= �Ib − I�2 − �Ib + I�2 = − 4IbI .

Hence, the dynamical relation between I and � is exactly linear:

J�̈ = − D�̇ − 4ctIbI , �19�
or,


�̇

�̈
� = �0 1

0 −
D

J

�

�̇
� + Ib� 0

−
4ct

J
I .

Denoting

AE = �0 1

0 −
D

J
, BE = � 0

−
4ctIb

J
 ,

we have

ẋ = AEx + BEI, �I� � IM/2 − Ib, �20�

where the bound on I is imposed to guarantee that �I1� , �I2�� IM.
We also note that there is no problem in generating the currents
given by �18� since the values of �g0±�� /g0 are between 0 and 2
�����g0�.

The system �20� is not only linear but also marginally stable
with one open-loop pole at 0 and another one at −D /J.

In this section, we consider the problem of stabilizing system
�20� in the presence of state and input constraints. The perfor-
mance issue will be addressed in Sec. 4.

Let the feedback law be of the form

I = �IM/2 − Ib�sat�Fx�; �21�
then the closed-loop system is

ẋ = AEx + BE�IM/2 − Ib�sat�Fx� . �22�
We also use the method in Sec. 2.2 to find a large invariant ellip-
soid E�P� by solving �6� with A=AE, B=BE�IM /2− Ib�, x1= �1,0�,
and �=0.01. Different from the design result in Sec. 3.1 for Jaco-
bian linearization, in the case of exact linearization, E�P� is al-
ways inside the actual stability region. In what follows, we use an
example to compare the invariant ellipsoid E�P� and the actual
stability region. It turns out that E�P� is a good estimate of the
actual stability region. Unlike the situation with the Jacobian lin-
earization, where E�P� could be an overestimate of the actual
stability region, here the linearization is exact and E�P� is always
inside the actual stability region.

Example 2. Consider the same experimental system as in Ex-
ample 1. Here we take IM =2 A. For Ib=0.5 A, the optimal solu-
tion is 	=0.004 and the controller is

I = 0.5 sat�179.9578� + 6.2261�̇� .

The invariant ellipsoid is E�P� with

P = 104 � 
6.2502 0.0010

0.0010 0.0238
� .

Figure 6 plots the boundary of E�P�, the estimated stability region,

in a dashed curve and the boundary of the actual stability region in
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a solid curve.
For Ib=0.1 A, the optimal solution is also 	=0.004 and the

controller is

I = 0.9 sat�180.3603� + 10.3037�̇� . �23�

The invariant ellipsoid is E�P� with

P = 104 � 
6.2502 0.0018

0.0018 0.0649
� .

Figure 7 plots the boundary of E�P� in dashed curve and the
boundary of the actual stability region in a solid curve.

It should be noted that the stability regions are generated from
the mathematical models. Since the difference between the model
and the real system is unavoidable, it is expected that the stability
regions for the real systems are different from those plotted in
Figs. 6 and 7. Here we would like to use some experimental
results to show that our stability analysis on the models gives a
good estimation of the behavior of the actual system.

From Fig. 7, we see that the beam can be stabilized from ini-
tially touching the electromagnets, even with Ib=0.1 A. This re-
sult was verified experimentally. The plots in Fig. 8 are the time
responses under a bias current Ib=0.5 A and the plots in Fig. 9 are
the time responses under Ib=0.1 A, all obtained from experimen-
tal data. The first plots in Figs. 8 and 9 are the time responses of
the beam angle. The second and the third plots are the time re-
sponses of the currents I1 and I2. They were produced by pushing
the beam to touch one of the electromagnets and then letting it go.
After the steady state had been reached, the beam was pushed to
touch the other electromagnet. This procedure was repeated sev-
eral times for each set of the plots. As we can see, the beam
always went back to the balance position. This was impossible
with a bias current Ib=0.1 A under the controller based on the
Jacobian linearization �14�.

Experimental experience shows that the system is very robust
against parameter uncertainties and disturbances, even with Ib
=0.1 A. For example, we incorporated uncertain gains k1 and k2,
and some drifts in the actuators so that the currents were

I1 = k1�Ib + I�
g0 + �

g0
+ I10, I2 = k2�Ib − I�

g0 − �

g0
+ I20. �24�

We tried with �k1 ,k2 , I10, I20�= �1,1 ,−0.028,0.05� and
�k1 ,k2 , I10, I20�= �0.8,1.2,0 ,0�, respectively. The time responses
of the beam angle are shown in Fig. 10, where the first plot cor-
responds to �k1 ,k2 , I10, I20�= �1,1 ,−0.028,0.05� and the second
corresponds to �k1 ,k2 , I10, I20�= �0.8,1.2,0 ,0�. We see that stabil-
ity is maintained under these parameter changes. The transient
performances are slightly different. The overshoot from one side
is larger than that from the other side.

3.3 The Voltage Mode: Almost Linearization. In the voltage
mode, the currents are determined by the voltages in the circuit
systems

L1İ1 = v1 − I1L̇1 − RI1, �25�

L2İ2 = v2 − I2L̇2 − RI1, �26�

where

L1 =
g0

g0 + �
L0, L2 =

g0

g0 − �
L0.

In this section, we investigate the control design in the voltage
mode, where the inputs are v1 and v2.

To deal with the nonlinearity in the system, we define some
new input and state variables. Let
u1 = v1 − RI1, u2 = v2 − RI2,
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Fig. 6 The estimated stability region and the actual stability region: I =0.5 A
b
Fig. 7 The estimated stability region and the actual stability region: Ib=0.1 A
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Fig. 8 Experimental results: time responses of � , I , and I under I =0.5 A
Fig. 9 Experimental results: time responses of � , I1, and I2 under Ib=0.1 A
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1 =
g0

g0 + �
L0I1, 2 =

g0

g0 − �
L0I2.

Then we have

�̈ = −
D

J
�̇ +

ct

JL0
2 �2

2 − 1
2� , �27�

̇1 = u1, �28�

̇2 = u2. �29�

In fact, 1 and 2 are the fluxes in the electromagnets. If we
further define b= �1+2� /2, = �2−1� /2, w1= �u2−u1� /2
and w2= �u1+u2� /2, we obtain

�̈ = −
D

J
�̇ +

4ct

JL0
2b , �30�

̇ = w1, �31�

̇b = w2. �32�

Notice that there is a bilinear term b in �30�. Since b is
under the control of the input w2 and is independent of other
states, we can use a simple controller,

w2 = k1�bd − b� , �33�

with a positive number k1 to make b approximate some constant

bd. After b has reached a steady state, the other states � , �̇, and

Fig. 10 Experimental results: time respons
 and the input w2 satisfy the following linear relation
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� �̇

�̈

̇
 = �

0 1 0

−
D

J
0

4ct

JL0
2b

0 0 0
��

�̇


 + �0

0

1
w1. �34�

For the above system, a simple linear feedback law of the form

w1 = k2� + k3�̇ + k4 �35�

can be designed to meet certain performance and stability
requirements.

The closed-loop system �30�–�33� and �35� is not strictly linear
because of the bilinear term b. The transient dynamics of b

can be considered as a disturbance, �4ct /JL0
2��b−bd�, whose

energy is finite and can be adjusted by the design parameter k1. If
the control law �35� has a certain degree of robustness and if the
dynamics of b is fast, then the performances of the whole system
will be close to those of the linear system �34� and �35�.

It should be noted that the idea of obtaining a linear system by
setting the sum of the fluxes fixed is similar to that in �12�. Dif-
ferent from �12�, here we take the voltages as inputs and the
dynamics of the fluxes is considered. Moreover, we will also ad-
dress all the input and state constraints in our design.

From the feedback laws �33� and �35�, the feedback relation

between the original states �� , �̇ , I1 , I2� and inputs �v1 ,v2� can be
obtained as follows

v1 = RI1 + u1

= RI1 + w2 − w1

= RI1 + k1�bd −
1 + 2� − k2� − k3�̇ − k4

2 − 1

of � under parameter changes for Ib=0.1 A
2 2
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= − k2� − k3�̇ + �R +
�k4 − k1�g0L0

2�g0 + �� �I1 −
�k4 + k1�g0L0

2�g0 − ��
I2 + k1bd,

�36�
and

v2 = RI2 + u2

= RI2 + w2 + w1

= RI2 + k1�bd −
1 + 2

2
� + k2� + k3�̇ + k4

2 − 1

2

= k2� + k3�̇ −
�k4 + k1�g0L0

2�g0 + ��
I1 + �R +

�k4 − k1�g0L0

2�g0 − �� �I2 + k1bd.

�37�
To satisfy the voltage bound, we may assign a bound to each

item RI1 , RI2 , w1, and w2. The bounds on RI1 and RI2 can be
computed from the bounds on the currents, �I1� , �I2�� IM. Let the
bounds on w1 and w2 be w1M and w2M, and let the maximal value
of the voltage supply be vM, then we need to choose w1M and w2M
such that w1M +w2M +RIM �vM.

The bias flux bd corresponds to a bias current Ib=bd /L0 at
steady state. The bounds on the currents impose a bound on the
flux as �1� , �2��L0IM /2, so we need to restrict  such that ��
�L0�IM /2− Ib�.

In summary, for �34�, we need to consider the following state
and input constraints,

��� � �M, �� � L0�IM − Ib�, �w1� � w1M .

In order to design the control law �35�, we may set the objective
as finding the invariant ellipsoid E�P� that contains 	�1 0 0 �T

with 	 maximized. This will result in the largest initial displace-
ment of the beam that can be brought back to the balance position.

Fig. 11 Simulation: time response
This objective can be easily transformed into the optimization
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problem �6�, which can be solved efficiently.
As to the design of the control law �33�, suppose that the initial

b is 0; then �bd−b��bd for all time. The constraint on w2 can
be easily satisfied by choosing k such that kbd�w1M.

Example 3. Consider the same balance beam test rig as in Ex-
ample 1. The additional parameters in the circuit systems are

R = 0.7 �, L0 = 4.9060 � 10−4H .

We used a PWM �pulse width modulated� power amplifier to pro-
vide a desired voltage. The voltage bound is vM =15 V. We set
IM =2 A, w1M =10 V, and w2M =3.6 V. We choose bd=0.1L0 and
take �=4 to ensure some stability margin. The optimal value of 	
is 0.0037 and the control law is

w1 = 10 sat�− 38.6� − 4.6�̇ − 1353.9�, w2 = 50�bd − � .

For the closed-loop system �34� and �35�, the point �� , �̇ ,�
= �0.0037,0 ,0� is in the resulting invariant ellipsoid E�P�. Since
E�P� could be conservative as an estimation of the stability region,

we tried an initial state �� , �̇ ,�= �0.003 99,0 ,0� and simulation
confirms that this point is still in the stability region. Figure 11

plots the simulation results with initial conditions �� , �̇ ,�
= �0.003 99,0 ,0� and b=0.

From the simulation result, it is expected that the controller can
bring the beam to the balance position from initially almost touch-
ing one of the electromagnets. However, we did not do this suc-
cessfully at the first trials on the experiment. Actually, we were
unable to manipulate the beam into a position that could be stabi-
lized. To find out the reason, we did some simulation by adding
some disturbances to the voltage supply. Instead of letting v1

f � , I1, and I2 of the exact system
s o
=RI1+w2−w1 and v2=RI2+w2+w1 as in �36� and �37�, we output
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v1 = RI1 + w2 − w1 + v10, v2 = RI2 + w2 + w1 + v20

from the controller. Figure 12 plots the simulation results with

v10=−0.02 V, v20=−0.01 V and initial conditions �� , �̇ , ,b�
= �0,0 ,0 ,0�. Clearly, the time responses are diverging and indi-
cating instability.

The simulation results thus show that the control system is very
sensitive to voltage drifts. The reason is that, in the control law
�36� and �37�, the term kbd is very small. In the case k=50 and
Ib=0.1, kbd=0.0025. A small drift of the voltage would result in
a large drift of the effective bd. Recognizing this, we checked the
drift of the voltages and made some correction. The behavior of
the test rig was indeed improved. The first plot in Fig. 13 is the
time response of the angle plotted from experimental data. The
second and the third plots in Fig. 13 are the currents I1 and I2. The
beam went back to the balance position after pushing to the elec-
tromagnets and releasing. However, the currents, which should be
around 0.1 A, were actually about 0.25 A in the steady state. The
deviation of the currents from the theoretical value is caused by
the positive voltage drifts. In fact, it is impossible to eliminate the
voltage drifts completely.

Since we used a PWM power amplifier, the currents are subject
to severe disturbances. We can see from the plots in Fig. 13 that
the disturbances are of very high frequency and large amplitudes
as compared with the average values. However, these large distur-
bances do not seem to have a large influence on the performance
of the test rig. This is because the mechanical system acts as a
low-pass filter. The main disadvantage of the voltage mode is that
it is very sensitive to actuator uncertainties. This is possibly
caused by the PWM power amplifier.

4 Performance Improvement
We presented three approaches for stabilizing magnetic bearing

systems in Sec. 3. From our experience with the experimental test

Fig. 12 Simulation: unstable resp
rig, the exact linearization approach under the current mode ex-
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hibits the best properties in several important aspects, including
the large stability region, robustness, and disturbance rejection.
For other magnetic bearing systems, different control strategies
may be more effective. In this section, we will focus on improving
the transient performance for the exact linearized system under
the current mode.

In Sec. 2.3 we present an approach to improving the transient
performance by solving the optimization problem �8�. Two con-
trollers can be constructed from the optimal solution:

u = sat�Fx� �38�

and

u = − sat�kBTPx� . �39�

The gain k needs to be adjusted for the best results. In what
follows, we use an example to illustrate the effectiveness of the
design technique.

Example 4. Consider again the balance beam test rig. In solving

the optimization problem �8�, we choose �=1 and x1= �0.003

0 �. The

state constraint is represented by L�G� with G= �1/0.004 0 �.
Here is the optimal solution for the case Ib=0.1 A:

� = 15.1640, F = �249.9996 28.8509 � ,

P = 
1.1111 0.0641

0.0641 0.0085
� � 105.

Based on this solution, we obtained two controllers

I = 0.9 sat�Fx� = 0.9 sat�249.9996� + 28.8509�̇� , �40�

ses under actuator uncertainties
on
and
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Fig. 13 Experimental results: stable time responses of � , I1, and I2
Fig. 14 Stability regions under different feedback laws: Ib=0.1
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Fig. 15 Experimental results: time responses of � under control laws „23…, „40…, and „41…
Fig. 16 Experimental results: time responses of I1 under control laws „23…, „40…, and „41…
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I = 0.9 sat�kBTPx� = 0.9 sat�336.9784� + 44.4445�̇� . �41�
The boundaries of the stability regions under these two controllers
are plotted in Fig. 14, where the dashed curves correspond to �40�
and the solid curves correspond to �41�. �The solid boundary and
the dashed boundary are very close.� The ellipsoid is the estimate
of the stability region E�P�. For comparison, we also plot the
boundary of the stability region under the controller �23� in dash-
dotted curves. We see that the two controllers �40� and �41� not
only produce better performances, but also larger stability regions.
This result is somewhat unexpected, but gives some indication
about how saturation may complicate the analysis problems. Ex-
perimental results show that the performance of the balance beam
is much improved by using the controllers �40� and �41�. Figure
15 compares the time responses of the angle under these control-
lers and that under the controller �23�, where the dash-dotted
curve corresponds to �23�, the dashed curve to �40�, and the solid
curve to �41�. The time response under �23� is plotted from t=0 to
t=4, while the time responses under �40� and �41� are plotted over
shorter periods of time. This is because the steady state was
reached much earlier under �40� and �41�.

Figures 16 and 17 plot the time responses of the currents. In
each figure, the first plot is the current under the controller �23�,
the second plot under �40�, and the third plot under �41�. In each
plot, the average value of the currents are about 0.1 A in the
steady state. But the variation is larger under the controllers �40�
and �41�. The reason is that, in these two controllers, the coeffi-

cients of �̇ are larger than that in �23� and the measurement of the
rotational velocity is subject to a larger disturbance than the mea-
surement of the angle. If we increase the gain k in the controller
�41�, this disturbance will be further amplified and result in larger
variations of the currents. If the currents exceed the saturation
level, then the performance and stability of the system cannot be

Fig. 17 Experimental result: time response
guaranteed.
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5 Conclusions
In this paper we developed a systematic control design ap-

proach for magnetic bearing systems that are subject to both input
and state constraints. We extended some of our recently developed
tools to design controllers for the purposes of enlarging the stabil-
ity region and improving the transient performance. We investi-
gated three design approaches through three different linearization
methods and compared the stability performances under these ap-
proaches. The analysis and design results were verified on a bal-
ance beam test rig.
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