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Abstract

Based on a recent duality theory for linear differential inclusions (LDIs), the condition for stability of an LDI in terms of one Lyapunov
function can be easily derived from that in terms of its conjugate function. This paper uses a particular pair of conjugate functions, the
convex hull of quadratics and the maximum of quadratics, for the purpose of estimating the domain of attraction for systems with saturation
nonlinearities. To this end, the nonlinear system is locally transformed into a parametertized LDI system with an effective approach which
enables optimization on the parameter of the LDI along with the optimization of the Lyapunov functions. The optimization problems are
derived for both the convex hull and the max functions, and the domain of attraction is estimated with both the convex hull of ellipsoids
and the intersection of ellipsoids. A numerical example demonstrates the effectiveness of this paper’s methods.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One practical way to study nonlinear systems, and also
hybrid, switched, or uncertain time-varying linear ones, is to
obtain an approximate description of a given system in terms
of linear differential/difference inclusions (LDIs). Such a
practice can be traced back to the early development of the
absolute stability theory, where the nonlinearity and uncer-
tainties were described with conic sectors and the systems
were treated with tools adapted from those for linear sys-
tems (see, e.g.,Aizerman & Gantmacher, 1964; Narendra
& Taylor, 1973). The effectiveness of the LDI approach
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depends on two factors: how close the LDI approximation
is, and what tools are used for analyzing it. One of the tools
is a common Lyapunov function for all the member systems
of the LDI. In the early development, the search for such
a function was often restricted to quadratics. In fact, the
circle criterion for absolute stability gives a necessary and
sufficient condition for the existence of a common quadratic
Lyapunov function for all convex combinations of two linear
systems. The theory based on quadratic Lyapunov functions
for LDIs was completed by the LMI optimization technique
(see, e.g.,Boyd, El Ghaoui, Feron, & Balakrishnan, 1994).

While the search for a common Lyapunov function has
been justified (e.g.,Dayawansa & Martin, 1999; Molchanov,
1989), evidence has accumulated to indicate that the search
should be widened beyond quadratic forms (see, e.g.,Chesi,
Garulli, Tesi, & Vicino, 2003; Dayawansa & Martin, 1999;
Jarvis-Wloszek & Packard, 2002; Power & Tsoi, 1973; Ze-
lentsovsky, 1995). Recent years have witnessed an extensive
search for nonquadratic and/or homogeneous Lyapunov
functions, among which are piecewise quadratic functions
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(Johansson & Rantzer, 1998; Xie, Shishkin, & Fu, 1997),
polyhedral functions (Blanchini, 1995; Brayton & Tong,
1979), and homogeneous polynomial Lyapunov functions
(HPLFs) (Chesi et al., 2003; Jarvis-Wloszek & Packard,
2002; Zelentsovsky, 1995).

An important contribution was made inGoebel, Teel, Hu,
and Lin (2005), making available in the LDI framework tools
based on duality, similar to those that are well-appreciated
in linear systems. The exponential stability of an LDI was
shown to be equivalent to that of its dual LDI (which is given
by transposes of the matrices describing the original one,
see alsoBarabanov, 1995). Such results are derived by using
convex Lyapunov/storage functions, and their conjugates in
the sense of convex analysis. For example, ifV (x) is a
Lyapunov function for a given LDI, then its conjugateV ∗(x)
is a Lyapunov function for the dual LDI. As is demonstrated
by examples in Goebel, Teel, Hu, and Lin (2005) andGoebel,
Hu, and Teel (2005), numerical results based on one type of
Lyapunov functions can be strikingly different from those
based on the conjugate type. This is one of the strengths
of the duality theory—it doubles the number of tools and
presents different results for one to choose. In this paper, we
use a particular pair of conjugate functions: the convex hull
of a family of quadratic functionsVc(x) and the pointwise
maximum of a family of quadraticsV ∗

c (x). In what follows,
we will often refer toVc(x) as the convex hull function, and
to V ∗

c (x) as the max function.
The functionsVc(x), V ∗

c (x) and their conjugacy are
used here to study stability of a special type of nonlinear
systems—systems with saturation nonlinearities. The stabil-
ity analysis of such systems, as with many other nonlinear
systems, has been mostly performed through the LDI frame-
work. As we have stated, the effectiveness of such approach
depends on how the nonlinear system is represented by an
LDI. The straightforward way, which has been adopted by
most of the literature, is to bound each saturation function
locally with a conic sector, i.e., to find ak ∈ (0,1) such
that sat(fix) ∈ co{fix, kf ix}. This approach was shown to
be awkward and was replaced with a more effective and
flexible one in Hu, Lin, and Chen(2002a,2002b), where
an auxiliary feedback matrixH was constructed such that
sat(fix) ∈ co{fix, hix} in the local region of interest. In
the new approach, the parameter of the LDI description (the
matrixH), is subject to optimization. This optimization can
be tightly integrated with that of the Lyapunov function,
to form a single optimization problem with the objective
of maximizing the estimated domain of attraction. InHu
et al. (2002a, 2002b), level sets of quadratic functions (el-
lipsoids) were used as estimates. An effort was made inHu
and Lin (2003)to use level sets of other types of Lyapunov
functions, in particular, of the convex hull function (in Hu
et al., 2003, the convex hull function was referred to as
the composite quadratic function). Level sets of the convex
hull function are convex hulls of ellipsoids. The results of
Hu and Lin (2003)improve on those ofHu et al. (2002a)
but are still based on the concept of quadratic stability:

each individual ellipsoid has to be an invariant set. With
the duality theory in Goebel et al. (2005), a much weaker
condition for stability will be derived.

This paper integrates the LDI description fromHu et al.
(2002a), the convex hull function fromHu and Lin (2003),
and the duality theory of Goebel, Teel, Hu, and Lin (2005)
to perform stability analysis on systems with saturation non-
linearities. Section 2 presents preliminaries on conjugate
Lyapunov functions. Section 3 derives conditions for stabil-
ity of saturated systems by using the conjugate pairVc(x)

andV ∗
c (x). Improvement on the estimation of the domain

of attraction is observed in Section 4.

Notation. For two integers k1, k2, k1<k2, we denote
I [k1, k2] = {k1, k1 + 1, ..., k2}. We use sat(·) to denote
the standard saturation function, i.e., foru ∈ Rm, the ith
component of sat(u) is sign(ui)min{1, |ui |}. For a matrix
H ∈ Rm×n,

L(H) := {x ∈ Rn : ‖Hx‖∞ �1}. (1)

For a positive-definite matrixQ=QT ∈ Rn×n,

E(Q) := {x ∈ Rn : (1/2)xTQx�1}. (2)

2. Preliminaries

2.1. Duality in linear differential inclusions

Let � be a compact subset ofRn×n. Consider the follow-
ing LDI:

ẋ ∈ �x, x(0)= x0. (3)

Solutions of (3) arex(·)’s satisfying ẋ(t) = A(t)x(t) and
x(0)= x0, whereA(t) ∈ �, for all t�0. For LDIs, asymp-
totic stability (at 0) and exponential stability (at 0) are equiv-
alent to each other and each implies global uniform expo-
nential stability (e.g.,Dayawansa & Martin, 1999). Thus,
we simply use exponential stability to represent all these
notions. The LDI is said to be exponentially stable if there
existK >0,�>0 such that the solutions satisfy

‖x(t)‖�K‖x0‖e−�t ∀x0 ∈ Rn, t�0.

The number� is called the decay rate of the LDI. It is
well-known that exponential stability for (3) is equivalent to
exponential stability for

ẋ ∈ co{�}x, (4)

where co{�} is the convex hull of�. In Barabanov (1995)
and Goebel et al. (2005), it is shown that exponential stability
for (3) is equivalent to exponential stability for

ẋ ∈ �Tx, (5)
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where�T = {AT : A ∈ �}. In Goebel et al. (2005), this
result is established through conjugate Lyapunov functions.

Given any functionV : Rn → R, its conjugate, in the
sense of convex analysis, is defined as

V ∗(z) := sup
x

{zTx − V (x)}.

The conjugate is always a convex function. IfV is convex,
then the conjugate ofV ∗ is the originalV , and the posi-
tive definiteness and positive homogeneity of degree 2 (i.e.,
V (�x)=�2V (x) for all �>0 andx ∈ Rn) of V is equivalent
to those properties ofV ∗. Furthermore, for such functions,
the differentiability ofV is equivalent to the strict convexity
of V ∗. Below,�V and�V ∗ stand for the subdifferentials, in
the sense of convex analysis, ofV andV ∗. At points where
V is differentiable,�V is single valued and equal to the gra-
dient. When we say that�V (x)Tf �c, we mean�Tf �c for
all � ∈ �V (x).

Theorem 1 (Goebel, Teel, Hu, and Lin (2005)). Let V :
Rn → R be convex, positive definite, and positively homo-
geneous of degree2.ThenV ∗ : Rn → R is convex, positive
definite, and positively homogeneous of degree2, and

�V (x)Tf � − �V (x) ∀x ∈ Rn, f ∈ �x

if and only if

�V ∗(z)Tg� − �V ∗(z) ∀z ∈ Rn, g ∈ �Tz.

Theorem 1 along with results ofDayawansa and Martin
(1999)andMolchanov (1989)yields:

Theorem 2. Let � be compact. Then the following state-
ments are equivalent:

(1) The origin of system(3) is exponentially stable with a
decay rate�.

(2) The origin of system(4) is exponentially stable with a
decay rate�.

(3) The origin of system(5) is exponentially stable with a
decay rate�.

(4) There exists a convex positive definite functionV (x) that
is differentiable and positively homogeneous of degree
2 such that

�V (x)Tf � − 2�V (x) ∀x ∈ Rn, f ∈ �x.

2.2. Convex hull of quadratic functions and its conjugate

ConsiderN symmetric and positive definite matricesQj ,
j ∈ I [1, N ]. Let

� = {� ∈ RN : �1 + �2 + · · · + �N = 1, �j �0}.

The composite quadratic function was defined inHu and Lin
(2003)as

Vc(x) := 1

2
min
�∈�

xT


 N∑
j=1

�jQj




−1

x. (6)

Relevant properties of this function are as follows:

(1) Vc is convex, positive definite, positively homogeneous
of degree 2, and continuously differentiable.

(2) The level sets ofVc are convex hulls of unions of level
sets of quadratics12x

TQ−1
j x. In particular, for

LVc := {x ∈ Rn : Vc(x)�1}
we haveLVc = co{E(Q−1

j ) : j ∈ I [1, N ]}.

Alternatively, one can describeVc as the convex hull func-
tion of 1

2x
TQ−1

j x, j ∈ I [1, N ] (i.e. the greatest convex
function majorized by each of these quadratics); see Goebel
et al. (2005). For this reason, we callVc the convex hull
of quadratic functions, or simply, the convex hull function.
From Goebel et al. (2005), the conjugate function ofVc is

V ∗
c (�) := 1

2
max

j∈I [1,N ] �
TQj�. (7)

Since this function is obtained by taking the pointwise max-
imum of a family of quadratic functions, it is called the max-
imum of quadratic functions, or simply, the max function.
It has the following properties:

(1) V ∗
c is strictly convex, positive definite, and positively

homogeneous of degree 2.
(2) The level sets ofV ∗

c are strictly convex and for

LV ∗
c

:= {� ∈ Rn : V ∗
c (�)�1},

we haveLV ∗
c

= ⋂N
j=1E(Qj ).

The following set inclusion properties will be needed for
the essential step of obtaining local LDI descriptions for a
saturated linear system.

Lemma 1. LetH ∈ Rm×n and denote the�th row of H as
h�. LetL(H) be defined as in(1).We have,

(1) LVc ⊂ L(H) if and only if 2hT
� ∈ LV ∗

c
for all � ∈

I [1,m];
(2) LV ∗

c
⊂ L(H) if and only if 2hT

� ∈ LVc for all � ∈
I [1,m].

Proof. As Vc andV ∗
c are positive definite, symmetric, and

positively homogeneous of degree 2, they lead to a pair
of polar norms (seeRockafellar, 1973, 15.3.1): ‖x‖c :=
(2Vc(x))

1/2 and‖x‖∗
c := (2V ∗

c (x))
1/2. In particular, for any

z ∈ Rn, any�>0, |zTx|�1 for all ‖x‖c�� if and only if
‖z‖∗

c �1/�. Taking� = √
2 andz= hT

l shows that|h�x|�1
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for all Vc(x)�1 if and only ifV ∗
c (2h

T
� )=4V ∗

c (h
T
� )�1. This

shows item 1. Item 2 is shown similarly.�

2.3. Dual stability conditions

Consider the following differential inclusion

ẋ ∈ co{Aix : i ∈ I [1,M]}, (8)

whereAi ∈ Rn×n are given constant matrices.

Theorem 3 (Goebel, Teel, Hu, and Lin (2005)). LetQk ∈
Rn×n, k ∈ I [1, N ] be given positive definite matrices and
let Vc andV ∗

c be the functions as defined in(6) and (7).

(1) For � ∈ R, if there exist�ijk�0, j, k ∈ I [1, N ], i ∈
I [1,M] such that

AT
i Qk +QkAi�

N∑
j=1

�ijk (Qj −Qk)− �Qk

∀k ∈ I [1, N ], i ∈ I [1,M], (9)

then for allx ∈ Rn, f ∈ co{Aix : i ∈ I [1,M]},

�V ∗
c (x)

Tf � − �V ∗
c (x). (10)

(2) For � ∈ R, if there exist�ijk�0, j, k ∈ I [1, N ], i ∈
I [1,M] such that

QkA
T
i + AiQk�

N∑
j=1

�ijk (Qj −Qk)− �Qk

∀k ∈ I [1, N ], i ∈ I [1,M], (11)

then for allx ∈ Rn, f ∈ co{Aix : i ∈ I [1,M]},

�Vc(x)
Tf � − �Vc(x). (12)

If N = 2, then the condition in each of the above items is
also necessary.

The conditions (9) for exponential stability certified by the
function on the right-hand side of (7) were outlined inBoyd
et al. (1994, pp. 73–74). With those conditions in hand, the
conditions for stability certified byVc follow from Theo-
rem 1 and the conjugacy betweenVc andV ∗

c .

3. Stability analysis for systems with saturation
nonlinearities

Consider the system

ẋ = Ax + B sat(Fx), (13)

whereA ∈ Rn×n, B ∈ Rn×m andF ∈ Rm×n are given and
sat(·) is the standard saturation function. In this section, we
use the dual stability conditions for LDIs to improve the
earlier stability analysis results inHu et al. (2002a)andHu

and Lin (2003). First, we need a tool developed inHu et al.
(2002b)to obtain a local LDI description for system (13).

Consider the set ofm×m diagonal matrices whose diag-
onal elements are either 1 or 0. There are 2m such matrices
and we label them asDi , i ∈ I [1,2m]. DenoteD−

i =I−Di .
Given two vectors,u, v ∈ Rm, {Diu+D−

i v : i ∈ [1,2m]} is
the set of vectors obtained by choosing some elements from
u and the rest fromv.

Lemma 2 (Hu et al., 2002b). LetH ∈ Rm×n be given. Then
for all x ∈ L(H),

sat(Fx) ∈ co{(DiF +D−
i H)x : i ∈ I [1,2m]}.

Consider anyH ∈ Rm×n. By Lemma 2, the saturated
system (13) satisfies

ẋ ∈ co{(A+ B(DiF +D−
i H))x : i ∈ I [1,2m]} (14)

for all x ∈ L(H). We call (14) a parameterized LDI be-
cause of the degree of freedom injected throughH. To obtain
an estimate of the domain of attraction, we may determine
an invariant level set ofVc or V ∗

c within L(H) by using
Theorem 3. In fact, bothH andVc or V ∗

c can be optimized
to produce “a large” estimate. The following theorem gives
a sufficient condition forLVc to be a contractively invariant
set for (13).

Theorem 4. LetQj, j ∈ I [1, N ], be positive definite ma-
trices. LetVc(x) be the convex hull function as defined in
(6),and take�>0. If there exist anH ∈ Rm×n and�ijk�0,
i ∈ I [1,2m], j, k ∈ I [1, N ] such that

Qk(A+ B(DiF +D−
i H))

T + (A+ B(DiF +D−
i H))Qk

�
N∑
j=1

�ijk(Qj −Qk)− �Qk,

i ∈ I [1,2m], k ∈ I [1, N ], (15)

2h�Qkh
T
� �1, � ∈ I [1,m], k ∈ I [1, N ], (16)

whereh� is the�th row of H, then for(13),we have

�Vc(x)
T(Ax + B sat(Fx))� − �Vc(x) ∀x ∈ LVc. (17)

Proof. Note that (16) implies

1

2
max
k∈[1,N ](2h�)Qk(2h�)

T �1, ∀� ∈ I [1,m], k ∈ I [1, N ],

i.e., 2hT
� ∈ LV ∗

c
. By Lemma 1, we haveLVc ⊂ L(H). By

Lemma 2, we have

sat(Fx) ∈ co{(DiF +D−
i H)x : i ∈ I [1,2m]} ∀x ∈ LVc.

If we let Ai = A+ B(DiF +D−
i H), then for allx ∈ LVc,

ẋ = Ax + B sat(Fx) ∈ co{Aix : i ∈ I [1,2m]}.

By (2) of Theorem 3, under the condition (15), we have

�Vc(x)
T(Ax + B sat(Fx))� − �Vc(x) ∀x ∈ LVc. �
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Since�>0, the property (17) implies thatLVc is a con-
tractively invariant set and any trajectory starting from it will
remain inside and converge to the origin with a decay rate
�/2. HenceLVc is an estimate of the domain of attraction.
Given x0 ∈ Rn, we want to optimize the functionVc(x)

such thatLVc satisfies the condition of Theorem 4 for cer-
tain�>0 andLVc contains�x0 with largest� possible. This
objective can be described as

sup
Qj ,�,�ijk,H

�

s.t.(a) �x0 ∈ LVc

(b) (15), (16),

(c) �>0,Qj >0, �ijk�0 ∀i, j, k. (18)

The optimization problem (18) can be modified to maximize
LVc with respect to other kinds of shape reference setX0 ⊂
Rn (seeHu et al., 2002a). One only needs to replace (a)
with �X0 ⊂ LVc. If X0 is a polytope, this condition can be
equivalently stated as�xi ∈ LVc for finite manyxi ’s. Note
that�x0 ∈ LVc, or,Vc(�x0)�1, is equivalent to the existence
of � ∈ � such that (see Hu et al., 2003)[

2 �xT
0

�x0
∑N

j=1�jQj

]
�0. (19)

Also note that (16) is equivalent to[ 1
2 h�Qk

Qkh
T
� Qk

]
�0 ∀�, k. (20)

Hence (18) can be rewritten as

sup
Qj ,�,�ijk,H

�

s.t., (19), (15), (20),

�>0, � ∈ �,Qj >0, �ijk�0 ∀i, j, k.

(21)

The constraints involve bilinear matrix inequalities
(BMIs) sinceVc is not quadratic. Similar BMIs are derived
in Goebel, Teel, Hu, and Lin (2005) and Goebel, Hu, and
Teel (2005) for stability and performance analysis of linear
differential/difference inclusions. A direct method to solve
BMI problems is to alternatively fix one set of parameters
and optimize the rest. In Goebel, Hu, and Teel (2005), we
adopted the path-following method fromHassibi, How, and
Boyd (1999), and our experience with several numerical ex-
amples shows that the path-following method is much more
effective than the straightforward iterative method. To use
the path-following method, we need to change the problem
formulation in (21). Instead of directly maximizing�, we
fix � and maximize� satisfying (15) and[

2 �xT
0

�x0
∑N

j=1�jQj

]
��I,

[ 1
2 h�Qk

Qkh
T
� Qk

]
��I .

If the maximal � is greater than 0, then�x0 ∈ LVc and
LVc is an estimate of the domain of attraction. We actually
implemented a two-step iterative algorithm which combines

the path-following method and the direct iterative method.
The first step uses the path-following method to update all
the parameters at the same time. The second step fixes�ijk ’s,
H and� and solves the resulting LMI problem which only
includeQj ’s as variables. This two-step method proves very
effective on the BMI problems in Goebel, Hu, and Teel
(2005) and also works well on the example in Section 4.

We note that if we imposeQ1 =Q2 · · · =QN , thenLVc

is an invariant ellipsoid and (21) reduces to the correspond-
ing optimization problem inHu et al. (2002a)which can be
transformed into LMIs with a change of variables. To guar-
antee that a better result is produced than that ofHu et al.
(2002a), we can start the two-step algorithm withH andQj ’s
inherited from the optimal solution ofHu et al. (2002a), i.e.,
by choosing the initialH as the optimal solution under the
restrictionQ1 =Q2 · · · =QN . The initial �ijk ’s and� can
be arbitrarily assigned under the constraint of (21).

We now useV ∗
c to estimate the domain of attraction. The

following theorem gives a sufficient condition forLV ∗
c

to be
a region of exponential stability for system (13).

Theorem 5. LetQj, j ∈ I [1, N ], be positive definite ma-
trices. LetV ∗

c be the max function as defined in(7), and
take�>0. If there exist anH ∈ Rm×n and �ijk�0, i ∈
I [1,2m], j, k ∈ I [1, N ] such that

(A+ B(DiF +D−
i H))

TQk +Qk(A+ B(DiF +D−
i H))

�
N∑
j=1

�ijk(Qj −Qk)− �Qk,

i ∈ I [1,2m], k ∈ I [1, N ], (22)

2hT
� ∈ LVc, � ∈ I [1,m], (23)

then for system(13),we have

�V ∗
c (x)

T(Ax + B sat(Fx))� − �V ∗
c (x) ∀x ∈ LV ∗

c
.

Proof. By Lemma 1, (23) impliesLV ∗
c

⊂ L(H). By Lem-
ma 2, we have

sat(Fx) ∈ co{(DiF +D−
i H)x : i ∈ I [1,2m]} ∀x ∈ LV ∗

c
.

The rest of the proof is similar to that of Theorem 4 by
following item 1 of Theorem 3. �

To optimize the functionV ∗
c (x) such thatLV ∗

c
satisfies

the condition of Theorem 5 andLV ∗
c

contains�x0 with �
maximized, we formulate the optimization problem

sup
Qj ,�,�ijk,H

�

s.t.(a) �x0 ∈ LV ∗
c

(b) (22), (23),

(c) �>0, Qj >0, �ijk�0 ∀i, j, k. (24)
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Note that condition (23) is equivalent to the existence of
�� ∈ � such that[ 1

2 h�

hT
�

∑N
j=1��jQj

]
�0.

and�x0 ∈ LV ∗
c

is equivalent to1
2�2xT

0Qjx0�1 for all j ∈
I [1, N ]. Similarly to the problem (18), the two-step path-
following algorithm also proves effective for (24).

Remark 1. The analysis results developed in this section
can be readily adapted to design a feedback lawu=sat(Fx)
such that a guaranteed region of stability is maximized. This
is done by consideringF as an additional optimization pa-
rameter. The results can also be adapted for the purpose of
analyzing controlled invariant sets.

4. Numerical example

The following system is taken fromHu et al. (2002a):

ẋ = Ax + B sat(Fx)

where

A=
[

0 1
1 0

]
, B =

[
0
5

]
, F = [−2 − 1].

We use the convex hull and the max functions to estimate
the domain of attraction. The functionsVc1 and V ∗

c2 are
constructed from two quadratic functions, i.e.,

Vc1(x)= 1

2
min
�∈�

xT(�1Q1 + �2Q2)
−1x,

V ∗
c2(x)= 1

2 max{xTQ̃1x, x
TQ̃2x}.

We useVc1 andV ∗
c2 to denote these two functions to avoid

confusion. We note that Theorems 4 and 5 have dual struc-
ture but the resulting Lyapunov functions need not be con-
jugate to each other, they only belong to classes of functions
“conjugate” to each other.

The reference point is taken asx0 = [1 0]T. For each�,
we use the two-step path-following algorithm to test if�x0
is feasible for (21). The algorithm quickly produces a result
for each� and it is determined that� can be made arbitrarily
close to 5. Since 5x0 is an equilibrium point and does not
belong to the domain of attraction,�=5 must be the optimal
solution. The matricesQ1 andQ2 corresponding to�=4.999
are given as follows:

Q1 =
[

15.325 −21.273
−21.273 38.868

]
,

Q2 =
[

15.989 −2.989
−2.989 2.992

]
.

Fig. 1plots the boundary ofLVc1 in solid curve. Also plotted
in the figure are some line segments indicating the direction
of ẋ along the boundary ofLVc1. It is clearly seen thatLVc1
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Fig. 1. Vectors along the boundary ofLVc1.
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Fig. 2. Three invariant level sets.

is invariant, although some directions almost overlap the
boundary, which is a result of optimization. The two ellipsoid
boundaries forE(Q−1

1 ) andE(Q−1
2 ) are plotted in the figure

as dotted curves.
We then solved the optimization problem (24). The opti-

mal � is also found to be 5. The matrices̃Q1 andQ̃2 corre-
sponding to� = 4.999 are given as follows:

Q̃1 =
[

0.0749 0.0122
0.0122 0.0264

]
, Q̃2 =

[
0.0800 0.0800
0.0800 0.0861

]
.

In Fig. 2, we compare these two estimates with an earlier one
which is the maximal invariant ellipsoid with respect tox0,
obtained by the method ofHu et al. (2002a). The maximal
� such that�x0 can be enclosed by an invariant ellipsoid is
3.0573 (the maximal� such that�x0 is in the invariant level
set ofVc1 or V ∗

c2 is 5). The outermost boundary inFig. 2
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Fig. 4. Domain of attraction and its estimates.

is that ofLVc1 and the solid curve is the boundary of the
level setLV ∗

c2
. The boundary of the invariant ellipsoid is the

innermost dashed curve.
For the two estimates resulting from the reference point

x0 = [1 0]T, we haveLVc1 ⊃ LV ∗
c2

. This is not always the

case. For instance, forx0 = [−1 0.8]T, the resultingLV ∗
c2

is
not a subset ofLVc1 and the union of these two sets is larger
than each of them (seeFig. 3 whereLV ∗

c2
is bounded by the

solid curve andLVc1 by the dash–dotted curve.) This shows
the advantage of applying the conjugate Lyapunov functions.

The exact boundary of the domain of attraction can be
obtained from simulation. The comparison betweenLVc1 for
the referencex0 = [1 0]T (the thick solid curve) and the
exact domain of attraction (the dashed curve) is made inFig.
4. We see that parts of the boundaries almost overlap. Also
plotted in the figure is one invariant ellipsoid (the innermost

dash-dotted curve) and the boundary of the convex hull of
all the invariant ellipsoids (the thin solid curve), the best that
can be obtained by the methods inHu and Lin (2003)and
Hu et al. (2002a).

5. Conclusions

This paper revisits the problems of stability analysis for
systems with saturation nonlinearities. The recently devel-
oped duality theory for LDIs is utilized to enhance the sta-
bility results in Hu and Lin (2003)and Hu et al. (2002a).
Apart from using the convex hull function introduced inHu
and Lin (2003)as a Lyapunov function, we also developed
dual stability results by using its conjugate function, the max
(of quadratics) function. Optimization problems are derived
for the purpose of maximizing the estimate of the domain
of attraction. These optimization problems involve bilinear
matrix inequalities and experience shows that they can be
effectively solved with the path-following method inHassibi
et al. (1999). Although the global optimal solutions are not
guaranteed to be determined, the algorithm always improves
on earlier results based on quadratic functions.
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