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Abstract

This paper presents a nonlinear control design method for robust stabilization and robust performance of linear differential
inclusions (LDIs). A recently introduced non-quadratic Lyapunov function, the convex hull of quadratics, will be used for
the construction of nonlinear state feedback laws. Design objectives include stabilization with maximal convergence rate,
disturbance rejection with minimal reachable set and least L2 gain. Conditions for stabilization and performances are derived
in terms of bilinear matrix inequalities (BMIs), which cover the existing linear matrix inequality (LMI) conditions as special
cases. Numerical examples demonstrate the advantages of using nonlinear feedback control over linear feedback control for LDIs.
It is also observed through numerical computation that nonlinear control strategies help to reduce control effort substantially.
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1 Introduction

A simple and practical approach to describe systems
with nonlinearities and time-varying uncertainties is to
use linear differential inclusions (LDIs). Such practice
can be traced back to the earlier development of abso-
lute stability theory. The advantages of using LDIs to
describe complicated systems are fully demonstrated in
Boyd, El Ghaoui, Feron,& Balakrishnan (1994), where a
wide variety of control problems for LDIs are interpreted
with linear matrix inequalities (LMIs). The mechanism
behind the LMI framework is a systematic application
of Lyapunov theory through quadratic functions.
While the LMI technique has been well appreciated and
has been widely applied to various control problems,
the conservatism introduced by quadratic Lyapunov
functions has been revealed in some literature includ-
ing Boyd et al (1994). Considerable efforts have been
devoted to the construction and development of non-
quadratic Lyapunov functions (see e.g. Blanchini, 1995;
Chesi, Garulli, Tesi & Vicino, 2003; Jarvis-Wloszek &
Packard, 2002; Molchanov, 1989; Polanski, 1997; Xie,
Shishkin & Fu, 1997; Yfoulis & Shorten, 2004). In
(Molchanov, 1989), a necessary and sufficient condition
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for stability of polytopic LDIs was derived as bilinear
matrix equations (computational methods for solving
these matrix equations are still under development, see
Polanski, 1997; Polanski, 2000; Yfoulis & Shorten, 2004).
More numerically tractable stability conditions were
derived as LMIs in (Chesi et al 2003; Jarvis-Wloszek &
Packard, 2002; Xie et al, 1997) from piecewise quadratic
functions and homogeneous polynomial functions.
Recently, a pair of conjugate Lyapunov functions have
demonstrated great potential in stability and perfor-
mance analysis of LDIs, saturated systems and uncer-
tain systems with generalized sector condition (Goebel,
Hu & Teel, 2005; Goebel, Teel, Hu & Lin, 2006; Hu,
Goebel, Teel & Lin, 2005; Hu & Lin, 2005; Hu, Teel &
Zaccarian, 2006). Through these functions, stability and
performances of LDIs are characterized in terms of bilin-
ear matrix inequalities (BMIs) which cover the existing
LMI conditions in (Boyd et al, 1994) as special cases.
Since extra degrees of freedom for optimization are in-
jected through the bilinear terms, the analysis results are
guaranteed to be at least as good as those obtained by
corresponding LMI conditions. Extensive examples have
shown that these non-quadratic Lyapunov functions can
effectively reduce conservatism in various stability and
performance analysis problems.
With the effectiveness of non-quadratic Lyapunov func-
tions demonstrated on a number of analysis problems,
they can further be applied to the construction of feed-
back laws. For linear time-invariant systems, it is well
known that nonlinear controls have no advantage over
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linear controls when it comes to stabilization or min-
imization of the L2 gain (see e.g. Khargonekar, Pe-
tersen & Rotea, 1988). For systems with time-varying
uncertainties and LDIs, it is now accepted that nonlin-
ear control can work better than linear control. In (Blan-
chini & Megretski, 1999), examples were constructed
to demonstrate this aspect and it was suggested that
non-quadratic Lyapunov functions would facilitate the
construction of nonlinear feedback laws. In (Blanchini,
1995), piecewise linear (or polyhedral) Lyapunov func-
tions was used to guide the construction of variable-
structure control laws for robust stability and rejection
of bounded persistent disturbances.
In this paper, we use one of the pair of conjugate Lya-
punov functions considered in (Goebel et al, 2005; Hu et
al, 2005), the convex hull function (i.e., the convex hull of
quadratics), for the construction of nonlinear state feed-
back laws. This paper is organized as follows. Section 2
describes the problems to be studied and presents some
preliminaries on the convex hull function. Section 3 ap-
plies the convex hull function to the construction of non-
linear state feedback laws for robust stabilization. Sec-
tion 4 constructs nonlinear feedback laws to achieve a
couple of robust performance objectives. Section 5 uses
a few examples to demonstrate the effectiveness of non-
quadratic Lyapunov functions and nonlinear feedback
design. Section 6 concludes the paper.
Notation
- | · |∞: For x ∈ R

n, |x|∞ := maxi |xi|.
- ‖ · ‖2: For u ∈ L2, ‖u‖2 :=

(∫∞
0 uT (t)u(t)dt

) 1
2 .

- I[k1, k2]: For two integers k1, k2, k1 < k2, I[k1, k2] :=
{k1, k1 + 1, · · · , k2}.

- coS: The convex hull of a set S.
- E(P ) := {x ∈ R

n : xTPx ≤ 1}.
- LV := {x ∈ R

n : V (x) ≤ 1}.
- L(H) := {x ∈ R

n : |Hx|∞ ≤ 1}.
About the relationship between E(P ) andL(H), we have

E(P ) ⊆ L(H) ⇐⇒ H�P
−1HT

� ≤ 1 ∀ � ∈ I[1, r], (1)

where H� is the �th row of H .

2 Problem statement and preliminaries

Consider the following polytopic linear differential in-
clusion (PLDI),

[
ẋ

y

]
∈ co

{[
Aix + Biu + Tiw

Cix + Diw

]
: i ∈ I[1, N ]

}
, (2)

where x ∈ R
n is the state, u ∈ R

m is the control input,
w ∈ R

p is the disturbance and y ∈ R
q is the output.

Ai, Bi, Ti, Ci and Di are given real matrices of compat-
ible dimensions. This type of LDIs can be used to de-
scribe a wide variety of nonlinear systems, possibly with
time-varying uncertainties (see Boyd et al, 1994).

Control design problems for LDIs via linear state feed-
back of the form u = Fx have been extensively ad-
dressed in (Boyd et al, 1994), where quadratic Lyapunov
functions are used as constructive tools and the con-
trol problems are transformed into LMIs. While the LMI
technique has gained tremendous popularity and its ap-
plications are still expanding to different types of sys-
tems, the conservatism resulting from quadratic Lya-
punov functions has been recognized and efforts have
been devoted to the construction of non-quadratic Lya-
punov functions. On the other hand, it has also been rec-
ognized (e.g., Blanchini et al, 1999) that restriction to
linear feedback laws may also impose unnecessary limi-
tations to the achievable performances.
In this paper, we use the convex hull function to con-
struct nonlinear feedback laws to achieve a few objec-
tives of robust stabilization and performance. In what
follows, we give a brief review of the definition and some
properties of the convex hull function that will be nec-
essary for the development of the main results.
The convex hull function is constructed from a family of
positive definite matrices. Let Qj ∈ R

n×n, Qj = QT
j >

0, j ∈ I[1, J ]. Let

ΓJ :=
{
γ ∈ R

J : γ1 + γ2 + · · · + γJ = 1, γj ≥ 0
}

.

The convex hull function is defined as

Vc(x) := min
γ∈ΓJ

xT

⎛
⎝ J∑

j=1

γjQj

⎞
⎠

−1

x. (3)

From the definition, Vc(x) and the optimal γ can be
computed by solving a simple LMI problem obtained
via Schur complements. This function was first used in
(Hu & Lin, 2003) to study constrained control systems,
where it was called the composite quadratic function. It
was later called convex hull function, or convex hull of
quadratics, in (Goebel et al, 2006; Hu et al, 2005) since
it is the convex hull (see Rockafellar, 1970) of the family
of quadratics xT Q−1

k x, or equivalently, the convex hull
of g(x) = min{xT Q−1

k x : k ∈ I[1, J ]}. As observed in
(Goebel et al, 2006)

Vc(x) = cog(x)

= min

{
n+1∑
k=1

λkg(xk) :
n+1∑
k=1

λkxk = x, λ ∈ Γn+1

}
.

By (Rockafellar, 1970), g(xk) and n + 1 in the above
equation can be replaced with xT

k Q−1
k xk and J , respec-

tively. It turns out that the level set of Vc is the convex
hull of a family of ellipsoids. If we define the 1-level set
of Vc as

LVc := {x ∈ R
n : Vc(x) ≤ 1} ,

and denote the 1-level set of the function xTPx as

E(P ) :=
{
x ∈ R

n : xTPx ≤ 1
}

,
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then

LVc =

⎧⎨
⎩

J∑
j=1

γjxj : xj ∈ E(Q−1
j ), γ ∈ ΓJ

⎫⎬
⎭ .

It is established in (Goebel et al, 2006; Hu & Lin, 2003)
that Vc is convex and continuously differentiable. From
the definition, it can be verified that Vc is homogeneous
of degree 2, i.e., Vc(αx) = α2Vc(x).
For a compact convex set S, a point x on the boundary
of S (denoted as ∂S) is called an extreme point if it
cannot be represented as the convex combination of any
other points in S. A compact convex set is completely
determined by its extreme points. In what follows, we
characterize the set of extreme points of LVc . Since LVc is
the convex hull of E(Q−1

j ), j ∈ I[1, J ], an extreme point
must be on the boundaries of both LVc and E(Q−1

j ) for
some j ∈ I[1, J ]. Denote

Ek := ∂LVc ∩ ∂E(Q−1
k ) =

{
x : Vc(x) = xTQ−1

k x = 1
}

.

Then
⋃J

k=1 Ek contains all the extreme points of LVc .
The exact description of Ek is given as follows.

Lemma 1 (Hu et al, 2006) For each k ∈ I[1, J ],

Ek ={x∈∂LVc : xTQ−1
k (Qj−Qk)Q−1

k x ≤ 0, j∈I[1, J ]}.

For x ∈ R
n, define

γ∗(x) := arg min
γ∈ΓJ

xT

⎛
⎝ J∑

j=1

γjQj

⎞
⎠

−1

x. (4)

Generally, γ∗ is uniquely determined by x and is a con-
tinuous function of x except for some degenerated cases
(Hu & Lin, 2004). It is evident that γ∗(αx) = γ∗(x) for
any α �= 0. Detailed properties about γ∗ were character-
ized in (Hu & Lin, 2004). The following lemma combines
some results from (Hu & Lin, 2003, 2004).

Lemma 2 Let x ∈ R
n. For simplicity and without loss

of generality, assume that γ∗
k(x) > 0 for k ∈ I[1, J0] and

γ∗
k(x) = 0 for k ∈ I[J0 + 1, J ]. Denote

Q(γ∗) =
J0∑

k=1

γ∗
kQk, xk = QkQ(γ∗)−1x, k ∈ I[1, J0].

Then Vc(xk) = Vc(x) = xT
kQ−1

k xk and xk ∈ (Vc(x))
1
2 Ek

for k ∈ I[1, J0]. Moreover, x =
∑J0

k=1 γ∗
kxk, and for all

k ∈ I[1, J0],

∇Vc(x) = ∇Vc(xk) = 2Q−1
k xk = 2Q(γ∗)−1x, (5)

where ∇Vc(x) denotes the gradient of Vc at x.

Since γ∗(αx) = γ∗(x), by (5), we have ∇Vc(αx) =
α∇Vc(x). Since Vc is homogeneous of degree two, to ob-
tain some geometric interpretation of Lemma 2, we may
restrict our attention to a point x ∈ ∂LVc . Then by the
lemma, x can always be expressed as a convex combina-
tion of a family of xk’s, xk ∈ ∂E(Q−1

k ) (note xk ∈ Ek).
Furthermore, the gradient of Vc at these xk’s are the
same and they all equal to the gradient of Vc at x. In
other words, x and xk’s are in the same hyperplane which
is tangential to LVc . In fact, the intersection of the hy-
perplane with LVc is a polygon whose vertices include
xk’s (see Hu & Lin, 2004).
Properties in Lemma 1 and Lemma 2 are essential to
system analysis and design via the convex hull function.
They have been used in (Hu & Lin, 2005; Hu et al, 2006)
for stability and performance analysis of saturated sys-
tems and uncertain systems with generalized sector con-
ditions.

3 Nonlinear feedback for robust stabilization

In the absence of disturbance, the LDI (2) reduces to,

ẋ ∈ co{Aix + Biu : i ∈ I[1, N ]}. (6)

For stability design, we only consider the state inclusion.
We would like to construct a nonlinear state feedback
law to achieve robust stabilization via the convex hull
function Vc(x). The main result is given as follows.

Theorem 1 Consider Vc composed from Qk ∈ R
n×n,

Qk = QT
k > 0, k ∈ I[1, J ]. If there exist β > 0, Yk ∈

R
m×n, and λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ] such that

QkAT
i + AiQk + Y T

k BT
i + BiYk

≤
J∑

j=1

λijk(Qj − Qk) − βQk ∀ i, k, (7)

then a stabilizing nonlinear feedback law can be con-
structed as follows. For each x ∈ R

n, let γ∗(x) ∈ ΓJ be
defined as in (4). Let

Y (γ∗) =
J∑

k=1

γ∗
kYk, Q(γ∗) =

J∑
k=1

γ∗
kQk, (8)

F (γ∗) = Y (γ∗)Q(γ∗)−1. (9)

Define f(x) = F (γ∗(x))x. Then for all x ∈ R
n, we have

max{∇Vc(x)T(Aix + Bif(x)) : i ∈ I[1, N ]} ≤ −βVc(x),
(10)

which implies that the closed-loop system under u = f(x)
is stable. If the vector function γ∗(x) is continuous in x,
then u = f(x) is a continuous feedback law. 
Proof. See Appendix A. �

Since γ∗(αx) = γ∗(x), we have f(αx) = αf(x) and the
resulting closed-loop system is homogeneous of degree
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one. Here we give some explanation on the construction
of f(x). Let Fk = YkQ−1

k . If x ∈ Ek, then f(x) = Fkx.
For a general x ∈ ∂LVc , we can express it as the convex
combination of a family of xk ∈ Ek, k = 1, 2, · · · , J0, i.e.,
x = ΣJ0

k=1γ
∗
kxk by Lemma 2. Then f(x) is the convex

combination of f(xk)′s with the same coefficients, i.e.,
f(x) = ΣJ0

k=1γ
∗
kf(xk).

When the inequality (10) is satisfied, Vc(x(t)) is strictly
decreasing and we have Vc(x(t)) ≤ Vc(x(0))e−βt for ev-
ery solution x(·). Hence β is a measure of convergence
rate. To increase the convergence rate, an optimization
problem can be formulated to maximize β as follows:

sup
λijk≥0,Qk=QT

k
>0,Yk

β s.t. (7). (11)

The constraint (7) consists of a family of bilinear matrix
inequalities (BMIs) which contain some bilinear terms as
the product of a full matrix and a scalar, i.e., λijk(Qj −
Qk). Similar bilinear terms are contained in the opti-
mization problems in (Goebel et al, 2005, 2006; Hu et al,
2005, 2006). In the aforementioned works, we adopted
the path-following method from (Hassibi, How & Boyd,
1999) and our extensive numerical experience shows that
the path-following method is very effective. We actually
implemented a two-step iterative algorithm which com-
bines the path-following method and the direct iterative
method. The first step of each iteration uses the path-
following method to update all the parameters at the
same time. The second step fixes λijk ’s and solves the
resulting LMI problem which includes Qj ’s and Yj ’s as
variables. In (Hu et al, 2006), a 12-th order anti-windup
system was used to demonstrate nonlinear L2 gain anal-
ysis via convex hull functions. The two-step iterative al-
gorithm converges very well and the results show sig-
nificant improvement on those obtained via quadratic
functions.
We note that when J = 1, Vc reduces to a quadratic
function and F (γ∗(x)) reduces to a constant gain. And
the optimization problem (11) reduces to a generalized
eigenvalue problem (GEVP) which can be solved under
the LMI framework. In our computation, we first solve
the optimization problem for J = 1 and then use the
optimal Q∗ and Y ∗ to start the two-step iterative algo-
rithm for some J > 1, with Qj = Q∗ and Yj = Y ∗ for
all j and λijk ≥ 0 randomly chosen. With this approach,
the optimization result will be guaranteed to be at least
as good as that obtained by solving the corresponding
GEVP problem. Similar approaches can be derived for
other optimization problems for evaluating the reach-
able sets and the L2 gain in Section 4.

4 Nonlinear feedback for robust performance

Consider the linear differential inclusion (2) in the pres-
ence of disturbances. Like in (Boyd et al, 1994), we con-
sider two types of disturbances, the unit peak distur-

bances
wT(t)w(t) ≤ 1 ∀t ≥ 0 (12)

and the unit energy disturbances

‖w‖2 =
(∫ ∞

0

wT(t)w(t)dt

) 1
2

≤ 1. (13)

Let u = f(x) be a nonlinear state feedback. The closed-
loop system is

[
ẋ

y

]
∈ co

{[
Aix + Bif(x) + Tiw

Cix + Diw

]
: i ∈ I[1, N ]

}
.

(14)
The control design objective is disturbance rejection, i.e.,
to keep the state close to the origin or to keep the size of
the output small (in terms of certain norm) in the pres-
ence of a class of disturbances. The disturbance rejection
performance can be characterized by reachable set or the
maximal output norm. When the disturbance is of unit
peak type, the maximal output norm is associated with
the L∞ gain; when the disturbance is of unit energy, the
maximal output norm is associated with the L2 − L∞
gain or the L2 gain. We first consider the reachable set.
4.1 Suppression of the reachable set

The reachable set can be estimated with a level set
of a certain Lyapunov function. In (Boyd et al, 1994),
quadratic Lyapunov functions are considered for LDIs
and the reachable set is estimated with ellipsoids. In this
section, we use the convex hull of a family of ellipsoids to
characterize the reachable set and we attempt to reduce
the reachable set by nonlinear feedback laws.
4.1.1 Reachable set with finite energy disturbances
Theorem 2 Consider Vc composed from Qk ∈ R

n×n,
Qk = QT

k > 0, k ∈ I[1, J ]. Suppose that there exist Yk ∈
R

m×n, and λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ] such that

[
Mik Ti

T T
i −I

]
≤ 0 ∀i, k, (15)

where

Mik = QkAT
i +AiQk+Y T

k BT
i +BiYk−

J∑
j=1

λijk(Qj−Qk).

(16)
Let the nonlinear feedback u = f(x) = F (γ∗(x))x be
constructed from Yk’s and Qk’s as in (8) and (9). Then
for all w bounded by ‖w‖2 ≤ 1 and with x0 = 0, the state
of (14) satisfies x(t) ∈ LVc for all t ≥ 0. 
With the feedback law constructed in Theorem 2, the
level set LVc can be considered as an estimate for the
reachable set. To keep the state in a small neighborhood
of the origin, it is desirable that LVc satisfying the con-
dition is as small as possible. We may use a reference
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polytope to measure the size of LVc . The polytope is de-
scribed in terms of a prescribed matrix H ∈ R

r×n as
follows, L(H) := {x ∈ R

n : |Hx|∞ ≤ 1}. The “outer”
size of LVc is defined as

αout := min{α : LVc ⊂ αL(H)}. (17)

The matrix H can be chosen such that H�x is a certain
quantity that we would like to keep small. If we have
LVc ⊂ αL(H), then |H�x(t)| ≤ α for all t in the presence
of the class of disturbances. Since L(H) is a convex set
and LVc is the convex hull of the ellipsoids E(Q−1

k ), it is
easy to see that LVc ⊂ αL(H) = L(H/α) if and only if
E(Q−1

k ) ⊂ L(H/α) for all k. By (1), this is equivalent to

H�QkHT
� ≤ α2 ∀� ∈ I[1, r], k ∈ I[1, J ]. (18)

In view of the above arguments, the problem of reducing
the reachable set can be formulated as

inf
λijk≥0,Qk=QT

k
>0,Yk

α s.t. (15), (18). (19)

Proof of Theorem 2. It suffices to show that, under
condition (15), we have V̇c ≤ wTw for all x and w sat-
isfying (14). Then by integrating both sides, we have
Vc(x(t)) ≤ ∫∞

0
wTwdt ≤ 1 and hence x(t) ∈ LVc for all

t. We need to prove that

∇Vc(x)T(Aix + Bif(x) + Tiw) ≤ wTw ∀x, w, i. (20)

Similarly to the proof of Theorem 1, we can first verify
(20) for every x ∈ Ek by using (15). Then extend the
results to all other x by expressing it as a convex com-
bination of xk ∈ Ek, k = 1, 2, · · · , J0 with f(x) as the
same convex combination of f(xk)′s. �

4.1.2 Reachable set with unit peak disturbances
Theorem 3 Consider Vc composed from Qk ∈ R

n×n,
Qk = QT

k > 0, k ∈ I[1, J ]. Suppose that there exist Yk ∈
R

m×n, λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ] and β > 0
such that [

Mik + βQk Ti

T T
i −βI

]
≤ 0 ∀i, k, (21)

where Mik is given by (16). Let the nonlinear feedback
law u = f(x) = F (γ∗(x))x be constructed from Yk’s
and Qk’s as in (8) and (9). Then LVc is an invariant
set, which means that all trajectories starting from LVc

will stay inside for any possible disturbance satisfying
w(t)Tw(t) ≤ 1, ∀t ≥ 0. Moreover, for all x0 ∈ R

n and all
possible disturbances, x(t) will converge to LVc . 
Proof. With similar arguments as in the proof of The-
orem 1, it can be shown that under the condition (21),

we have V̇c ≤ −βVc(x) + βwTw, for all x ∈ R
n, w ∈ R

p

satisfying (14). Since wTw ≤ 1, for Vc(x) = 1, we have
V̇c ≤ 0 and Vc is nonincreasing. Hence LVc is an invariant
set. If Vc(x) > 1, then V̇c is strictly decreasing. Hence
any trajectory starting from outside of LVc will converge
to LVc . �

Similarly to the unit energy disturbance case, we can
formulate the following optimization problem for mini-
mizing the reachable set or the maximal output norm,

inf
λijk ,β≥0,Qk=QT

k
>0,Yk

α s.t. (21), (18). (22)

4.2 Suppression of the L2 gain

For the type of energy bounded disturbances, we have
the following result:
Theorem 4 Let Qk ∈ R

n×n, Qk = QT
k > 0, k ∈ I[1, J ].

Let δ > 0. Suppose that there exist Yk ∈ R
m×n and

λijk ≥ 0, i ∈ I[1, N ], j, k ∈ I[1, J ] such that

⎡
⎢⎢⎣

Mik Ti QkCT
i

T T
i −I DT

i

CiQk Di −δ2I

⎤
⎥⎥⎦ ≤ 0, ∀ i, k, (23)

where Mik is given by (16). Let the nonlinear feedback
law u = f(x) = F (γ∗(x))x be constructed from Yk’s and
Qk’s as in (8) and (9). Then for system (14) with x0 = 0,
we have ‖y‖2 ≤ δ‖w‖2. 
The proof of Theorem 4 is omitted since the main ideas
are similar to those for the previous theorems. We just
need to show V̇c + 1

δ2 yTy − wTw ≤ 0, first for x ∈ Ek,
then use the properties of Vc and the controller to extend
the result to other x. By Theorem 4, the quantity δ
gives an upper bound for the L2 gain. The following
optimization problem can be formulated for suppression
of the L2 gain:

inf
λijk≥0,Qk=QT

k
,Yk

δ s.t. (23). (24)

5 Examples

Example 1 Consider a second-order LDI taken from
(Blanchini & Megretski, 1999),

ẋ ∈ co{A1x + B1u, A2x + B2u},

where

A1 = A2 =

[
0 −1

1 0

]
, B1 =

[
K

1

]
, B2 =

[
−K

1

]
,

for some K > 0. For the LDI to be quadratically stabi-
lizable by linear feedback, K has to be less than 1, i.e.,
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there exists β > 0 and Q > 0 such that the inequalities

Q(Ai + BiF )T + (Ai + BiF )Q ≤ −βQ, i = 1, 2,

are satisfied if and only if K < 1. However, at K = 1, the
LDI can be stabilized with a positive convergence rate
via nonlinear feedback. By solving (11) with J = 2, 3, 4,
the convergence rate β can be increased to 0.5633, 0.6364
and 0.7973, respectively. On the other hand, with J =
2, 3, 4, the maximal K for (11) to have a solution β > 0 is
found to be greater than 2.05, 2.9 and 3.4, respectively.
As shown in (Blanchini & Megretski, 1999), for any K >
0, the LDI can be stabilized by nonlinear feedback which
was explicitly constructed via analytical method based
on the geometric structure of the vector field. However,
it seems hard to extend the analytical method to other
systems.
Example 2 Consider an LDI subject to disturbances,

ẋ ∈ co{A1x + B1u + Ew, A2x + B2u + Ew}, y = Cx,

where

A1 =

[
3 −1

1 2

]
, B1 =

[
1

−0.5

]
, E =

[
1

1

]
,

A2 =

[
3 −4

1 2

]
, B2 =

[
0.5

−0.8

]
, C =

[
1 1

]
.

When quadratic Lyapunov function is applied to design-
ing a linear state feedback law, the problem is a special
case of the one studied in Section 4.2 and the optimiza-
tion problem is a special case of (24) with J = 1. In
this case (24) reduces to an LMI problem. The optimal
δ for this case is δ1 = 10.7670. When δ approaches to
δ1, the norm of the feedback gain will approach infin-
ity. If we restrict the norm of the feedback gain to be
less than 5000 (via an additional constraint on Q’s, i.e.,
ε1I < Q < ε2I), the optimal δ is δ̄1 = 11.8886. The
feedback gain is F =

[
−4.25 −2.63

]
× 103.

Next we apply the convex hull function Vc(x) with J = 2
to the design of a nonlinear feedback law. By solving
(24) with J = 2, the minimal δ we have obtained is
δ2 = 1.1947. Again, the norm of one of the feedback gain
has to be very large (in the order of 1010) to produce
the value δ2. If we restrict the norm of Fk = YkQ−1

k to
be less than 1000, then the best δ we have computed is
δ̄2 = 1.8477. Other variables corresponding to this value
of δ = δ̄2 are

F1 =
[
−815.05 −579.43

]
, F2 =

[
−58.74 −28.49

]
,

Q1 =

[
15.68 −20.53

−20.5376 27.9733

]
, Q2 =

[
5.86 −8.39

−8.39 15.89

]
.

Here we compare the output responses for the two de-
signs under the disturbance w(t) = 1 for t ∈ [0, 1]
and w(t) = 0 for t > 1. The switching between ẋ =
A1x+B1f(x)+Ew and ẋ = A2x+B2f(x)+Ew is chosen
such that V̇c is maximized at each time instant. The two
time responses are compared in Fig. 1, where the dashed
curve is produced by the linear state feedback u = Fx
and the solid curve is produced by the nonlinear feedback
constructed from Q1, Q2 and Y1 = F1Q1, Y2 = F2Q2.
For the dashed curve, we have (

∫ 50

0
y2(t)dt)

1
2 = 2.6858,
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Fig. 1. Two output responses

and for the solid curve, we have (
∫ 15

0
y2(t)dt)

1
2 = 0.7984.

Example 3 Consider the same LDI as in Example 2.
Assume that the disturbance is of unit peak type, i.e.,
wT(t)w(t) ≤ 1 for all t. We would like to design a con-
trol law such that the peak of the output is suppressed.
This is achieved by solving (22). When J = 1, Vc is a
quadratic function and the resulting control law is lin-
ear. The optimal solution can be obtained by running β
from 0 to ∞. If no restriction on the magnitude of the
feedback matrix is imposed, the optimal α is 11.9529.
This would require F to go to infinity. If a bound on
the norm of F is imposed, say, ‖F‖ ≤ 5000, we obtain
α = 12.8287 := α1 and F =

[
−4.22 −2.61

]
× 103. For

J = 2, we impose a bound ‖Fk‖ ≤ 1000 and the best α
is 2.4573 := α2. The other parameters are

F1 =
[
−813.89 −577.48

]
, F2 =

[
−62.46 −30.39

]
,

Q1 =

[
18.12 −23.47

−23.47 31.87

]
, Q2 =

[
6.89 −9.99

−9.99 19.13

]
.

The two level sets resulting from J = 1 and J = 2 are
plotted in Fig. 2, where the outer dashed boundary is
that of the ellipsoid E(Q−1) and the inner boundary (in
thick curve) is that of LVc composed from Q1 and Q2.
A trajectory under the linear control u = Fx is plotted.
It starts from near the origin and ends very close to
∂E(Q−1). The switching strategy and the value of w
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are chosen such that V̇c is maximized. Another output
response is generated under the nonlinear control. The
two responses are plotted in Fig. 3.
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6 Conclusions

We developed LMI-based methods for the construction
of nonlinear feedback laws for linear differential inclu-
sions. The convex hull functions are used to guide the
design for achieving a few objectives of robust stabi-
lization and performance. The advantages of nonlinear
feedback over linear feedback has been demonstrated
through some numerical examples. It is expected that
the design methods can be extended to deal with other
performances, such as the input-to-state, input-to-
output and state-to-output performances studied in
(Boyd et al, 1994).

A Proof of Theorem 1

Since the closed-loop system is homogeneous of degree
one, Vc is homogeneous of degree two and ∇Vc(αx) =
α∇Vc(x), we only need to restrict our attention to the
boundary of the 1-level set, ∂LVc . The rest of the proof
is proceeded with two steps. We first prove that (10) is

satisfied for all extreme points of LVc , in particular, for
all x ∈ Ek, k ∈ I[1, J ]. Next we use Lemma 2 to express
an arbitrary x ∈ ∂LVc as a convex combination of a set
of extreme points, say, xk ∈ Ek, k = 1, 2, · · · , J0. Again
by Lemma 2 the gradient of Vc at x is the same as that at
each xk. Finally (10) follows from the fact that f(x) is a
convex combination of f(xk)’s and that Vc(x) = Vc(xk)
for each k.
Now consider x ∈ Ek for some k ∈ I[1, J ]. Then Vc(x) =
xTQ−1

k x = 1 and γ∗(x) is a vector whose kth element is
1 and the rest are zeros. Hence F (γ∗(x)) = YkQ−1

k and
∇Vc(x) = 2Q−1

k x. By Lemma 1,

J∑
j=1

λijkxTQ−1
k (Qj − Qk)Q−1

k x ≤ 0, i ∈ I[1, N ].

Let Fk = YkQ−1
k . Then f(x) = Fkx. Multiply (7) from

left and from right with Q−1
k , we have

(Ai + BiFk)TQ−1
k + Q−1

k (Ai + BiFk)

≤
J∑

j=1

λijkQ−1
k (Qj − Qk)Q−1

k − βQ−1
k , i ∈ I[1, N ].

It follows that

xT((Ai + BiFk)TQ−1
k + Q−1

k (Ai + BiFk))x
≤ −βxTQ−1

k x = −βVc(x), i ∈ I[1, N ].

Hence for every x ∈ Ek and i ∈ I[1, N ],

∇Vc(x)T(Aix + Bif(x)) = 2xTQ−1
k (Ai + BiFk)x

≤−βVc(x). (A.1)

This implies that (10) is satisfied for all x ∈ Ek.
Next we consider an arbitrary x ∈ ∂LVc . By Lemma 2,
x is a convex combination of a set of xk’s, each of which
belongs to a certain Ek. For simplicity, assume that
γ∗

k(x) > 0 for k = 1, 2, · · · , J0 and γ∗
k(x) = 0 for k > J0.

Then x =
∑J0

k=1 γ∗
kxk. Recalling from Lemma 2 that

∇Vc(x) = 2Q(γ∗)−1x and

Q(γ∗)−1x = Q−1
k xk, k ∈ I[1, J0], (A.2)

we have

F (γ∗)x = Y (γ∗)Q(γ∗)−1x =
J0∑

k=1

γ∗
kFkQkQ−1

k xk

=
J0∑

k=1

γ∗
kFkxk. (A.3)
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Hence

Aix + BiF (γ∗)x =
J0∑

k=1

γ∗
k(Aixk + BiFkxk). (A.4)

It follows that

∇Vc(x)T(Aix + BiF (γ∗)x)

= 2xTQ(γ∗)−1
J0∑

k=1

γ∗
k(Aixk + BiFkxk)

= 2
J0∑

k=1

γ∗
kxT

k Q(γ∗)−1(Ai + BiFk)xk

= 2
J0∑

k=1

γ∗
kxT

k Q−1
k (Ai + BiFk)xk. (A.5)

Since xk ∈ Ek, by (A.1) and noting that Vc(xk) = Vc(x)
for each k, we have

∇Vc(x)T(Aix+BiF (γ∗)x)≤−
J0∑

k=1

γ∗
kβVc(xk)=−βVc(x),

which shows (10). Since Y (γ∗) and Q(γ∗) are continuous
in γ∗, and Q(γ) > 0 for all γ ∈ ΓJ , the continuity of
f(x) = F (γ∗(x))x follows from that of γ∗(x). �
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