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Abstract

We study the control problems in magnetic bearing systems that are subject to both
input and state constraints. Apart from the usual restrictions on voltages and currents in
the circuit systems, most magnetic bearing systems are subject to severe state constraint:
the motion of the rotor (the suspended object) is only allowed in an extremely small air gap,
otherwise the collision of the rotor and the stator would cause severe damages. Traditional
methods for avoiding collision include increasing the air gap and increasing the currents,
which usually result in unnecessarily large capacity of power supply and power loss. This
paper presents a systematic approach to dealing with all the input and state constraints by
using some recently developed tools for constrained control design. We hope that by dealing
with the constraints properly, safety operation can be ensured with relatively small currents
and power consumption. Experiment on the balance beam test rig in our laboratory shows
that the design techniques are very effective.

Keywords: Constrained control, linearization, magnetic bearings, stabilization, transient
performance

1 Introduction

Active magnetic bearings (AMB) have several appealing advantages over traditional bearings,
such as very low power-loss, very long life, elimination of oil supply, low weight, reduction
of fire hazard, vibration control and diagnostic capability[l]. They have been utilized in a
variety of rotating machines ranging from artificial heart pumps, compressors, high speed milling
spindles to flywheel energy storage systems. This work is intended to develop a systematic design
approach to the control of magnetic bearing systems through a simple experimental setup at
the University of Virginia. A key feature of our approach is that it takes state and control
constraints into account in the design of feedback laws.

The experimental system we used in this paper is a beam balancing test rig (see Fig. 1 for
a picture of the test rig and Fig. 2 for an illustrative diagram). It consists of a beam free

to rotate on a pivot at its center of mass, and stabilized by electromagnets located at both



Figure 2: Illustrative diagram for the test rig.

ends of the beam. This experiment mimics the dynamics of a single axis AMB system. It
captures the fundamental features of many magnetic bearing systems yet is quite simple from a
mechanical viewpoint. Recently, in [5], we attempted to characterize the relationship between
several performances and the biasing level through numerical optimization method.

The dynamics of the beam can be modeled by the following differential equation (see, e.g.,

[3]):

JO=—DO+Ty,—Tn, (1)

where 0 is the angle between the beam and the horizontal direction, and 77 and 75 are the
torques generated by the two electromagnets. The total torque provided by the electromagnets
is To — 17 =: T'. The system parameters are: J —the moment of mass, and D — system damping
due to air and pivot friction.

The two electromagnetic circuits are described by the following differential equations:

L, = v —LL— R, (2)
Loly = wy— IbLo — Rolo, (3)
where L I
L = 090 L= 090 ’
go+0 go—0

Ly is the inductance of the coil when the beam is balanced (# = 0) and gy is the maximal

angle which is reached when one end of the beam touches an electromagnet. The torques are



determined from the air gap fluxes in terms of I, Iy and 6 as follows,

2 2
gol1 gol2 )
Ty =cn (90 0) 5 Ty = cpo (go iy 5

where ¢;1 and c¢yo are constants. In our test rig, R4 = Ry = R and ¢;1 = ¢9 = ¢4.

Different magnetic bearing systems can be modeled similarly to the above balance beam
system. For example, [8] considered a rotor whose one dimensional position is controlled by a
pair of electromagnets. The model in [8] is mathematically the same as the one in this paper.
Similar models were studied in [4], [9], etc. More complicated magnetic bearings are composed
of several pairs of electromagnets as modeled above.

The magnetic bearing system (1)-(3) is a control system subject to both input and state
constraints. First, the voltage supplies are always bounded, so we have |v1], |va] < vy, for
some vys. The relation between the bound on the voltages and the performances of magnetic
bearings has been studied in [12]. Second, the currents /; and I are restricted within certain
bound Ij; to prevent over heating (or excessive power-loss) and flux saturation. Finally but
most importantly, the displacement  must be kept within |0 < go to prevent the contact of the
beam with the stator. The state constraints are often the most severe and must be observed. In
rotational machinery suspended by magnetic bearing, the rotor may spin at a very high speed
(e.g., the high speed flywheel energy storage system) and may have sharp blades on it (e.g.,
the artificial heart pump). The collision of the rotor and the stator will cause severe damage
to the whole system. A factor that makes the control design even more difficult is that the
displacement of the rotor is restricted to an extremely small value due to the usually very small
air gap.

It appears to us that these constraints in the magnetic bearing systems have not been
addressed systematically in the literature and in the industry. Although the voltage bound and
the current bound can be selected according to the required force slew rate, the load tolerance
and other performance requirements through estimation, this selection could be conservative
and could lead to over-sized power supply. The state constraint, as far as we know, has not been
paid sufficient attention. A common strategy is to restrict the motion of the rotor to a small
portion of the air gap. This generally would result in an unnecessarily large air gap and hence
unnecessarily large currents. We hope that, by dealing with all these constraints properly, the
rotor could be allowed to move in the full air gap without causing collision and the currents and
the capacity of power supply could be reduced considerably.

Recently, we developed a set of analysis and design tools to deal with input constraints (or
actuator saturation) in control systems. These results are contained in the book [6]. In this
paper, we will extend these results and develop some tools to deal with both input and state
constraints in magnetic bearing systems. To use these tools, we need to obtain a linearized
model. There are different ways to linearize a magnetic bearing system, including Jacobian

linearization, feedback linearization and other approaches (see, e.g., [9, 10]). We first adopt the



conventional Jacobian linearization approach and will explain through stability analysis why it
only works well under a large bias current. We will then present an exact linearization approach
based on a nonlinear current allocation. We also present an almost linearization approach for the
voltage mode. It appears that, among these three linearization methods, the exact linearization
approach will lead to the best results: full utilization of the air gap, small bias current and
robustness. All the results are verified on the balance beam test rig in our laboratory.

The remainder of the paper is organized as follows. In Section 2, we present some design
tools for linear systems with input and state constraints, including stabilization and performance
improvement. Section 3 designs controllers to enlarge the stability region through three lineariza-
tion approaches. These three design approaches are compared through theoretical analysis and
experimental verification. Section 4 addresses the issue of improving the transient performances.
The effectiveness of the design techniques are also illustrated by experimental results. Section 5
concludes the paper.

Notation: For a real vector u, denote |u|,, = max;|u;|. We use sat : R™ — R™ to denote
the standard vector-valued saturation function, i.e., for v € R, the ith component of sat(u) is

sign(u;) min{1, |u;|}.

2 Tools for constrained control design

Virtually all control systems are subject to input saturation and state constraint. In a magnetic
bearing system, the control inputs are voltages or currents. The voltage supplies are always
bounded and the currents are restricted within certain bounds to avoid flux saturation and over
heating. The displacement of the suspended object are usually restricted to a very small value
due to the usually small air gap. In this section, we develop some design tools to deal with the

input and state constraints by extending some of the results in [6].

2.1 Systems with input and state constraints

Consider a linear system subject to input saturation and state constraint
t=Arx+ Bu, xze€R", ueR™ (4)

The input constraint is imposed as |u|o < 1 and the state constraint is € X., where X, C R"
is usually a polytope containing the origin in its interior. Our objective in this paper is to
design a feedback law such that the closed-loop system possesses a large stability region and a
good transient response. To design a feedback law such that the closed-loop system has a large
stability region, we may construct a large invariant set, usually an invariant ellipsoid, that is
inside the stability region.

An ellipsoid is associated with a positive definite matrix P € R™*™ (P > 0). Given a P > 0,



define the Lyapunov function as V(z) = 2™ Pz and denote
EP):={zeR": z"Pz<1}.

We are interested in the control of system (4) by saturated linear feedback of the form u =

sat(F'z). The closed-loop system under this feedback law is
& = Ax + Bsat(Fx). (5)
An ellipsoid £(P) is invariant for system (5) if and only if
V(z) = 22" P(Azx + Bsat(Fz)) <0, Yz € dE(P).
In this case, all the trajectories starting from £(P) will stay inside it. If we further have
V(z) = 22" P(Az + Bsat(Fz)) < —B2 Pz, Yz € &(P),

for some positive number 3, then all the trajectories starting from £(P) will stay inside and
converge to the origin. The number 8 can be considered as an indication of the convergence
rate of the trajectories. A larger § usually results in good transient performances: fast response
and small overshoot.

For a matrix F' € R™*", denote
LF):={xeR": |Fzx|x <1}.

If the feedback control is u = sat(F'z), then L£(F') is the region where u is linear in x. For

simplicity, we assume that the state constraint set is a symmetric polytope,
X.={zeR": |Gz|x <1} = L(G),

for some matrix G € RP*". To ensure that the state constraint z € £(G) is satisfied all the

time, we can construct an invariant ellipsoid £(P) such that £(P) C L(G).

2.2 Design for large stability region

For any F' such that A+ BF is Hurwitz, it is easy to see that the closed-loop system is locally
asymptotically stable. In the presence of state constraint, the stability region is the set of initial
conditions from which the state trajectories will stay inside X, = £(G) and converge to the
origin. An approach to enlarge the stability region is to design an F' such that (5) has a large
invariant ellipsoid inside £(G). The largeness of an ellipsoid can be measured with respect of a

group of reference points x1, x2, - - -z, by the number ag defined as follows:

ar(P):=max{a>0: azx; € E(P) Vi}.



For example, suppose that the state of the system in (1) is z = { 0 6 r and we would like to

T
achieve stabilization for a large initial angular displacement. We can then choose x1 = [ 10 } .
The problem of searching for an F' that maximizes the invariant ellipsoid can be described

as the following optimization problem

sup « (6)
P>0,F

st. a) axr; € E(P), i=1,2,--- ¢,

b) (A+ BF)'P + P(A+ BF) < 3P,
) E(P) C L(F),
E(P) C L(G).

C

d)

Under constraints b) and c), £(P) is an invariant ellipsoid. Constraint d) guarantees that the
state constraint is satisfied inside this ellipsoid. A positive 3 ensures a certain margin of stability.

The optimization problem (6) can be transformed into an LMI problem by using the tools
developed in Chapters 7 and 8 of [6]. Introducing new variables Q = P!, H = FQ and
v = 1/a?, the optimization problem can be equivalently written as

inf
onf (7)

T Q
b) QA" + AQ+ H"B + BH < —f3Q,

-
s.t. a) [7 Vil >0, i=1,2,--- .0,

C) [}ST 25 207 j:1727"'ama
J J

d) nggggla k:1727"'7p7

where h; is the jth row of H and g is the kth row of G. The above problem can be solved
efficiently with LMI toolbox in Matlab.

2.3 Design for performance improvement

As we will see in Example 2, Section 3.2, the controller designed by solving (6) may result in
slow transient response of the closed-loop system. To improve the transient response, we may
try to maximize the number § in (6b). Meanwhile, we would like to guarantee certain desired
stability region, for example, to ensure that the invariant ellipsoid £(P) include some desired
points, x1, 9, - - - Ty.

The problem of performance improvement with guaranteed stability region can thus be
described by the following optimization problem:

sup S (8)
P>0,F



st. a) ;€ E(P), i=1,2,---,¢,
b) (A+ BF)'P + P(A+ BF) < — 3P,
c) E(P) C LIG)NL(F).

Like the optimization problem (6), this optimization problem can be transformed into an LMI
problem.
The constraint £(P) C L(F) indicates that |Fz|o < 1 and hence sat(Fz) = Fx for all
x € E(P), which means that the system (5) operates linearly inside the ellipsoid. Because of
this, we have |Fx|s < 1 for almost all x € £(P). This means that the control input is almost
always below the saturation level. To fully explore the control effort, we may try to use a
controller of the form
u = —sat(kB" Pz). 9)

Theoretically, by letting £k — oo, the convergence rate of the Lyapunov function z* Px is op-
timized (see Chapter 11 of [6]). However, all the practical systems have measurement noise,
i.e., what we use for feedback is « + 7 rather than the exact =, and the feedback control w is
actually u = —sat(kB"P(x + n)). By increasing k, the effect of noise is also magnified, as we
will see in Example 4, Section 4. If the noise is of high frequency and the state is close to the
origin, excessively large k£ will cause the control to switch between 1 and —1 constantly, caus-
ing implementation problem. Hence it is important to choose a suitable k to achieve a desired

convergence rate while keeping the effect of measurement noise acceptable.

2.4 Possible reduction of the actuator capacity

By solving the optimization problems (6) and (8), we obtain an invariant ellipsoid £(P) C
L(G) N L(F). The set inclusion relations £(P) C L(G) and E(P) C L(F) are generally not
equally tight. This means that there may exist Bg, Br € (0,1] such that E(P) C fgL(G) and
E(P) C BrpL(F). Certainly, at least one of g and Sr must be 1 by optimality. If 8¢ < 8r = 1,
then the input constraint is tighter. If Sp < Bg = 1, then the state constraint is tighter,
indicating that within the ellipsoid £(P), |Fz| < B < 1, hence the actuator capacity can be
reduced. In the magnetic bearing systems, due to the extremely small air gap, we usually have
a tighter state constraint than an input constraint. In that case, the size of the power supply

can be reduced.

3 Stabilization

To use the design tools in Section 2, we need to obtain a linear model of the magnetic bearing
system. There are different approaches to linearization. Beside the conventional Jacobian lin-

earization, feedback linearization and other approaches have been developed recently [9, 10]. In



this section, we will present three linearization approaches and the corresponding constrained
control designs.
3.1 The Jacobian linearization under the current mode

The dynamics of the beam balancing test rig under the current mode can be modeled by the

following differential equation,

- : gol2 )2 ( gol1 )2
Ji= D@ . , 10
+Ct<<go—9 go +0 (10)

where D, ¢; and gy are constants and gg is the maximal angular displacement which is reached

when the beam touches one of the electromagnets. So we have |0 < gg. It is assumed that
|11], | I2| < Ips to avoid flux saturation and over heating of the coils.

In the current mode, a circuit feedback law has been designed such that the actual current
will closely follow a reference signal. We assume that the circuit dynamics can be ignored and
the difference between the actual I; and Iy and the desired I; and Is is sufficiently small. In

this case, we consider I; and Iy as the control inputs.

3.1.1 The linearized model and the feedback law

In (10), the currents appear in the form of I? and I3, which are highly nonlinear for a control
system. A conventional way to reduce this nonlinearity is to introduce a bias current I, > 0 and

let I; and I operate symmetrically around Iy, i.e.,
L=0L+1I, Ib=1,—1, (11)

where I is used as a control input that produces a net torque on the beam. Because of the
bounds on the currents, we impose the constraint 1| < Ip; — .

With I; and I determined from (11), the dynamical relation between the input I and the

Jg:_Dngct((M)Q_(M)Z), (12)

go—0 go+0

output 6 is,

which is still a nonlinear system. Performing Jacobian linearization at (6,0) = (0,0) and I = 0,

el S [y e

. T
Denoting x = [ 0 0 } and

0 1 0
Ap = 4thg D ,Br = —dcedy |
Jg0 g J

we obtain




we obtain the linearized system
= Arx+ Brl, |I|§IM—Ib (14)

We notice that the open-loop linearized system (14) has an unstable pole since det(Ar,) < 0.
Usually, a saturated linear feedback law I = (In; — Ip)sat(Fz) is adopted with F' being

designed based on the linearized model. The linearized closed-loop system is then given by
i':ALI+BL(IM—Ib) Sat(Fit). (15)
Under the feedback law I = (Ip; — I,) sat(F'x), the actual nonlinear closed-loop system is

Ji— _Db+e <<90(Ib — Iy — Ib)sat(FiE))>2 B (90(16 +Un D) Sat(Fx))Y) . (16)

go— 0 go+0

Based on the linearized model (14), we use the method in Section 2.2 to design an F' for
enlarging the stability region. In the optimization problem (6), we may choose ¢ = 1 and
x1 = (1,0). By solving (6), we will maximize the initial displacement of the beam which can
be brought to the balance position. However, this only guarantees the stability of the linearized
system (15). In what follows, we will examine how well the behavior of the linearized system
(15) predicts that of the nonlinear system (16). In doing so, we will obtain some quantitative
measure of the effect of the biasing current on the ability of the linearized model to predict the

stability region of the original nonlinear system.

3.1.2 Stability analysis

The linearized model approximates the nonlinear system (12) very well when 0 is close to zero.
When 6 is close to gg, the nonlinearity gets stronger and usually causes the beam to hit one of
the electromagnets and stay there. Experimental experience shows that for large I, it is easy
to find an initial position such that the beam will be balanced by the controller. If I is too
small, it is very hard to manipulate the beam (by hands) into a proper position so that it can
be balanced by the controller. In what follows, we would like to explain this through stability

analysis of the linearized closed-loop system (15) and the actual closed-loop system (16).

Example 1 The parameters of the balance beam test rig are:
J = 0.0948kgm?, gy = 0.004rad, ¢; = 0.1384Nm/A.

We choose Iny = 1A and use the method in Section 2.2 to design feedback laws. We take
A = Ap, B = Br(Iy — I), where B absorbs the actual bound on the input I. The state
constraint |6] < 0.004 is equivalent to z € L(G) with G = [1/0.004 0]. The controller will be
of the form I = (Ip; — I)sat(Fzx). In solving (6), we set £ = 1 and choose 1 = (1,0). To

ensure certain stability margin, we choose 8 = 0.01. We designed feedback laws for I, = 0.5A



and I, = 0.1A. The actual stability region of the nounlinear closed-loop system (16) can be
computed by numerical method, for example, by simulating the time responses under different

initial conditions.
For I, = 0.5A, the optimal solution to (6) is a = 0.0028. The control law is

I = 0.55at(357.733760 + 16.43539),

and the invariant ellipsoid is £(P) with

1.2797 0.0588
—10p

P=107x l 0.0588  0.0062 1 ‘
Fig. 3 plots the boundary of the estimated stability region of the linearized close-loop system
(15) in dashed curve (the boundary of £(P)) and the boundary of the actual stability region of
the nonlinear closed-loop system (16) in solid curves. We see that the estimated stability region
based on the linearized model is well inside the actual stability region of the nonlinear system

and is a valid (though conservative) estimate.

0.2

0151

0.1

0
6 (rad) %107

Figure 3: The stability region under I, = 0.5A.

For I, = 0.1A, the optimal solution to (6) is @ = 0.004. Notice that go = 0.004rad. This
means that the beam should be balanced from the initial position where the beam touches the

electromagnets. The control law is
T = 0.9sat(172.47016 4 9.87916),
and the invariant ellipsoid is £(P) with

P10t o l 6.2501 0.0016 ]

0.0016 0.0859

10



Fig. 4 plots the boundary of the estimated stability region of the linearized closed-loop system
(15) in dashed curve and the boundary of the actual stability region of the nonlinear closed-loop
system (16) in solid curves. In contrast to the case where I;, = 0.5A, most part of the estimated
stability region is outside the actual stability region. This means that most initial conditions
will lead to unstable response even if we predict a stable response based on the linearized model.
For example, the beam will not be balanced by the controller if it is initially in touch with the

electromagnets, as is verified by the experiment.

0.2

0151 b

0.1r b

4

=3

a
L

do/dt (radls)
o
™
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;o\
' ‘\
i
| /
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’
\
I
|
|
I
\ f
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I
\ '
\
\ //
v
AN

Figure 4: The stability region under I = 0.1

For comparison, we plot the boundary of the actual stability regions under I, = 0.1A (in
solid curves) and that under I, = 0.5A (in dash-dotted curves) in Fig. 5. This explains why it
is easier to balance the beam with a larger bias current. In the experiment, with I, = 0.5A, the
beam will be balanced even if it is initially in touch with one of the electromagnets. However,
with I, = 0.1A, it is very hard to manipulate the beam into an initial condition that can be

balanced.

The above example shows that the relation between the estimated stability region of the
linearized closed-loop system (15) and the actual stability region of the nonlinear closed-loop
system (16) is quite complicated. The estimated stability region could be a subset of the actual
stability region for large I,. However, for small I, this relation does not hold. Because of this,
it is hard achieve a large stability region by designing the stabilizing feedback law based on

Jacobian linearization, especially when the bias current is small.

3.2 Exact linearization through nonlinear current allocation

The simple linear relation between I, I and I in (11) results in a nonlinear dynamical relation

(12) between I and #. This makes it hard to design a stabilizing controller for small bias current.

11
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Figure 5: The stability regions under I, = 0.1A and 0.5A

In this section, we use the following nonlinear current allocation strategy,

+ 6 —0
11:(]b+1)90 s IQZ(Ib—I)go .
g0 g0

(17)

Under this nonlinear current allocation, the dynamical relation between I and 6 is exactly linear:

JO = —D0 — 4ei I 1, (18)
or,
0 0 1 0 0
RN
Denoting
0 1 0
J J
we have

where the bound on [ is imposed to guarantee that |I1|,|I2| < In;. We also note that there is

go£06
go

no problem in generating the currents given by (17) since the values of are between 0 and

2 (6] < go).

The system (19) is not only linear, but also marginally stable with one open-loop pole at 0
and another one at —D/J.

In this section, we consider the problem of stabilizing system (19) in the presence of state
and input constraints. The performance issue will be addressed in Section 4.

Let the feedback law be of the form

I= (IM/Q—Ib)sat(Fx), (20)

12



then the closed-loop system is
mZAEI—{—BE([]\4/2—Ib) sat(Fa:) (21)

We also use the method in Section 2.2 to find a large invariant ellipsoid £(P) by solving (6)
with A = Ag, B = Bg(Ipm/2 — Iy), x1 = (1,0) and 8 = 0.01. Different from the design result
in Section 3.1 for Jacobian linearization, in the case of exact linearization, £(P) is always inside
the actual stability region. In what follows, we use an example to compare the invariant ellipsoid
E(P) and the actual stability region. It turns out that £(P) is a good estimate of the actual
stability region. Unlike with the Jacobian linearization, where £(P) could be an over estimate
the actual stability region, here the linearization is exact and £(P) is always inside the actual

stability region.

Example 2 Consider the same experimental system as in Example 1. Here we take Ip; = 2A.

For I, = 0.5A, the optimal solution is o = 0.004 and the controller is
I = 0.5sat(179.95780 + 6.22616).

The invariant ellipsoid is £(P) with

P10t o l 6.2502 0.0010 1

0.0010 0.0238

Fig. 6 plots the boundary of £(P), the estimated stability region, in dashed curve and the
boundary of the actual stability region in solid curve.

For I, = 0.1A, the optimal solution is also @ = 0.004 and the controller is
I = 0.9sat(180.36030 + 10.30379). (22)

The invariant ellipsoid is £(P) with

6.2502 0.0018
P=10%x l 0.0018  0.0649 1
Fig. 7 plots the boundary of £(P) in dashed curve and the boundary of the actual stability
region in solid curve.

From Fig. 7, we see that the beam can be stabilized from initially touching the electromag-
nets, even with I, = 0.1A. This result has been verified experimentally. The plots in Fig. 8 are
the time responses under a bias current I, = 0.5A and the plots in Fig. 9 are the time responses
under I, = 0.1A, all obtained from experimental data. The first plots in Figs. 8 and 9 are the
time responses of the beam angle. The second and the third plots are the time responses of the
currents I7 and Is. They were produced by pushing the beam to touch one of the electromagnets

and then letting it go. After the steady state had been reached, the beam was pushed to touch

13
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Figure 7: The estimated stability region and the actual stability region: I, = 0.1A

the other electromagnet. This procedure was repeated several times for each set of the plots.
As we can see, the beam always went back to the balance position. This was impossible with a

bias current I, = 0.1A under the controller based on the Jacobian linearization (13).

Experimental experience shows that the system is very robust against parameter uncertain-
ties and disturbances even with I, = 0.1A. For example, we incorporated uncertain gains k
and ko, and some drift in the actuators so that the currents are
gogjOL o + T, Iz = kol — I)gog;
We tried with (kl, kg, Ilo, [20) = (1, 1, *0028, 005) and (kl, kg, 110, 120) = (08, 12, 0, O), respec-
tively. The time responses of the beam angle are shown in Fig. 10, where the first plot corre-
sponds to (k1, k2, I10, I20) = (1,1, —0.028,0.05) and the second corresponds to (k1, ko, I10, I20) =

0
I = kl(Ib—l-I) + Isg. (23)
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Figure 8: Experimental results: the time responses under I, = 0.5A.

x10°

5
Tz
£ of
5
s i i i i
0 5 10 15 20 25
1 T
_ 05
<
e
0
05 i i i i
5 10 15 20 25
1 w T
_ 05
<
?
o
05 i i i i
[ 5 10 15 20 25

time(sec)

Figure 9: Experimental results: the time responses under I, = 0.1A.

(0.8,1.2,0,0). We see that the stability is maintained under these parameter changes. The
transient performances are slightly different. The overshoot from one side is larger than that

from the other side.

3.3 The voltage mode: almost linearization

In the voltage mode, the currents are determined by the voltages in the circuit systems

Lljl = V1 — [1L1 - RIl, (24)
ngg = V2 — ]2L2 - RIl, (25)
where
90 9o
L = L = L .
1 90 + 0 0 2 go — 0 0

15
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Figure 10: Experimental results: time responses under parameter changes for I, = 0.1A:

(kl, kg, 110, ]20) = (1, 1, —0.028, 0.05) and (kl, kg, ]10, 120) = (0.8, 1.2, 0, 0).

In this section, we investigate the control design in the voltage mode, where the inputs are vy
and vs.
To deal with the nonlinearity in the system, we define some new input and state variables.

Let
g0

ur =v1 — RI1, w2 =v2— R, ¢1= L Loly, ¢2= Lols.
go+0 go — 0
Then we have
. D . Ct 9 9
= ——0+ —5 (o5 — 26
¢'1 = ui, (27)
$2 = us. (28)

In fact, ¢1 and ¢2 are the fluxes in the electromagnets. If we further define ¢, = (41 + ¢2)/2,
¢ = (2 — ¢1)/2, w1 = (u2 — u1)/2 and we = (u1 + uz)/2, we obtain

5o D . 4014L

0 = —79 + J—Lg¢b¢a (29)
o = wi, (30)
()b‘b = wa2. (31)

Notice that there is a bilinear term ¢u¢ in (29). Since ¢ is under the control of the input

we and is independent of other states, we can use a simple controller

wy = k1(¢pa — Pp) (32)
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with a positive number k1 to make ¢, approximate some constant ¢pq. After ¢, has reached a

steady state, the other states 9,9 and ¢ and the input wq satisfy the following linear relation

i 0 1 0 0 0
b|=|-% 0 J5o [| 6 |+]|0|w. (33)
o 0 0 0 @ 1

For the above system, a simple linear feedback law of the form
wy = kol + k30 + kao (34)

can be designed to meet certain performance and stability requirements.
The closed-loop system (29)-(31), (32) and (34) is not strictly linear because of the bilinear

term ¢p¢. The transient dynamics of ¢, can be considered as causing a finite energy disturbance
4c
JL%
robustness and if the dynamics of ¢, is fast, then the performances of the whole system will be
close to those of the linear system (33)-(34).

It should be noted that the idea of obtaining a linear system by setting the sum of the fluxes

(¢p — Ppa)¢ and the whole system is stable. If the control law (34) has certain degree of

fixed is similar to that in [9]. Different from [9], here we take the voltages as inputs and the
dynamics of the fluxes is considered. Moreover, we will also address all the input and state
constraints in our consideration.

From the feedback laws (32) and (34), the feedback relation between the original states

(0,6, 1, I) and inputs (v1,v2) can be obtained as follows

v, = RIl—I-ul
= RL +wo —wy

= R + ki(¢pa — g1+ ¢2

P2 — ¢1

) — kol — k30 — ky

2 2
) (ks — kl)goLo) (k4 + E1)goLo
= —koO — k30 R — I+ k 35
and
Vy = RIQ + u9
= R+ wy+w;

1+ @2 2 — P1
2 2

= RIy+ ki(dpa — ) + kol + k30 + ky

(ks + k1)goLo (ks — k1)goLo
2(go +0) 2(g0 — 0)

To satisfy the voltage bound, we may assign a bound to each item RIy, RI5, wy and ws. The

= kof + k‘gé — I + (R + > Iy + k1¢bd- (36)

bounds on RI; and RI5 can be computed from the bounds on the currents, |I1], |l2| < Ips. Let
the bounds on wy and ws be w1y, and woyy, and let the maximal value of the voltage supply be

vy, then we need to choose wiprand wops such that wips + wops + Rly < vy
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The bias flux ¢pg corresponds to a bias current I, = ¢pq/ Lo at steady state. The bounds on
the currents impose a bound on the flux as |@1], [p2] < Lola/2, so we need to restrict ¢ such
that |¢| S Lo(I]w/Q — Ib)

In summary, for (33), we need to counsider the following state and input constraints,
0] <Or, || < Lo(Inr —Ip), |wi| < wip.

In order to design the control law (34), we may set the objective as finding the invariant el-
lipsoid £(P) that contains e[l 0 0]" with o maximized. This will result in the largest initial
displacement of the beam that can be brought back to the balance position. This objective can
be easily transformed into the optimization problem (6), which can be solved efficiently.

As to the design of the control law (32), suppose that the initial ¢y is 0, then |¢ppg — dp| < dpa
for all time. The constraint on wy can be easily satisfied by choosing k such that k¢pg < wips.

Example 3 Consider the same balance beam test rig as in Example 1. The additional param-

eters in the circuit systems are
R=0.7Q, Lg=4.9060 x 107*H.

We used PWM (pulse width modulated) power amplifier to provide a desired voltage. The
voltage bound is vy, = 15V. We set Iy = 2A, wipy = 10V and wey;, = 3.6V. We choose
¢pg = 0.1Lg and take 8 = 4 to ensure some stability margin. The optimal value of « is 0.0037

and the control law is,
wy = 10sat(—38.60 — 4.60 — 1353.9¢), wy = 50(dpq — ¢).

For the closed-loop system (33) and (34), the point (6,6, ¢) = (0.0037,0,0) is in the resulting
invariant ellipsoid £(P). Since £(P) could be conservative as an estimation of the stability
region, we tried an initial state (6,0,¢) = (0.00399,0,0) and simulation confirms that this
point is still in the stability region. Fig. 11 plots the simulation results with initial conditions
(0,6, $) = (0.00399,0,0) and ¢, = 0.

From the simulation result, it is expected that the controller can bring the beam to the
balance position from initially touching one of the electromagnets. However, we didn’t do this
successfully at the first trials on the experiment. Actually, we were unable to manipulate the
beam into a position that could be stabilized. To find out the reason, we did some simulation
by adding some disturbances to the voltage supply. Instead of letting v1 = RI1 + wo — w1 and
vy = RIs + wo +w; as in (35) and (36), we output

vy = Rl +wy — w1 +v10, v2 = Rlz + w2 + wy + vy

from the controller. Fig. 12 plots the simulation results with v1g = —0.02V, v99 = —0.01V and
initial conditions (6,0, ¢, ¢y) = (0,0,0,0). Clearly, the time responses are diverging and indicate
instability.
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Figure 11: Simulation: a time response of the exact system
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Figure 12: Simulation: unstable response under actuator uncertainties.

The simulation result thus shows that the control system is very sensitive to the voltage
drift. The reason is that, in the control law (35) and (36), the term k¢pq is very small. In the
case k = 50 and I, = 0.1, k¢pq = 0.0025. A small drift of the voltage would result in a large
drift of the effective ¢pq. Recognizing this, we checked the drift of the voltages and made some
correction. The behavior of the test rig was indeed improved. The first plot in Fig. 13 is the
time response of the angle plotted from experimental data. The second and the third plots in
Fig. 13 plot the currents /1 and 5. The beam went back to the balance position after every
pushing to the electromagnets and releasing. However, the currents, which should be around
0.1A, were actually about 0.25A in the steady state. The deviation of the currents from the
theoretical value is caused by the positive voltage drift. In fact, it is impossible to eliminate the

voltage drift completely.
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Figure 13: Experimental results: a stable time response

Since we used a PWM power amplifier, the currents are subject to severe disturbances.
We can see from the plots in Fig. 13 that the disturbance is of very high frequency and large
amplitude as compared to the actual current. However, this big disturbance does not seem to
have a big influence on the performance of the test rig. This is because the mechanical system
acts as a low-pass filter. The main disadvantage of the voltage mode is that it is very sensitive

to actuator uncertainties. This is possibly caused by the PWM power amplifier.

4 Performance Improvement

We presented three approaches for stabilizing magnetic bearing systems in Section 3. From our
experience with the experimental test rig, the exact linearization approach under the current
mode exhibits the best properties in several important aspects including large stability region,
robustness and disturbance rejection. In this section, we will focus on improving the transient
performance for the exact linearized system under the current mode.

Section 2.3 presents an approach to improving the transient performance by solving the

optimization problem (8). Two controllers can be constructed from the optimal solution:
u = sat(Fx) (37)

and

u = —sat(kB" Pz). (38)

The gain k£ needs to be adjusted for the best results. In what follows, we use an example to

illustrate the effectiveness of the design technique.
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Example 4 Consider again the balance beam test rig. In solving the optimization problem
0.004
0
G = [1/0.004 0]. Here is the optimal solution for the case I, = 0.1A:

(8), we choose ¢ = 1 and z; = [ ] The state constraint is represented by £(G) with

B B [ 62500 0.5859 4
B=14.2229, F =[144.3389 27.0619], P = [ 05850 0.08241 x 10

Based on this solution, we obtained two controllers
I = 0.9sat(Fxz) = 0.9 sat(144.33896 + 27.06190), (39)

and
I = 0.9sat(kB" Px) = 0.9sat(307.931760 + 43.30089). (40)

Experimental results show that the performance of the balance beam is much improved by
using the controllers (39) and (40). Fig. 14 compares the time responses of the angle under these
controllers and that under the controller (22), where the dash-dotted curve corresponds to (22),
the dashed curve to (39) and the solid curve to (40). The time response under (22) was plotted
from ¢ = 0 to t = 4, while the time responses under (39) and (40) were only plotted from ¢t = 0
to ¢t = 2.5s. This is because the steady state was reached much earlier under (39) and (40).

already reached.

i i i i i i i
0 0.5 1 15 2 25 3 35 4
time(sec)

Figure 14: Experimental result: The time responses of 6 under different control laws (22), (39)

and (40).

Figs. 15 and 16 plot the time responses of the currents. In each figure, the first plot is the
current under the controller (22), the second plot under (39) and the third plot under (40). In
each plot, the average value of the currents are about 0.1A in the steady state. But the variation

is larger under the controllers (39) and (40). The reason is that, in these two controllers, the
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Figure 15: Experimental result: The time responses of I1 under different control laws (22), (39)

and (40).

coefficients of § are larger that that in (22) and the measurement of the rotational velocity is
subject a larger disturbance than the measurement of the angle. If we increase the gain k in the
controller (40), this disturbance will be amplified and result in larger variations of the currents.
If the currents exceed the saturation level, then the performance and stability of the system

cannot be guaranteed.

5 Conclusions

This paper developed a systematic control design approach for magnetic bearing systems which
are subject to both input and state constraints. We extended some of our recently developed
tools to design controllers for the purposes of enlarging the stability region and improving the
transient performance. We investigated three design approaches through three different lin-
earization methods and compared the stability performances under these approaches. It turned
out that, among these three linearization methods, the exact linearization through nonlinear
current allocation is the best approach. It results in large stability region, good robustness and
disturbance rejection. As applied to the balance beam test rig, the designed controller allows
full utilization of the air gap even with a small bias current. The technique for performance

improvement has also proved to be very effective.
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