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Abstract

Tools from convex analysis are used to show how stability properties and Lyapunov inequalities

translate when passing from a linear differential inclusion (LDI) to its dual. In particular, it is proved that

a convex, positive definite function is a Lyapunov function for an LDI if and only if its convex conjugate

is a Lyapunov function for the LDI’s dual. Examples show how such duality effectively doubles the

number of tools available for assessing stability of LDIs.

I. INTRODUCTION

Duality is a firmly established concept in linear systems theory. For example, a linear system

ẋ(t) = Ax(t) is exponentially stable if and only if its dual system ξ̇(t) = AT ξ(t) is. One way

to verify this relationship is through Lyapunov inequalities. A symmetric and positive definite

matrix P verifies the stability of the first system if AT P + PA < 0. This is equivalent to

AP−1 + P−1AT < 0, which shows that P−1 establishes stability of the second system.
Not coincidentally, the function ξ 7→ 1

2
ξ ·P−1ξ is the convex conjugate (in the sense of convex

analysis) of the function x 7→ 1

2
x ·Px. In this note, we use the convex conjugacy of general, not
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necessarily quadratic, convex functions to study the relationship between and Lyapunov functions

for a linear differential inclusion

ẋ(t) ∈ co {Ai}m
i=1

x(t) (1)

and its dual

ξ̇(t) ∈ co
{

AT
i

}m

i=1
ξ(t) . (2)

In (1), (2), “co” stands for the convex hull (of the finite set of matrices). By a solution to (1)

on [0,∞) we mean a locally absolutely continuous function x(·) such that ẋ(t) is an element

of co{Ai}m
i=1x(t) for almost all t; similarly for (2).

Since the codification of the absolute stability problem (see, for example, [1]), researchers have

looked for Lyapunov functions to guarantee exponential stability and/or input-output properties

for systems that can be modeled as switching among a (possibly infinite) family of linear systems.

The classical circle criterion gives necessary and sufficient condition for the existence of a

quadratic Lyapunov function that certifies exponential stability in the absolute stability problem.

However, it is well known that a system can be absolutely stable without the existence of a

quadratic Lyapunov function; see, for example, [15]. In [14] it is noted that a convex, homoge-

neous of degree two Lyapunov function always exists for an exponentially stable LDI. In [6] it

is shown furthermore that a Lyapunov function can always be taken to be smooth. Identifying

favorable classes of potential Lyapunov functions is a key step towards computationally tractable

stability analysis. In the papers [18], [13], and [5], the authors consider homogeneous polyno-

mial Lyapunov functions and provide linear matrix inequality (LMI) conditions for exponential

stability. In [4], a bilinear matrix condition verifying whether a pointwise maximum of a family

of quadratic functions forms a Lyapunov function is outlined; see also [17].

In this note, we apply several well-established (in convex analysis) techniques to shed new

light on stability of LDIs. Our main result, Theorem 4.1, shows that a convex function is a

Lyapuov function for the LDI (1) if and only if the convex conjugate of that function is a

Lyapunov function for the dual LDI (2). In particular, we recover a result by Barabanov [2] that

(1) is exponentially stable if and only if (2) is exponentially stable. Based on the conjugacy of

Lyapunov functions, we formulate in Corollary 4.5 a sufficient condition for stability of (1). This

condition relies on the class of functions conjugate to those given by a maximum of quadratic

functions. In this sense, it is “dual” to the sufficient condition proposed in [4], which we state



for completeness in Corollary 4.4. The two conditions may lead to different stability estimates.

In such case, one then chooses the better one; see Example 5.3. A more direct benefit of the

equivalence of stability of the dual LDIs is that any previously designed method to verify stability

of an LDI, say that in [5], can be applied to its dual LDI, in order to establish stability of the

original one. This may lead to surprising improvements; see Example 5.2. Further benefits of

duality are illustrated in [12], where stability regions of saturated linear systems are estimated.

II. CONVEX ANALYSIS PRELIMINARIES

Convex conjugacy and some other tools of convex analysis we use here seem not to have been

used in stability analysis, except possibly for situations when operations on quadratic functions

are considered (see, for example, [4], [11]). To make these tools more accessible, we informally

present the basic background material, and conclude the section by showing how considering

the pointwise maximum of several not necessarily quadratic functions or the convex hull of

a nonconvex Lyapunov function can be used in constructing convex Lyapunov functions. The

standard reference for the convex analysis material we summarize here is [16].

Given any function f : IRn → IR, its conjugate function is defined, for ξ ∈ IRn by

f ∗(ξ) = sup
x∈IRn

{ξ · x − f(x)} .

This function is always convex and lower semicontinuous (but possibly infinite-valued). If f itself

is convex, then the conjugate of f ∗ is the function f . That is, (f ∗)∗(x) = supξ {x · ξ − f ∗(ξ)} =

f(x). This fact is fundamental to many arguments involving duality. Basic examples are:

� For a positive definite matrix P ,

f(x) =
1

2
x · Px ⇐⇒ f ∗(ξ) =

1

2
ξ · P−1ξ. (3)

� For any p > 1, q > 1, with 1

p
+ 1

q
= 1,

f(x) =
1

p
(‖x‖p)

p ⇐⇒ f ∗(ξ) =
1

q
(‖ξ‖q)

q . (4)

A more elaborate example is presented in Section III. If f is convex, positive definite, and

positively homogeneous of degree p > 1 (that is, f(λx) = λpf(x) for λ ≥ 0), then

(i) f ∗(ξ) is finite for every ξ ∈ IRn;

(ii) f ∗ is convex, positive definite, and positively homogeneous of degree q > 1 where 1/p +

1/q = 1;



(iii) if
α

p
(‖x‖p)

p ≤ f(x) ≤ β

p
(‖x‖p)

p

for some α > 0, β > 0 (such constants exist for any continuous, positively homogeneous

of degree p and positive definite function), then
β1−q

q
(‖ξ‖q)

q ≤ f ∗(ξ) ≤ α1−q

q
(‖ξ‖q)

q .

For example, positive homogeneity of f ∗ can be verified directly from the definition:

f ∗(λξ) = sup x {(λξ) · x − f(x)} = λq sup x

{

ξ · (x/λq−1) − f(x)/λq
}

= λq sup x

{

ξ · (x/λq−1) − f(x/λq/p)
}

= λq sup x {ξ · x − f(x)} = λqf ∗(ξ).

The bounds for f ∗(ξ) follow from (4) and the fact that conjugacy reverses inequalities. Note

that, since (f ∗)∗ = f , the property of f ∗ described in (ii) above is in fact equivalent to the same

property of f . Similarly, the bounds on f in (iii) are equivalent to those on f ∗.
A subgradient of a convex function f : IRn → IR at x is a vector v ∈ IRn such that

f(x′) ≥ f(x) + v · (x′ − x) ∀x′ ∈ IRn,

and the subdifferential ∂f(x) is the set of all subgradients at x. This set is always nonempty,

and consists of one point if and only if f is differentiable at x (and then the unique point is

∇f(x)). A key relationship between ∂f and ∂f ∗ is:

ξ ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(ξ).

This immediately leads to the following observation: for any positive definite f , f ∗,

∂f(x) · Ax < 0 ∀x 6= 0 ⇐⇒ ∂f ∗(ξ) · AT ξ < 0 ∀ξ 6= 0.

(The inequality ∂f(x) · Ax < 0 should be understood as ξ · Ax < 0 for all ξ ∈ ∂f(x).) Indeed,

suppose the condition on the left holds. Pick any ξ 6= 0, and any x ∈ ∂f ∗(ξ). Then x 6= 0, since

0 ∈ ∂f ∗(ξ) would imply that ξ minimizes f ∗. Thus x · AT ξ = ξ · Ax < 0, since x ∈ ∂f ∗(ξ) is

equivalent to ξ ∈ ∂f(x).
Given any function g : IRn → IR, its convex hull co g is the greatest convex function bounded

above by g. Under mild assumptions, for example when g∗ is finite everywhere (this always

holds if g is positively homogeneous of degree p > 1 and positive definite), we have

co g(x) = min

{

n+1
∑

k=1

λkg(xk) |
n+1
∑

k=1

λkxk = x

}

, (5)



where the minimum is taken over all xk’s and λk such that (λ1, λ2, . . . , λn+1) ∈ ∆n+1. Here and

in what follows, for any natural number r, ∆r = {(λ1, λ2, . . . , λr) |
∑r

k=1
λk = 1, λk ≥ 0}. If

co g(x) =
∑n+1

k=1
λkg(xk) then co g(xk) = g(xk) at each xk with nonzero λk. Furthermore, if g

is differentiable at each such xk, then ∇ co g(x) = ∇g(xk) for each such k (in particular, co g

is differentiable at x).

Now consider convex functions hj : IRn → IR, j = 1, 2, . . . , l, and define

h(x) = max
j=1,2,...,l

hj(x). (6)

The level sets of h are intersections of the level sets of all hi’s. The conjugate function h∗ is the

convex hull of the function g(ξ) = minj=1,2,...,l h
∗

j(ξ). If each hj (and then also h∗

j ) is positively

homogeneous of degree greater than 1, the the level sets of h∗ are the convex hulls of (the

smallest convex sets containing) the level sets of all h∗

j ’s.

Lemma 2.1: Consider a positive definite function h given by (6). Then, the implication

h(x) = hj(x) ⇒ ∂hj(x) · Ax ≤ −γhj(x) (7)

holds at each x ∈ IRn if and only if ∂h(x) · Ax ≤ −γh(x) for all x ∈ IRn.

Proof: Fix x and let j1, j2, . . . , js be the set of all indices for which hjk
(x) = h(x).

In particular, the assumption implies that ∂hjk
(x) · Ax ≤ −γh(x) for k = 1, 2, . . . , s. The

subdifferential ∂h(x) is the convex hull of the union of ∂hjk
(x). More precisely, for r = min{n+

1, s}, given any ξ ∈ ∂h(x), there exist ξ1, ξ2, . . . , ξr with ξk ∈ ∂hjk
(x) and (λ1, λ2, . . . , λr) ∈ ∆r

such that
∑r

k=1
λkξjk

= ξ. Since, for each k, we have ξk · Ax ≤ −γh(x), multiplying these

inequalities by λk and summing them over k = 1, 2, . . . , s yields ξ · Ax ≤ −γh(x).

Finally, we note that “convexifying” any Lyapunov function (for a linear system or an LDI)

leads to another Lyapunov function. In fact, the “convexified” function can be a Lyapunov

function even if the Lyapunov inequality involving the original function fails at many points. In

particular, the convex hull of two quadratic functions can be a Lyapunov function even if the

minimum of these quadratics is not. Consequently, using the minimum as a Lyapunov function

may lead to suboptimal stability estimates. This is verified to an extent by the examples in [17].

Proposition 2.2: For a function W : IRn → IR, let V = co W . Suppose W is differentiable

at every point x with W (x) = V (x) and at such points ∇W (x) · Ax ≤ −γW (x) for a given



matrix A and γ ≥ 0. Suppose that W ∗ is finite everywhere. Then V is differentiable and, for all

x, ∇V (x) · Ax ≤ −γV (x).
Proof: The finiteness of W ∗ guarantees that V can be described through (5). Thus, given

any x and any representation V (x) =
∑n+1

k=1
λkW (xk), we have ∇V (x) = ∇W (xk) and V (xk) =

W (xk) for any k with nonzero λk. For such k’s, by assumption we have W (xk) ≤ −γW (xk).

It follows that (with the sum taken over k’s with nonzero λk):

∇V (x) · Ax = ∇V (x) · A (Σλkxk) = Σλk∇V (x) · Axk

= Σλk∇W (xk) · Axk ≤ Σλk (−γW (xk)) = −γV (x).

III. COMPOSITE QUADRATIC / CONVEX HULL FUNCTION

For positive definite symmetric Qj , j = 1, 2, . . . , l, consider

q(x) = max
j=1,2,...,l

1

2
x · Qjx. (8)

It turns out that the conjugate of q, which is the convex hull of the functions ξ 7→ 1

2
ξ ·Q−1

j ξ, is

the same as the composite quadratic function used in [11] for stability analysis. Indeed,

max
λ∈∆l

l
∑

j=1

λj
1

2
x · Qjx = max

λ∈∆l

1

2
x ·
(

l
∑

j=1

λjQj

)

x

since the maximum of a linear function of λ over a simplex is attained at one of the vertices.

Consequently,

q∗(ξ) = sup
x∈IRn

{

ξ · x − max
λ∈∆l

1

2
x ·
(

l
∑

j=1

λjQj

)

x

}

= sup
x∈IRn

min
λ∈∆l

{

ξ · x − 1

2
x ·
(

l
∑

j=1

λjQj

)

x

}

= min
λ∈∆l

sup
x∈IRn

{

ξ · x − 1

2
x ·
(

l
∑

j=1

λjQj

)

x

}

.

Switching sup and min is possible, since the function in the brackets above is concave in x,

convex in γ, and the minimum is taken over a compact set; see, for example, Corollary 37.3.2

in [16]. Now, calculating the conjugate of a quadratic function yields

q∗(ξ) = min
λ∈∆l

1

2
ξ ·
(

l
∑

j=1

λjQj

)−1

ξ. (9)

This is exactly the composite quadratic function of [11]. An alternate expression for q∗ can be

derived from (5).



The dual description of (9) leads to an alternate way to study its properties. For example, the

function q is strongly convex with constant ρ, where ρ > 0 is any constant smaller than every

eigenvalue of Qj, j = 1, 2, . . . , l. (Strong convexity means that q(x) − 1

2
ρ‖x‖2 is convex.) This

is equivalent to q∗ being differentiable and ∇q∗ being Lipschitz continuous with constant 1/ρ.

Numerical examples in Section V illustrate the use of both q and q∗ in stability analysis.

IV. LYAPUNOV INEQUALITIES

The subdifferential mappings of a pair of conjugate convex functions are inverses of one

another. A more precise relationship exists for positively homogeneous functions. We use it to

show that the conjugate of a Lyapunov function for a linear system is a Lyapunov function for

the dual system.

Theorem 4.1: Let V : IRn → IR be a convex, positive definite, positively homogeneous of

degree p > 1 function, and let A be any matrix. Then, the condition

∂V (x) · Ax ≤ −γpV (x) for all x ∈ IRn (10)

is equivalent to

∂V ∗(ξ) · AT ξ ≤ −γqV ∗(ξ) for all ξ ∈ IRn. (11)

Proof: First, we argue that V (x) = 1/p and ξ ∈ ∂V (x) if and only if V ∗(ξ) = 1/q

and x ∈ ∂V ∗(ξ). The subdifferential inclusions are equivalent; thus we only need to show that

V (x) = 1/p and ξ ∈ ∂V (x) imply V ∗(ξ) = 1/q. Since ξ ∈ ∂V (x), it follows that x maximizes

x′ 7→ ξ · x′ − V (x′), and so V ∗(ξ) = ξ · x − V (x) = ξ · x − 1/p. Furthermore, λ = 1 maximizes

the function λ 7→ ξ · λx − V (λx) = ξ · λx − λp/p over λ ≥ 0. The derivative being 0 at λ = 1

yields ξ · x = 1. Thus V ∗(ξ) = 1 − 1/p.
Now note that, by positive homogeneity of V , inequality (10) is equivalent to

∂V (x) · Ax ≤ −γ for all x s.t. V (x) = 1/p. (12)

Indeed, fix x′ 6= 0, so V (x′) 6= 0. Let s = (pV (x′))1/p and x = x′/s. Then V (x) = 1/p, while

∂V (x) =
1

sp−1
∂V (x′).

Thus (12) becomes 1

sp−1
∂V (x′) · Ax′

s
≤ −γ for all x′ 6= 0 which is exactly (10). Similarly, (11)

is equivalent to

∂V ∗(ξ) · Aξ ≤ −γ for all ξ s.t. V (ξ) = 1/q. (13)



Now, (12) means that ξ ·Ax ≤ −γ for any element ξ of ∂V (x) with V (x) = 1/p. By what we

have shown at the beginning of the proof, such x and ξ can be equivalently characterized by

x ∈ ∂V ∗(ξ), V ∗(ξ) = 1/q. Thus (12) is equivalent to (13).

When V (and automatically V ∗) is positively homogeneous of degree 2, the coefficients pγ

and qγ in (10) and (11) are the same. Such functions naturally appear in stability analysis of

LDIs. Suppose that the origin of (1) is asymptotically stable (which is equivalent to exponential

stability, that is, for some c ≥ 1 and decay rate β > 0,

‖x(t)‖ ≤ c‖x(0)‖e−βt

for all solutions to (1)). Then, as was shown in [14], then there exist γ > 0 and a convex,

positive definite, and homogeneous of degree 2 function such that

∂V (x) · Ax ≤ −2γV (x) for all x ∈ IRn (14)

for all A ∈ co {Ai}m
i=1

. In Example 4.3 we write down one possible Lyapunov function, for

which we actually have γ = β, that is, γ in (14) is exactly the decay rate.

Corollary 4.2: The origin of (1) is exponentially stable (with decay rate β) if and only if (2)

is exponentially stable (with decay rate β).

An immediate practical consequence of this corollary is that to verify exponential stability of

(1) with a particular computational method, one can also apply that same method to transpose

matrices. This can dramatically improve the results, as we illustrate in Example 5.2.

Example 4.3: Suppose that the LDI (1) is exponentially stable with decay rate β. One way

to construct a Lyapunov function verifying this is to consider

V (x0) =
1

2
sup ‖x(t)‖2e2βτ , (15)

where the supremum is taken over all solutions to (1) with x(0) = x0 and all t ≥ 0. It is a

convex, positive definite, and homogeneous of degree 2 function. The conjugate function V ∗

turns out to be V ∗(ξ) = 1

2
co inf e−2βτ‖ξ(t)‖2 with the infimum taken over all t ≥ 0 and all

solutions to ξ̇(t) ∈ co
{

−AT
i

}m

i=1
ξ. Theorem 4.1 states that this is a Lyapunov function for the

dual LDI (2).

Lemma 2.1 and its dual interpretation lead to practical conditions for stability of LDIs, with

Lyapunov functions given by (8) or (9).



Corollary 4.4: Suppose that there exist positive definite and symmetric matrices Q1, Q2, . . . , Ql

and numbers λijk ≥ 0 for i = 1, 2, . . . , m, j, k = 1, 2, . . . , l such that

AT
i Qj + QjAi ≤

l
∑

k=1

λijk(Qk − Qj) − 2γQj (16)

for all i = 1, 2, . . . , m, j = 1, 2, . . . , l. Then

∂V (x) · Ax ≤ −2γV (x) ∀x ∈ IRn, A ∈ co{Ai}m
i=1, (17)

where V is the maximum of quadratic functions x 7→ 1

2
x · Qjx.

Proof: Since λijk ≥ 0, the inequality (16) implies that for any x with x · Qkx ≤ x · Qjx

for all k = 1, 2, ...l, it holds that

x · (AT
i Qj + QjAi)x ≤ −2γx · Qjx.

Invoking Lemma 2.1 with hj(x) = 1

2
x · Qjx finishes the proof.

Corollary 4.5: Suppose that there exist positive definite and symmetric matrices R1, R2, . . . , Rl

and numbers λijk ≥ 0 for i = 1, 2, . . . , m, j, k = 1, 2, . . . , l such that

R−1
j AT

i + AiR
−1
j ≤

l
∑

k=1

λijk(R
−1

k − R−1
j ) − 2γR−1

j (18)

for all i = 1, 2, . . . , m, j = 1, 2, . . . , l. Then

∂V (x) · Ax ≤ −2γV (x) ∀x ∈ IRn, A ∈ co{Ai}m
i=1, (19)

where V is the convex hull of quadratic functions x 7→ 1

2
x · Rjx.

Proof: By Corollary 4.4, (18) implies that

∂V ∗(ξ) · AT ξ ≤ −2γV ∗(ξ) ∀ξ ∈ IRn, A ∈ co{Ai}m
i=1,

with V ∗ being the maximum of quadratic functions ξ 7→ 1

2
ξ · R−1

j ξ. This is equivalent to the

desired conclusion, by Theorem 4.1.

We note that the existence of solutions to the bilinear matrix inequalities in Corollary 4.4 is not

equivalent to the existence of solutions to the inequalities in Corollary 4.5. This is expected, as

the existence is only sufficient for the max function and the convex hull function to be Lyapunov

functions. Existence of solutions is necessary only when l = 2, see [4], page 73. Even then, there

may exist a Lyapunov function for a particular LDI, given by a convex hull (of two quadratics),



but not one given by a maximum. Consequently, numerical tests based on Corollaries 4.4 and

4.5, carried out with the same l, may yield different results. See Example 5.3.

Now consider a control system

ẋ ∈ co
{[

A B
]

i

}m

i=1





x

u



 (20)

and its dual system with output




ξ̇

z



 ∈ co











AT

BT





i







m

i=1

ξ . (21)

We say the system (20) is stabilizable by linear feedback (switched linear feedback) if there

exists K (m matrices Ki) such that the origin of the system

ẋ ∈ co {Ai + BiK}m
i=1

x

(respectively the origin of the system

ẋ ∈ co {Ai + BiKi}m
i=1

x )

is exponentially stable. The system (21) is stabilizable by linear output injection (switched linear

output injection) if there exists L (m matrices Li) such that the origin for

ξ̇ ∈ co
{

AT
i + LBT

i

}m

i=1
ξ

(the origin for

ξ̇ ∈ co
{

AT
i + LiB

T
i

}m

i=1
ξ )

is exponentially stable.

Corollary 4.6: The system (20) is stabilizable by linear feedback (respectively, switched linear

feedback) if and only if the system (21) is stabilizable by linear (respectively, switched linear)

output injection.

V. NUMERICAL EXAMPLES

In this section, we illustrate the main points of the paper through numerical examples. Example

5.1 is a reminder that the use of nonquadratic functions can improve stability estimates over those

obtained with quadratic functions. We show this using the max function, but the same conclusion



can be made based on homogeneous polynomial functions of Example 5.2. Furthermore, Example

5.1 suggests that considering a broad enough class of potential Lyapunov functions can improve

stability estimates over those computed via specialized analytical approaches. Examples 5.2 and

5.3 illustrate the benefits of duality. Example 5.2 uses homogeneous polynomial functions, and

implicitly (through conjugacy) finds a Lyapunov function homogeneous of degree 4/3. Example

5.3 shows that using the maximum of quadratic functions and the convex hull of the same

number of quadratics can lead to different stability estimates.

In Examples 5.1 and 5.3 we rely on the bilinear matrix inequalities of Corollaries 4.4 or 4.5

to show that the max function q given by (8) or the convex hull function q∗ given by (9) verifies

stability of certain LDIs. In solving the matrix inequalities, we rely on algorithms based on a

path-following method in [10]. For related work on solution methods, see also [3], [9].

Example 5.1: In [6], an LDI given by co{A1, A2} with

A1 =

[

−1 −1

1 −1

]

, A2 =

[

−1 −a

1/a −1

]

and a > 1 was used to show that the existence of a common quadratic Lyapunov function is

not necessary for exponential stability of the LDI. The maximal a ensuring existence of such a

function was found to be aq = 3 +
√

8 = 5.8284, while the LDI was shown, via a phase plane

method not leading to a Lyapunov function, to be stable for all a ∈ [1, 10]. (As pointed out in

[6], the analytical method is highly unlikely to be feasible for general systems.)

With q∗ formed by two quadratics (l = 2), the maximal a is 8.11. With l = 3, the maximal a

is 8.95. The three matrices (corresponding to R−1
j in Corollary 4.5) determined under a = 8.95

are as follows:
[

26.1802 −0.0273

−0.0273 2.9146

]

,

[

16.5961 3.0303

3.0303 3.6388

]

,

[

32.5579 −3.0335

−3.0335 1.8518

]

.

Corresponding ellipsoids (points x with x · Rjx = 1) and the boundary of their convex hull

(points x with q∗(x) = 1) are in the upper two plots of Fig. 1. Also plotted there are directions

of ẋ = A1x (left) and that of ẋ = A2x (right) along the boundary of the convex hull. Lower

plots of Fig. 1 are the ellipsoids x ·R−1
j x = 1 and their intersection, along with the direction of

ẏ = AT
1 y and ẏ = AT

2 (a)y along the boundary of the intersection.

We add that using seven quadratic functions (l = 7) verifies that the LDI is stable for a up to

10.108, and thus improves on the analytical estimate in [6]. For further details, see [7].
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Fig. 1. Vector fields and invariant level sets

Example 5.2: The following third-order LDI was discussed in [5]. For the matrices

A1 =







0 1 0

0 0 1

−1 −2 −4






, M =







−2 0 −1

1 −10 3

3 −4 2






,

let A2 = A1 + aM with a > 0, and consider the LDI with the state matrix belonging to the

set co{A1, A2(a)}. The maximal a that ensures the existence of a common quadratic function is

aq = 1.9042. The maximal a that ensures the existence of a common fourth-order homogeneous

Lyapunov function was found in [5] to be ah = 75.1071.

By Corollary 4.2, exponential stability of the LDI is equivalent to that of the dual LDI described

by co{AT
1 , A2(a)T}. For this dual system, we used the method from [5] to determine a parameter

range of a over which a common fourth-order homogeneous Lyapunov function exists. It turns

out that there is no upper bound for a. Let AT
m1 be the augmented matrix for AT

1 and Am2(a)T

be the augmented matrix for A2(a)T . Let L(α) be the matrix containing auxiliary parameters

(see, page 1032 of [5]). Then for each a > 0, there exist a symmetric positive definite matrix

Q = IR6×6 and parameters α, β ∈ IR6 such that

QAT
m1 + Am1Q + L(α) ≤ −0.0606Q,

QAm2(a)T + Am2(a)Q + L(β) ≤ −0.0606Q.

No numerical problem arises even for a = 1020.



We point out that the existence of a 4-th order homogeneous polynomial Lyapunov function

for the dual LDI implies, by Theorem 4.1, the existence of a Lyapunov function for the original

LDI, homogeneous of degree 4/3.

Example 5.3: We analyzed the LDI of Example 5.2, and its dual LDI, using the max function

q and the composite quadratic function q∗ with l = 2. Stability of the original LDI can be verified

with q∗ for a up to 441. For a = 441, there exist Q1 > 0 and Q2 > 0 satisfying

Q1A
T
1 + A1Q1 < 5.008(Q2 − Q1)

Q2A
T
1 + A1Q2 < 0

Q1A
T
2 + A2Q1 < 0

Q2A
T
2 + A2Q2 < 2708.9(Q1 − Q2)

The same algorithm used for the dual LDI (equivalently, relying on q for the original LDI) shows

that there is no upper bound for a. Actually, for each a > 0, there exist Q1, Q2 > 0 and λij ≥ 0

such that

QjAi + AT
i Qj < λij(Qk − Qj) − 0.0530Qj

for i, j, k = 1, 2, j 6= k. We tested a up to 1020 and no numerical issues occur. For a = 108,

λ11 = 3.5473, λ12 = 0, λ21 = 87614, λ22 = 7.4699 ∗ 108.

This suggests that, for the case of l = 2, q “performs better” than q∗ in the stability analysis

of the original LDI. However, duality implies that for the inclusion ξ̇ ∈ co{AT
1 , AT

2 (a)}, the

reverse is true: q∗ “performs better” than q.

VI. CONCLUSIONS

In this note, we established a one-to-one relationship between convex positively homogeneous

Lyapunov functions verifying the asymptotic stability of a linear differential inclusion and such

Lyapunov functions verifying the asymptotic stability of a dual linear differential inclusion. As

a consequence, the asymptotic stability of an LDI turns out to be equivalent to the asymptotic

stability of the dual LDI. Based on this equivalence, and on the operations of pointwise maxi-

mization or forming a convex hull of a family of functions, we showed how Lyapunov functions

for LDIs can be constructed. Through numerical examples, we illustrated how applying known

numerical techniques to a dual LDI may improve stability estimates for the original LDI. Further



examples, a method for verifying instability of an LDI, and a discussion of duality of dissipativity

properties, can be found in [8], [7]. Similar results are possible in discrete time; see [7].
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