16.513 Control Systems

COURSE OUTLINE

Fall 2014 Catalog Data:
3 credits.
Prerequisites: 16.413, Linear Feedback Systems and working knowledge of Linear Algebra
Content: Modeling, analysis and design of linear systems. Linear algebra with emphasis on matrices, linear

Instructor:
Tingshu Hu
Office: Ball Hall 405
Office hours: Tuesday: 3:30 - 6pm
Phone: 934-4374, Fax: 934-3027,
Email: tingshu_hu@uml.edu, URL: http://faculty.uml.edu/thu/
Class website: http://faculty.uml.edu/thu/controls/controlsys/controlsys.html

Classes: Tuesday, 6:30-9:20pm, Classroom: Ball Hall 314

Goals:
This course is designed to provide a thorough understanding about linear systems theory and multivariable
system design. The students will learn how to model a physical system (including continuous-time systems
and discrete-time systems), how to derive system response for a given input, and how to analyze system
characteristics such as stability, controllability, observability and robustness. The students will then learn
system design, including how to realize a system given its mathematical description, how to design a
control law so that system response satisfies certain properties, and how to design an observer to estimate
the state of the system. Fundamental tools from linear algebra will be used throughout the course. Robust
stability theory will be introduced through linear differential inclusions. Matlab and Simulink will be used
for homework and project.

Tentative Outline (12 Lectures):
1. Introduction and mathematical description of systems
2. Linear algebra review, Modeling of systems
3. Modeling of selected systems; Linear algebra, vector space and linear independence
4. Basis, representation and orthogonality; solutions to algebraic equations
5. Companion form, diagonal form, Jordan form; Functions of a square matrix
6. General matrix functions, solutions to state-space equation
7. Dealing with complex eigenvalues, state space realization of transfer functions; simulink, course project
8. Quadratic functions and positive definiteness; Controllability
9. Controllability and observability, Canonical decomposition
10. Canonical decomposition, minimal realization, pole assignment via state feedback
11. Robust tracking, disturbance rejection, full dimensional estimator
12. Feedback from estimated state; Deadbeat control; LQR optimal control
 Rejecting sinusoidal disturbances

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Mid Term</td>
<td>35%</td>
</tr>
<tr>
<td>Project</td>
<td>25%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>30%</td>
</tr>
</tbody>
</table>

All exams are open book, open notes

Homework Rules:
- Homework should be clear, concise, and complete
- Discussion is allowed but no copying; make sure you understand what you write down.
- Due next week. No late homework.
- Homework solutions will be posted a week after the due date.

Attendance: will be taken occasionally. Positive attitude is a key to success.