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EECE.5130   Control Systems

Tingshu Hu 
Office: Ball Hall 405 
Phone: 4374 , Fax: 3027
Email: tingshu_hu@uml.edu 
Office Hours: MW: 9-11am; Th: 4-6pm
http://faculty.uml.edu/thu/
http://faculty.uml.edu/thu/controlsys/controlsys.html
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 Today:

 Introduction
− Motivation

− Course Overview

− Course project

− My research projects

 Matrix Operations  -- Fundamental to Linear Algebra 

− Determinant

− Matrix Multiplication

− Eigenvalue

− Rank 
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1.1  Motivation 
 What is a "system"?

– A physical process or a mathematical model of a physical 
process that relates one set of signals to another set of 
signals

 Two general categories of signals/systems:
– Continuous-time (CT) signals/systems

1.  INTRODUCTION

• Examples: Speed/car, current/circuit, temperature/room

• Described by differential eqs., e.g., dy/dt = ay(t) + bu(t)

• Signals themselves could be discontinuous. But defined

for each time instant. 

System

input/
excitation/
cause

output/
response/
result

– Examples: Air conditioner, cars, DC-DC converters

10:43
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– Discrete-time (DT) signals/systems

 

k 

y(k) 

• Examples: Money in a bank account, quarterly profit 

• Sequence of numbers

• Input/output related by difference equations, e.g., 

y[k+1] = ay[k] + bu[k], (on a daily or monthly base)

– DT and CT are quite similar, and will be treated in parallel

 The goal of  “System Theory”:
– Establish input/output relationship through models,
– Predict output from input, know how to produce desired output
– Alter input automatically (via controller) to produce

desired output 

Controller Systeminput outputrequirement
10:43
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 Use physical laws to model/describe the behavior of the system: 

– What are the components?  What properties do they have?

dt
dv

Ci,
dt

di
Lv,Riv C

C
L

LRR 

– Relationship among the variables by physical law: 
• KCL: Current to a node = 0, iR= iC= iL= i.
• KVL: Voltage across a loop = 0. 

Example: A simple electric circuit
~ Output 

R L 
C u(t) 

i(t) 

~ Input 

~ 
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tuvdi

Cdt

di
LRiKVL

t
  

– An integral-differential or differential equation

– Input-output description or external description

 How to analyze the input-output relationship?
– For example, find the output i(t) given u(t) and IC.

 We can use Laplace transform
 Note: only effective for LTI systems

dt

tdu
ti

Cdt

tdi
R

dt

tid
L

)(
)(

1)()(
2

2



~ Output 

R L 
C u(t) 

i(t) 

~ Input 

~ 
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Laplace Transform, A Quick Review

 Converting linear constant coefficient differential equations into 
algebraic equations

 Other properties
– Differentiation in the frequency domain: tf (t)  ()F '(s) 

– Convolution: h(t)f (t)  H(s)F(s)

– Time and frequency shifting: f (t-t0) u(t-t0)  ݁௦௧బF(s);   

݁௦బ௧ f (t)  F(s - s0)


 



0

)()()( dtetfsFtf st

)()()()( 22112211 sFasFatfatfa 
 Key Properties 

– Linearity:

– Derivative theorem: 
݂ሶ ݐ 	↔ sF s 	െ ݂ 0ି , 	 ׬ ݂ ߬ ݐ݀	 ↔ ܨ ݏ ݏ/

10:43
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– Time and frequency scaling: f (at)  1/a F(s/a) for a > 0

– Initial Value Theorem: f (0+) = lims sF(s)

– Final Value Theorem: f () = lims0 sF(s) if all the poles 
of sF(s) have strictly negative real parts

)()(
1

: 0

0

tuvdi
Cdt

di
LRiKVL

t

  

  )(ˆ
)(ˆ

)(ˆ)(ˆ 0
0 su

s

v

Cs

si
isisLsiR 

~ Output 

R L 
C u(t) 

i(t) 

~ Input 

~ 

Example (Continued)
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1
)(ˆ
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00

2 






RCsLCs

cvLCsi
su

RCsLCs

cs
si

 Is there any pattern with the equation?
– It has two components, one caused by input, and the 

other by IC

 How about the voltage across the capacitor?

 An algebraic equation vs integral-differential 
equation.  Solution:

 
1

)(ˆ
1

1)(ˆ
)(ˆ

2
00

2
0








RCsLCs

vRCLCsLi
su

RCsLCss

v

Cs

si
sv





 






 

s

v
Lisusi

cs
RLs 0

0)(ˆ)(ˆ
1

 What is the system's transfer function?
10:43

10

g(s) ^ ^ i(s) = g(s) u(s) u(s) ^ ^ 
 

^ 
 

– Frequency domain analysis

 How to obtain the response in time domain?

 Assume that the ICs are zero, then

 )(ˆ)( 1 siLti 

)s(û
1RCsLCs

Cs
)s(î

2 


1RCsLCs

Cs
)s(ĝ

2 


– Suppose that L = C = 1, R = 2, v0 = i0 = 0, and u(t) = 
U(t) (unit step function).  Then

10:43
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 222 1s

1

1s2s

1

1RCsLCs

)s(ûCs
)s(î










s
1

)s(û 

tte)t(i 

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 5 10 15

t

i(
t) Does this make sense 

for the circuit?

R L 
C u(t) v(t) 

+ 

- 
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 Limitation of Laplace transform: not effective for time 
varying/nonlinear systems such as

 The state space description to be studied in this course  
will be able to handle more general systems
� How can we do it?
� Properties can be characterized without solving for     

the exact output
 To get some general idea about state space description,

we consider the same circuit system.

10:43
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~ Output 

R L 
C u(t) 

i(t) 

~ Input 

~ 

 State-Space Description
– State variables: Voltage across C and current through L  

+
v(t)
‒

– state equation:

– A set of first-order differential equations
10:43
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 It describes the behaviors inside the system by using the 
state variables v(t) and  i(t)

 How to describe the output?

  









i

v
iy 10

– The output equation

 Combined with the state equation, we have the state-
space description or internal description

~ Output 

R L 
C u(t) 

i(t) 

~ Input 

~ v(t)

xA B

C

ሶݔ

ሶݔ ൌ ݔܣ ൅ ݑܤ
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 A general form:

 Main features of the state-space approach 
 It describes the behaviors inside the system

 Characterizes stability and performances without solving

the differential equations

 Applicable to more general systems, nonlinear,

time-varying, uncertain, hybrid

 Most recent advancements in control theory are developed 
via state-space approaches

10:43
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 Textbook:
– Chi-Tsong Chen, Linear System Theory and Design, 

3rd Edition, Oxford University Press, 1999 (Required)

https://www.amazon.com/s/ref=nb_sb_ss_rsis_1_0?url=s
earch-alias%3Daps&field-
keywords=%22linear+system+theory+and+design%22&s
prefix=%2Cstripbooks%2C283

 Goals: To achieve a thorough understanding about 
systems theory and multivariable system design  

1.2  Course Overview 

10:43
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 Tentative Outline (12 lectures):

– Introduction  

– The fundamentals of linear algebra

– Modeling: Use diff. equ. to describe a physical system 

– Analysis: 

• Quantitative: How to derive response for a given input 

• Qualitative: How to analyze controllability, 
observability, stability and robustness without 
knowing the exact solution?

10:43
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– Design: 

• How to realize a system given its mathematical 
description 

• How to design a control law so that desired 
output response is produced

• How to design an observer to estimate the state 
of the system 

• How to design optimal control laws 

– Continuous-time and discrete-time systems will be 
treated in parallel

10:43
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 Prerequisites:

– 1EECE4130 Linear Feedback Systems

– Background on 

• Linear algebra: Matrices, vectors, determinant,

eigenvalue, solving a system of equations

• Ordinary differential equations

• Laplace transform, and 

• Modeling of electrical and mechanical systems

10:43
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• Grading:

Homework 15%

Mid Term 30%  
(All by hand, computer/ calculator not allowed)

Project         25%

Final Examination 30% 

All exams are open book, open notes 

10:43
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• General Rules:
– Homework solutions will be provided together with lecture 

notes, before submitted. 
– Make sure you understand everything you write down.
– Homework due next class. 
– Project should be done independently.

• Attendance:  will be taken occasionally. Positive 
attitude is a key to success. 

• If you decide to do something, use your heart and do it 
well. Otherwise it will be a waste of time. 

10:43
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Course Project

M
u



y

A cart with an inverted pendulum (page 22, Chen’s book)

u: control input, external force (Newton)
y: displacement of the cart (meter)
 angle of the pendulum (radian) 

The control problems are
1:  Stabilization: bring the pendulum to the inverted position and keep it there. 

Assume the angle is initially small enough.  
2:  Assume the pendulum is initially downward. Design a control algorithm to

bring it upward and keep inverted.
Assume that there is no friction or damping. The nonlinear model is as follows.

m

:  mass of the pendulum

:   length of the pendulum

:  mass of the cart,   g 9.8

m

l

M 
10:43
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1. Derive a linear model for the system.
2. Design feedback laws using Matlab.
3. Validate your designs with Simulink and animation.  

Problems:

Next,  I will describe some control systems in the lab (BL406).

10:43

24

A one –dimensional magnetic suspension test rig 

This experiment is part of the NSF project: (Sept. 06 – Aug. 10). The control objective is 
to keep the free end of the beam suspended. The gap between the beam and the electromagnet 
follows any set value via a  nonlinear controller, which is implemented by a microprocessor,
or the Labview. An eddie-current sensor converts the gap into a voltage signal which is 
fed into the microprocessor; The controller in the microprocessor computes the desired 
currents and output it to a power amplifier. 

10:43
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The beam rests on the stator when the controller is turned off 

The beam suspended when a nonlinear feedback control is applied. 

10:43
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The robust controller adjusts the current of the electromagnet 
so that the gap is maintained at the same set value under different load

10:43
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A two dimensional suspension system

10:43
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A power electronic converter:  buck-boost DC-DC converter

Supported by NSF Sept. 2009 – Aug. 2012
10:43
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0

0
1

1
0

1 1
0 0

L

g

D

di R
vidt L L

L
vdv v

C RCdt
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D= 0.2

D= 0.5

D= 0.8

State space description10:43
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Simulink with switching model

10:43
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Simulink with averaged model

T. Hu, "A nonlinear system approach to analysis and design of 
power electronic converters with saturation and bilinear terms," 
IEEE Trans. Power Electronics, 26(2), pp.399-410, 2011.

10:43

Power systems driven by battery/supercapacitor  hybrid 
energy storage devices (Funded by NSF)

10:43 32
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Load driven by battery/supercapacitor hybrid

u1

u2

ov





ibat

isc

Control inputs: u1,u2 (duty cycle)
Output:  ibat, isc, vo

Control objective: Given reference ibat,ref,  vo,ref, design control
law for u1,u2 so that ibat follows ibat,ref,   vo follows vo,ref.

Bidirectional buck-boost
DC-DC converter

10:43
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State space description: 
Let x be state variable, x =[v1,v2,vsc,iL1,iL2,vo]’.  Then 

A0=[-1/Re/C1 0             0            -1/C1 0                         0
0         -1/Ru/C2   1/Ru/C2 0                   -1/C2 0
0         1/Ru/Cu -1/Ru/Cu 0                     0                        0

1/L1 0             0           -(RL1+Ron)/L1 0                      -1/L1

0           1/L2 0                0                  -(RL2+Ron)/L2 -1/L2

0 0 0 1/Co  1/Co -1/R/Co]

A1=[0   0   0   0       0    0
0    0   0   0       0    0
0    0   0   0       0    0
0    0   0   0       0   1/L1

0    0   0   0       0   0
0 0 0 -1/Co 0 0]

A2=[0   0   0   0       0    0
0    0   0   0       0    0
0    0   0   0       0    0
0    0   0   0       0   0
0    0   0   0       0   1/L2

0 0 0 0  -1/Co 0]

10:43

ሶݔ ൌ ݔ଴ܣ ൅ ଵݑݔଵܣ ൅ ଶݑ	ݔଶܣ



18

3510:43

36

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

8

9

Tracking ibat,ref =1.5A,  v0,ref = 7V

10:43
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A boost converter controlled by a microcontroller
The controller is constructed using Matlab/Simulink, 
Then written into the microprocessor 
Funded by NSF.

10:43
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LED driver with PWM dimming 
control 

10:43
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Circuit Theory I, Copyright of Tingshu Hu 39

A recent project:  
A high efficient high performance 
LED driver with PWM dimming 

L1

10:43

The paper by my PhD student and myself
will be published by 
IEEE Transactions on Power Electronics.

40

Last year’s project: A low cost but high performance LED driver 
based on a self oscillating boost converter



21

10:43 Circuit Theory I, Copyright of Tingshu Hu 41

42

This year’s new project: 
Build a power management system for triboelectric nanogenerators (TENG)

• The most cutting edge technology in energy harvesting (invented in 2012)
• Harvest energy while walking, doing exercise, use the energy 

to power cell phone, health monitors, …, internet of things
• TENGs are more powerful and versatile, as compared to other harvesters
• However: The power generated is badly behaved
• A power management system converts the power to well-behaved form

The TENG device, 
made by Georgia Tech

The power management 
circuit,  by my PhD students

TENG’s output without 
power management
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 Today:

 Introduction
− Motivation

− Course Overview

− Course project

− Control systems in my research projects

 Matrix Operations  -- Fundamental to Linear Algebra 

− Determinant

− Matrix Multiplication

− Eigenvalue

− Rank 

10:43
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Operations on Matrices
 The classical control theory is based on Laplace 

transform and z-transform
 also called frequency-domain approach

 The modern control theory is established upon
Linear Algebra
 State-space approach, or time domain approach

A linear time invariant system can be described as

Systems properties all characterized with the matrices
A,B,C,D.

10:43
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2 by 2 (or 2×2) matrices: 11 12

21 22

1 2 ,1 3
a a
a a
  

      

A 2 by 3 matrices:  ,a b c
d e f
 
  

A 3 by 2 matrix:  
a b
c d
e f

 
 
  

An  n×m matrix: 

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

… ܽଵ௠
… ܽଶ௠

⋮ ⋮
ܽ௡ଵ ܽ௡ଶ

⋱ ⋮
… ܽ௡௠

Matrices: Square or non-square

Addition and subtraction: element by element

Multiplication is not by element. 

n: the number of rows;  m: the number of columns.

n×1:  a column vector;   1×m :  a row vector.

aij: element at the i-th row,
j-th column

10:43
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Matrix Multiplication: 

Product of a 1×n matrix a n×1 matrix is a scalar. 
Product of a n×1 matrix and a 1×n matrix is an  n×n matrix

a b x ax by
cx dyc d y

               

a b u x au bv ax by
cu dv cx dyc d v y

                 

 
x

a b c y ax by cz
z

 
   

  
 

x xa xb xc
y a b c ya yb yc
z za zb zc

   
   

      
Generally, A B  B A

• You cannot multiply any two matrices. They have to be compatible:
to get AB, the number of columns of A must equal to the number
of rows of B, e.g.,  A: k×n,  B: n×m.10:43
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Let A be a 3×4 matrix, B be a  4×2 matrix

1

2

3

1 2

1 2 3 4
5 6 7 8 ,
9 10 11 12

                                                   [    ]   

a eA b fA A B c gA d h

B B B

                   


   
 
 
 

1 2 1 2

1 1 21 1

2 2 2 1 2

3 3 3 1 2

1 1 1 2

2 1 2 2

3 1 3 2

2 3 4 2 3 4
5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12

AB A B B AB AB

A B BA A B
AB A B A B A B B

A A B A B B

A B A B a b c d e f g h
A B A B a b c d e f g h
A B A B a b c d e f g h

 

    
           
      
        

          
           
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BA is defined only if the number of columns of B is the
Same as the number of rows of A. Suppose 

How about BA? 

1

2

3

1 2

1 2 3 4
5 6 7 8 ,
9 10 11 12

                                                   [    ]   

a eA b fA A B c gA d h

B B B

                   


 

 

1

1 2 3 2

3

1

1 2 3 2 1 1 2 2 3 3

3

, ,     then
A

B B B B A A
A

A
BA B B B A B A B A B A

A

 
  
 
 

 
    
 
 

But each B1A1, B2A2, B3A3 is a matrix.  

Not defined at all for this case.

10:43
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How about 

   1 1
1 2 1 2

2 2

? ?
B AB

A A A B A B A B
B AB
          

If A and B are compatible, (AB defined), then AB1 and AB2 are
not defined. 

Be careful. Correct partition is important.  Compatibility is essential. 

Example: ?

11

10

01

20

11

























 

10:43
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Product of block partitioned matrices:  Suppose that A and B
are partitioned compatibly as

,,
2221

1211

2221

1211



















BB

BB
B

AA

AA
A

Then 













2222122121221121

2212121121121111

BABABABA

BABABABA
AB

Compatibly partitioned means that the partition of the 
columns of A is the same as the partition of the rows of B  

10:43
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Determinant: A scalar defined for a square matrix

det ;

det

a b ad bcc d

a b c
gec ahf dbaei dhc gd ibfe f

g h i

     

 
   









a b c
a b c d e f
d e f g h i
g h i a b c

d e f

 
 

  

Exercise:  
1 2 3

det 3 2 1
4 5 6

 
 
  

10:43
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• Determinant of a triangular matrix:

 det is the product of the diagonal elements. 

All zero below the diagonal, or all zero above the diagonal

The determinant can be simplified by making the matrix a diagonal
one through elementary operations that preserve the determinant.

If an entire row or an entire column is 0, the determinant is 0.

?

10000

9800

7650

4321

det 

















 0 0 0

0 0
det ?

0

a

e b

f h c

g i j d

 
 
  
 
 
 

Upper triangular Lower triangular

10:43
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• Elementary operations that preserve the determinant:

1) Add one row scaled by a number to another row

Add row 1 to row 2

2) Add one column scaled by a number to another column

1 2 3
3 2 1
4 5 6

A
 

  
  

1 2 3
4 4 4
4 5 6

 
 
  

1 2 3
4 4 4
4 5 6

 
 
  

1 2 1
4 4 0
4 5 1

 
 
  

Add column 2 ×(-1) to column 3

1 2 1
4 4 0
4 5 1

 
 
  

1 2 1
4 4 0
3 3 0

 
 
  

Add row 1 × (-1) to row 3

1 2 1
4 4 0
3 3 0

 
 
  

Row 3 minus row 2×(3/4)
1 2 1
4 4 0
0 0 0

 
 
  

03652484512

654

123

321

det)det( 















A

(keep row 1)

(keep column 2)

(keep row 1)

10:43
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• Determinant of the product of matrices:

det( ) det det

det( ) det det det

AB A B

ABC A B C

 
  

How about  det(A+B),  det(A-B)? 

• Determinant of a block triangular matrix: 

1

2

3

4

* * *
0 * *det ?0 0 *
0 0 0

A
A

A
A

 
   
  

Assume that A1,A2,A3,A4 are all square.

Examples: 
1 2 9 102 2 1 3 4 11 12det 0 3 5 , det 0 0 5 60 4 6 0 0 7 8

            

ൌ det ଵܣ det ଶܣ det ଷܣ det ସܣ

10:43
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r2-r1  r2

r3-r1  r3

r3-2r2  r3

An example:

The row/column that is changed
should not be scaled by 
any number except 1;

10:43

det
1 2 3
1 3 5
1 4 8

ൌ det
1 2 3
0 1 2
1 4 8

ൌ det
1 2 3
0 1 2
0 2 5

ൌ det
1 2 3
0 1 2
0 0 1

ൌ 1

56

Why elementary operations preserve the determinant?
• Because elementary operation is equivalent to multiplying the

matrix with another one whose determinant is 1.   

1 0 0
Since   det 0 1 0 1,    

0 1

1 0 0
det = det 0 1 0 det

0 1

x

a b c a b c a cx b c
d e f d e f d fx e f
g h i g h i g ix h ix

 
 

  
       

        
              

What about 1 0 0
0 1 0 ?

0 1

a b c
d e f
g h ix

   
   

      

















ihg

fed

cba
Add column 3 scaled 
by x to column 1





















ihixg

fefxd

cbcxa


































10

010

001

xihg

fed

cba

10:43
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A square matrix is said to be nonsingular if its determinant 
is nonzero.  

• If two rows (columns)  are switched, the determinant changes 
the sign;

• If a whole row (column)  is scaled by a number k, the determinant
is scaled by a number k.

• What if the whole matrix is scaled by a number k?   

0

det 0 1

1 1 0

det 1 1 1

3 4 1

x x

x

ax bx x c

 
   

  

 
   
  

Exercise: 

10:43
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Eigenvalue of a square matrix:  s is an eigenvalue of A if  

det[ ] 0sI A 

If A is n×n,  det[sI-A] is a polynomial of order n. An eigenvalue
is a root of the polynomial.  A has n eigenvalues.

2

0 1 ,2 3

1det[ ] det 3 2 ( 1)( 2)2 3

A

ssI A s s s ss

     
          

Roots are s1= 1 and s2 = 2. 

Exercise:  1 2
2 1

 
  

0 1 0
0 0 1
1 3 3

 
 
    10:43

ܫ ൌ

1 0
0 1

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… 1
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The inverse of a square matrix:  If  det A0,  A has a unique 
inverse X such that AX=XA=I, denoted as X=A

1 1
,a b d bA Ac d c aad bc

            
Solving a system of equations:  

1 1

1

a b x eax by e
cx dy f c d y f

a b a b x a b e
c d c d y c d f

x a b e
y c d f

 



                    

                           

               

Exercise:  What is the 
inverse of 

cos sin ?sin cos
 
 

 
  

bAXbAX 1
10:43
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The inverse of a block partitioned matrix: 











2

1

0 A

BA
A









 




1
2

1
11

0 A

XA
A

for certain X.  What is X ?

Assume that A1 and A2 are square and nonsingular, then 

10:43
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Sub-matrix of a matrix

1 2 3 4
5 6 7 8
9 10 11 12

 
 
  

1 3 4
9 11 12

 
  

a  2 by 3 matrix

1 2 3 4
5 6 7 8
9 10 11 12

 
 
  

1 3 4
5 7 8
9 11 12

 
 
  

a 3 by 3 square matrix

There are   ?    3 by 3 sub-matrices
?    2 by 2 sub-matrices
12   1 by 1 matrices

10:43
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Rank: The rank of M is the highest dimension of  a 
square sub-matrix whose  determinant is nonzero.
denoted as (M), or, rank(M).

1 4 7 10
2 5 8 11
3 6 9 12

M
 

  
  

For example, a 34 matrix

33   sub-matrices
22   submatrices
11 sub-matrices

Suppose that 
• the number of  33 sub-matrices with nonzero det is  N(3)
• the number of  22 sub-matrices with nonzero det is  N(2)
• the number of 1x1 sub-matrices with nonzero det is  N(1)

If N(3)0, then (M)=3
If N(3)=0 and N(2)0, (M)=2
If N(3)=N(2)=0 and N(1)0, (M)=1
(M)=0 only if M=0

You need to work  from the 
highest order submatrices.
The procedure stops whenever
you find one nonzero det.

 ?
 ?
 12

10:43
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












4000
0320
0001

AExample 1:

33  submatrices:

8det                12det               0det                   0det            

  ;
400
020
001

  ;
400
030
001

;
400
032
000

   ;
000
320
001

4321




















































 AAAA (A)=3

All the 33 submatrices have 0 det.  And there is at least
one 22 nonsingular submatrix   (A)=2

1

1 0 1 0
0 1 0 1
1 1 1 1

A
 

  
   

Example 2:

It can be very tedious to check all sub-matrices.
 A systematic way to find the rank is to use elementary operation

to transform the matrix into a special form,.e.g., block diagonal. 10:43
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Elementary operations that preserve the rank:














4000
0320
0001

A

1) Add one row scaled by a number to another row

1 0 0 0
0 2 3 0
0 0 0 4

 
 
  

r1× 4+r3→r3
1 0 0 0
0 2 3 0
4 0 0 4

 
 
  

Add row 1 scaled by 4 to row 3

2) Add one column scaled by a number to another column

1 0 0 0
0 2 3 0
4 0 0 4

 
 
  

1 0 0 0
0 2 3 0
0 0 0 4

 
 
  

3) Exchange two columns or two rows

All operations that keep the determinant
or scale the determinant by a nonzero number   

(-1)c4+c1→c1

10:43
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1 4 7 10
2 5 8 11
3 6 9 12

M
 

  
  

Add row 2 scaled by -1 to row 3:  r2*(-1)+r3 → r3

1 4 7 10
2 5 8 11
1 1 1 1

 
 
  

Add row 1 scaled by -1 to row 2:  r1*(-1)+r2→ r2

1 4 7 10
1 1 1 1
1 1 1 1

 
 
  

Add row 2 scaled by -1 to row 3

1 4 7 10
1 1 1 1
0 0 0 0

 
 
  

Rank < 3, but 
1 4det 1 4 3 01 1
        

Rank = 2
10:43
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• Suppose M is n×m. rank(M)  min{m,n}
• If  M is multiplied with a nonsingular matrix (square and

has non-zero determinant), the rank is preserved. 
This is why elementary operations preserve the rank.    

Since there are usually many sub-matrices, a systematic procedure
to compute the rank is to use elementary operation to make 
it into upper or lower triangular form. 
Another simple operation that preserves the rank is to 
reorder the columns or rows (permutation).

     
31

2 1 1 2 3 2 3 1

3 2

;
AA

A A A A A A A A
A A

   
     
       
             

This operation is equivalent to multiply
the matrix with a matrix
whose determinant is 1 or -1.

1 1 1
1 2 3
1 3 5
1 4 7

 
 
 
 
  

Example:

 
  ?,

?,

2321

3321




YAYAAA

XAXAAA

10:43



34

67

 Next Time :
– Math. Descriptions of Systems

• Classification of systems
• Linear systems
• Linear-time-invariant  systems
• State variable description
• Linearization 

10:43
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You may use computer to check your answer.

10:43


