EECE.5130 Control Systems

Tingshu Hu

Office: Ball Hall 405

Phone: x4374 , Fax: x3027

Email: tingshu_hu@uml.edu

Office Hours: MW: 9-11am; Th: 4-6pm
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10:43



1. INTRODUCTION
1.1 Motivation
= What is a "system"?

— A physical process or a mathematical model of a physical
process that relates one set of signals to another set of

signals y
input/ output/ \l\/\.\ﬁ
excitation/ System response/ ¢

cause result |

— Examples: Air conditioner, cars, DC-DC converters
= Two general categories of signals/systems:

— Continuous-time (CT) signals/systems
» Examples: Speed/car, current/circuit, temperature/room
* Described by differential eqgs., e.g., dy/dt = ay(t) + bu(t)
* Signals themselves could be discontinuous. But deﬁne3d

10:43
for each time instant.

y(k)

— Discrete-time (DT) signals/systems | " -° LT

» Examples: Money in a bank account, quarterly profit

* Sequence of numbers

* Input/output related by difference equations, e.g.,

y[k+1] = ay[k] + bu[k], (on a daily or monthly base)
— DT and CT are quite similar, and will be treated in parallel
» The goal of “System Theory”:
— Establish input/output relationship through models,
— Predict output from input, know how to produce desired output
— Alter input automatically (via controller) to produce
desired output

/\

Controller . Syst

: ————— System

requirement ontrotler input " >Y output
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Example: A simple electric circuit

@D 1(t) Output

u(t) C 1
~ Input

= Use physical laws to model/describe the behavior of the system:

— What are the components? What properties do they have?

. dl . dVC
= Rig, L—L, =C—=
VR =RIR, VL= dt Ic dt
— Relationship among the variables by physical law:
* KCL: Current to anode =0, ig=1~=1; = 1.

« KVL: Voltage across a loop = 0.
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@[O 1(t) Output
R i
u(t)
~ Input
2
kvi: Ri+p%iL jz(r)dr+vo—u(t) L 410, gdi) 1 (t)_d”(f)
dt dr’ dt

— An integral-differential or differential equation

— Input-output description or external description
= How to analyze the input-output relationship?

— For example, find the output i(¢) given u(¢) and IC.
= We can use Laplace transform

— Note: only effective for LTI systems
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Laplace Transform, A Quick Review

f@) & Fs)=[] fedi
= Key Properties
— Linearity: a,f,(t)+a,f,(t) < a,F (s)+a,F,(s)
— Derivative theorem:

f@®) ©sF@s) —f(07),  [f@dte F(s)/s

= Converting linear constant coefficient differential equations into
algebraic equations

= Other properties
— Differentiation in the frequency domain: #-f'(¢) <> (—1)F '(s)
— Convolution: A(H)*f (f) <> H(s)-F(s)
— Time and frequency shifting: f (t-£,) u(t-t,) <> €5t F(s);
eSot £(1) <> F(s - s;)
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— Time and frequency scaling: f (af) <> 1/a F(s/a) for a> 0
— Initial Value Theorem: f(07) = lim,_,_, sF(s)

— Final Value Theorem: f'(e0) = lim__,, sF(s) if all the poles
of sF(s) have strictly negative real parts

Example (Continued) /&KO i(t) ~ Output

R i

u(t)
~ Input

KVL: R+L%+ jz(r)dr+v0_u(z)

l(S)

Ri (S)+L[Sl (s)- 10] =u(s)

10:43 8



= An algebraic equation vs integral-differential
equation. Solution:

(Ls +R+ ijf (s) = i(s)+ {Lio _ V—O}
CS S

cs . LCsiy —cv,

i(5) = —————di(s) + —— 0
()= T RG 11 O Tes + ROs 41

= [s there any pattern with the equation?
— It has two components, one caused by input, and the

other by IC
= How about the voltage across the capacitor?
\,;(S):@-i-ﬁ— 1 MA(S)+Li0 +(LCS+RC)VO

Cs s LCs>+RCs+1 LCs> +RCs +1

* What is the system's transfer function?
10:43 9

= Assume that the ICs are zero, then

N 8O s )= a5 a(s)

Cs Cs

© 5] )=y o
LCs“+RCs+1 LCs“+RCs+1

— Frequency domain analysis

= How to obtain the response in time domain?
i) =L {i(s)}

— Suppose that L=C=1,R=2,v,=1,=0, and u(t) =
U(t) (unit step function). Then

10:43 10



N 1 » Cs (s 1 1
s LCs”“ +RCs+1 s”+2s+1 (s+1)

i(t)=te™" »
o
= Does this make sense 2 o2 \
for the circuit? o3
’ 0 5 1‘0 15
'

MNA—]
R L

u(t) c — v
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* Limitation of Laplace transform: not effective for time
varying/nonlinear systems such as

V(&) + a; (7, t) y(6) + ao(y, )y(t) = b(y, Hu(t)

» The state space description to be studied in this course
will be able to handle more general systems
| How can we do it?
1 Properties can be characterized without solving for
the exact output
= To get some general idea about state space description,
we consider the same circuit system.

10:43 12



i(t) ~ Output

WWA—[

R L L
u(t) C i(t)

~ Input

+

= State-Space Description
— State variables: Voltage across C and current through L

— state equation:

w_1;
at ¢ i 0 2 0
at| _ AIHEE
- [T 1+ rILi]T[5|H
at L L L at L L
— A set of first-order differential equations
10:43 13

= [t describes the behaviors inside the system by using the
state variables v(¢) and i(¢)

= How to describe the output? @@ i(t) NIHIM
R
y=i= [0 1][1 u(t) L c V(b
l ]

. ~ Input
— The output equation

= Combined with the state equation, we have the state-
space description or internal description

x =Ax + Bu
y=Cx




= A general form:

X1 Uq V1
x=f(xut) X2 Y2 |2
y=hCuey *TLEPET YT

Xn Uy, Yq

» Main features of the state-space approach
v’ It describes the behaviors inside the system
v Characterizes stability and performances without solving
the differential equations
v" Applicable to more general systems, nonlinear,
time-varying, uncertain, hybrid
v" Most recent advancements in control theory are developed

0 43Via state-space approaches s

1.2 Course Overview

= Textbook:

— Chi-Tsong Chen, Linear System Theory and Design,
3rd Edition, Oxford University Press, 1999 (Required)

» Goals: To achieve a thorough understanding about
systems theory and multivariable system design

10:43 16



* Tentative Outline (12 lectures):
— Introduction
— The fundamentals of linear algebra
— Modeling: Use diff. equ. to describe a physical system
— Analysis:
* Quantitative: How to derive response for a given input

* Qualitative: How to analyze controllability,
observability, stability and robustness without
knowing the exact solution?

10:43 17

— Design:
* How to realize a system given its mathematical
description

* How to design a control law so that desired
output response is produced

* How to design an observer to estimate the state
of the system

* How to design optimal control laws

— Continuous-time and discrete-time systems will be
treated in parallel

10:43 18



= Prerequisites:

— 1EECE4130 Linear Feedback Systems
— Background on
* Linear algebra: Matrices, vectors, determinant,
eigenvalue, solving a system of equations
* Ordinary differential equations
* Laplace transform, and
* Modeling of electrical and mechanical systems

10:43 19

* Grading:
Homework 15%

Mid Term 30%
(All by hand, computer/ calculator not allowed)

Project 25%

Final Examination 30%

All exams are open book, open notes

10:43 20
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General Rules:

— Homework solutions will be provided together with lecture
notes, before submitted.

— Make sure you understand everything you write down.
— Homework due next class.

— Project should be done independently.

Attendance: will be taken occasionally. Positive
attitude is a key to success.

If you decide to do something, use your heart and do it
well. Otherwise it will be a waste of time.

10:43 21

Course Project

A cart with an inverted pendulum (page 22, Chen’s book)

u: control input, external force (Newton)
y: displacement of the cart (meter)
0: angle of the pendulum (radian)

ey

The control problems are
1: Stabilization: bring the pendulum to the inverted position and keep it there.
Assume the angle is initially small enough.
2: Assume the pendulum is initially downward. Design a control algorithm to
bring it upward and keep inverted.
Assume that there is no friction or damping. The nonlinear model is as follows.

M+m mlcos 6y U — mlO?sin @ m: mass of the pendulum
[ cos 6 I ] [0] = [ gsin [: length of the pendulum

M: mass of the cart, g=9.8
10:43 22
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Problems:

1. Derive a linear model for the system.
2. Design feedback laws using Matlab.
3. Validate your designs with Simulink and animation.

MATLAB Fchl

]

Integratort To Workspace3

To Workspace1

Clock

Next, I will describe some control systems in the lab (BL406).

10:43 23

A one —dimensional magnetic suspension test rig

This experiment is part of the NSF project: (Sept. 06 — Aug. 10). The control objective is

to keep the free end of the beam suspended. The gap between the beam and the electromagnet
follows any set value via a nonlinear controller, which is implemented by a microprocessor,
or the Labview. An eddie-current sensor converts the gap into a voltage signal which is

fed igfg;the microprocessor; The controller in the microprocessor computes the desireg
currents and output it to a power amplifier.

12



The beam rests on the stator when the controller is turned off
ey 1 -~ IR

The beam suspended when a nonlinear feedback control is applied.
[—_—— ] e r:'"

10:43 25

The robust controller adjusts the current of the electromagnet
so that the gap is maintained at the same set value under different load

10:43 26
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A two dimensional suspension system

10:43 27

A power electronic converter: buck-boost DC-DC converter

Sypported by NSF Sept. 2009 — Aug. 2012

28
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Q D,

D R,

i
Pulse-width l c— R
modulator

When MOSFET is on

RU’Y
+ V,
v, ; g
g lz c+ A<
R, -
ﬂ _Run+RL 0 1 ﬂ _&
dt | _ L Hlel7 Off Ve dt | | L
dv NNFENE av| | 1
= 0 -— 0 ofLv» v _1
dt dt c
10:43 State space description

Simulink with switching model

Signal
Generator

Constant4

Constant6 >

(I

4 y L

Constant1 8
Y
67| Gain Multiport
Switch

Constant2

Clock To Workspace1
10:43

Add1

Multiport Gain5
Switch1

D

To Workspace3

Integrator

JG& n2
e

Integrator1

y

To Workspace

30

15



Simulink with averaged model

To Workspace2

Clock To Workspace1

T
+
> Smundid
Az Integrator Gain3 To Workspace
dd1
Prodfict2

Prodjict3| X

Gain  Product

Product1

Saturation1

+ ﬁswnn
Gener
Tc < .
+ 4—.
To Workspace4

Add6 Sine Wave

Constant6| 0.

T. Hu, "A nonlinear system approach to analysis and design of
power electronic converters with saturation and bilinear terms,"
4431EEE Trans. Power Electronics, 26(2), pp.399-410, 2011. .

Power systems driven by battery/supercapacitor hybrid
energy storage devices (Funded by NSF)
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Load driven by battery/supercapacitor hybrid  Bidirectional buck-boost

............... / DC-DC converter
1“4 ]

. o -
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= sv '“‘f“"F u, 73/ IRL540 | 200k 2100 Yo
1 | i -
\ _
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[ R11 L2 R19 rJ[?T\ |
0.030

100F

:

[0.10 100pH  g04 22 |
t_-l:-j 2 .
—~p20uF & IRL540 |

. u, !

|

Control inputs: u,,u, (duty cycle)
Output: 1y, Iy, V,
Control objective: Given reference iy, o, Vo o> d€sign control

law for u,,u, so that i, follows 1, ..., v, follows v

10:43

o,ref*
33

State space description:
Let x be state variable, X =[v,,V,,V,.,1; 1,11 5,V,]’- Then

56 = on + Alxul + Azx U,

A=[-1/RJC, 0

0
0
1L,
0

(=N NeN-]

10:43

-1/R,/C,
1/R,/C,
0
1L,
0

(=N NeN-]
[=NeNeN-E =

0 -1/C, 0 0
I/R/C, 0 -1/C, 0
-I/R/C, O 0 0
0 R +R)L, 0 1L,
0 0 AR, +R,)L, -1/L,
0 1/Co 1/C, -1/R/C,]
0
0 A0 000 0 0
0 0000 00
1L, 0000 00
0 0000 00
0] 0000 0 1L,
0 00 0-1/Co 0]

34
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Constant2

Constant1

10:43

P20 Gain4

Clock

To Workspace1

Tracking iy, or=1.5A, Vo= 7V

10:43

To Workspac|

p2

yaa

To Workspace

0 1 1 1 1
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0.16
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0.2
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A boost converter controlled by a microcontroller
The controller is constructed using Matlab/Simulink,
Then written into the microprocessor

Funded by NSF.
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A recent project: . .
. . . T | o | AR [ o ¥
A high efficient high performance 'J |
. . . . = 1 1} 1)
LED driver with PWM dimming B
The paper by my PhD student and myself
will be published by -
IEEE Transactions on Power Electronics. 1
MEFEE 2.00A [IREE S5.00U (IS Z.000 [MIEEE S.00U
10:43 Circuit Theory I, Copyright of Tingshu Hu 39

Last year’s project: A low cost but high performance LED driver
based on a self oscillating boost converter

5
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[EEE TRANSACTIONS ON POWER ELECTRONICS

. Low Cost High Performance LED Driver Based on a

Self-Oscillating Boost Converter

David O. Bamgboje

, Student Member, IEEE, William Harmon, Mohammad Tahan,

and Tingshu Hu, Senior Member, IEEE

Abstract—In this paper, a self-oscillating boost converter with
a blocking diode is proposed to meet the desire for simple, cost-
effective, high performance, and highly efficient LED drivers. As
compared with traditional self-oscillating converters, the proposed
converter demonstrates several appealing advantages including
design simplicity, robustness, soft-switching characteristics (zero-
voltage switching and zero-current switching), tight current regu-
lation, and high efficiency over a wide line/load range. The control
stage is implemented with a compact and low-cost industry stan-
dard controller, which assumes multiple roles in switching and
LED current regulation. A type III compensator with anti-windup
is designed to limit the maximum LED current at startup and to
achieve tight LED current regulation at steady state. The efficiency
and desired transient/steady-state performances are verified with
SPICE simulation and a prototype circuit, which demonstrate a
maximum efficiency of 95.9% and 2.3% ripple factor for the LED
current. The robustness of the proposed driver is verified under a
range of power supply voltage and different numbers of LEDs at
the load side. In addition, the circuit is modified to implement high
efficiency pulsewidth modulation dimming between 5% and 95%.

Index Terms—Current regulation, LED driver, pulsewidth
Julation (PWM) di self-oscillating boost converter

For example. a self-oscillating soft-switching converter is de-
veloped for LED driving in [11] with reduced LED current
change in the presence of voltage changes without using addi-
tional current feedback. A half-bridge self-oscillating converter
is proposed in [12] to reduce LED current ripple due to input
voltage ripple. without using electrolytic capacitors. Similarly.
Juarez et al.. applied the self-oscillating half-bridge converter
to LED driving with a focus on reducing the output capaci-
tor size [13]. In the same vein, Mineiro ef al., took advantage
of self-oscillation by using a bipolar junction transistor (BIT)
half-bridge converter in LED driver application [14]. The au-
thors reported minimal temperature drift, moderate efficiency
of 81%, and an LED current ripple factor of 15%. In a work
by Chen et al., an ultralow input voltage self-oscillating boost
converter (SOBC) was proposed for LED driver applications
[15]. An input adaptive peak current and blanking time control
was used to extend the input voltage range of operation and to
ensure tight LED current regulation. The authors reported an
efficiency of 72% and an LED current ripple factor of 7%.

This year’s new project:

Build a power management system for triboelectric

(TENG)

*  The most cutting edge technology in energy harvesting (invented in 2012)
* Harvest energy while walking, doing exercise, use the energy
to power cell phone, health monitors, ..., internet of things
* TENGs are more powerful and versatile, as compared to other harvesters
» However: The power generated is badly behaved
* A power management system converts the power to well-behaved form
Viou]:
i c=h00pF, R=200kQ,iaverage p=62.4uW
mv’()‘s 1s 2 Th
TGS oo TSP .
power management , Dy my The TENG dev%ce,
made by Georgia Tech
42
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» Today:

= Introduction
— Motivation
— Course Overview
— Course project
— Control systems in my research projects
= Matrix Operations -- Fundamental to Linear Algebra
— Determinant
— Matrix Multiplication
— Eigenvalue
— Rank

10:43 43

Operations on Matrices
» The classical control theory is based on Laplace
transform and z-transform
¢ also called frequency-domain approach

» The modern control theory is established upon
Linear Algebra
¢ State-space approach, or time domain approach

» A linear time invariant system can be described as

x(t) = Ax(t) + Bu(t)

y(t) = C x(t) + Du(t)
Systems properties all characterized with the matrices
A,B,C,D.

10:43 44
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Matrices: Square or non-square

1 2
2 by 2 (or 2x2) matrices: [_1 3}, [ZZ z;j

a b
A 2 by 3 matrices: [fl 2 JC,}, A3by2matrix: | ¢ d
e f
a11 a12 e alm
. a a .o a
An nxm matrix: 21 2 am a;: element at the i-th row,
T S j-th column
n: the number of rows; m: the number of columns.
nx1: a column vector; 1Xm: arow vector.
Addition and subtraction: element by element
Maltiplication is not by element. 45

Matrix Multiplication:

a bl x|_|ax+by
c d||ly| |cx+dy
a - bllu x|_[au+bv ax+by
c-d||lv y| |cutdv cx+dy

Product of a 1xn matrix a nx1 matrix is a scalar.
Product of a nx1 matrix and a 1xn matrix is an nxn matrix

X X xa xb xc
[a b c] y|=ax+by+cz y [a b c]= ya yb yc

z z za zb zc

Generally, AB#=BA

* You cannot multiply any two matrices. They have to be compatible:

to get AB, the number of columns of A must equal to the number
Bffows of B, e.g., A: kxn, B: nxm. 46
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Let A be a 3x4 matrix, B be a 4x2 matrix

123474 g ji
A=|5 6 7T -8|=|4,| B=|" "/
9.10-11.12]. | 4 7%
B=[B, B,]
AB=A[B, B,]=[4B 4B,]
4 AB] | A[B B)]
AB=| 4, |B=| 4,B |=| 4B, B,]
4, 4,B A3[B1 Bz]
AB, AB, a+2b+3c+4d e+2f+3g+4h

=| A,B, A,B, |=| Sa+6b+7c+8d Se+6f+7g+8h
AB,  AB, 9a+10b+11c+12d 9e+10f +11g+12h

10:43 47
1 2 3 47 [4 a ¢
A=|5 6 7 8|=|4| B=|?/
9 10 11 12 \ 74
B:[Bl Bz]

How about BA?  Not defined at all for this case.

BA is defined only if the number of columns of B is the
Same as the number of rows of A. Suppose

Al
B=[B, B, B,|, A=|4,|, then
A3
Al
BA=[B, B, B]||A4,|=BA+B,A4,+BA,
A3
10But each B|A |, B,A,, B;A; is a matrix. 48
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How about

B AB
A{B;}:[ABJ? (4 4)B=[4B AB]?

If A and B are compatible, (AB defined), then AB, and AB, are
not defined.

Be careful. Correct partition is important. Compatibility is essential.

1 0

Example: -l 0 1/=2
0 2
1 1

10:43 49

Product of block partitioned matrices: Suppose that A and B
are partitioned compatibly as

A:|:A]I A12:|’ B:|:B]I B]2:|’
AZ] A22 BZ] B22
Then

AB:|:AIIBII+A12B21 AIIBIZ+A12B22i|
AZIBII +A2232] A2IB]2 + AZZBZZ

Compatibly partitioned means that the partition of the
columns of A is the same as the partition of the rows of B

10:43 50
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Determinant: A scalar defined for a square matrix

det _g cbl} =ad —bc;
(a b ¢
det|d e f |=aei+dhc+ gbf
& h i
a b c
a b c d e f
d e f|= g h i
g h i a b c
d e f
1 23
Exercise: det|3 2 1
4 56
10:43 51

* Determinant of a triangular matrix:

1 2 3 4 a 0 0 0
b 0 0
R . det| © =9
008 9 f h ¢ 0
0 0 0 10 g i j d
Upper triangular Lower triangular

All zero below the diagonal, or all zero above the diagonal

—> det is the product of the diagonal elements.

The determinant can be simplified by making the matrix a diagonal
one through elementary operations that preserve the determinant.

If an entire row or an entire column is 0, the determinant is 0.

10:43 52
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» Elementary operations that preserve the determinant:
12 3
det(A)—de{3 2 1] =12+45+8-24-5-36=0
456
1) Add one row scaled by a number to another row

321
456 (keep row 1) 456

2) Add one column scaled by a number to another column

123 ) 121
{4 4 4} Add column 2 %(-1) to column 3 {4 i 0}

A{l 2 3} Add row 1 to row 2 F 42; Zq

1 21
{4 4 o} Add row 1 x (-1) to row 3 F
i

(keep row 1)

2
4
3
1 21 1 21
10:43 4 4 0| Row 3 minus row 2X(3/4) 440
330 00

* Determinant of the product of matrices:

det(4B) =det Axdet B
det(ABC) =det Axdet BxdetC

How about det(A+B), det(A-B)?

* Determinant of a block triangular matrix:

* % *

det =? = detA1 detAz detA3 detA4

co oM
'

ocon %
oOX % %

4

Assume that A;,A,,A;,A, are all square.

5 129 10
Examples: det| 0 3 5|= , det]y ¢ 12
0 46 00 7 8

10:43

53

(keepcolumn2) |45 1]

54
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An example:

1 2 3]
det{1 3 5

1 4 8] pr1->p The row/column that is changed
) ; should not be scaled by
1 2 3 b i

=detlo 1 2 any numboer except 1;
1 4 g| 13r1>13
[1 2 3]

=detf0 1 2| 1322513
0 2 5.
1 2 3]

=det(0 1 2|=1
0 0 1.

10:43 55

Why elementary operations preserve the determinant?
* Because elementary operation is equivalent to multiplying the
matrix with another one whose determinant is 1.

a b ¢ at+ex b ¢ a b cf|l1 00
d e f Add column 3 scaled dvfc e f| =|d e f|]|l0 1 0
by x to column 1 0 1

X

g h i g+ix h i g h i
1 00
Since det|0 1 0|=1,
x 01
a b c a b cl||1 00 a+cex b c
det|d e f|=det|d e f||0 1 O|=det|d+fx e f
g h i g h i||lx 01 g+ix h i
1 00{la b ¢
What about 010|de f|=2
10:43 x 01 g h i 56
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* If two rows (columns) are switched, the determinant changes
the sign;

* If a whole row (column) is scaled by a number k, the determinant
is scaled by a number k.

* What if the whole matrix is scaled by a number k?

Exercise:

det| 0 x -1 |=

1
det| -1 1
4

A square matrix is said to be nonsingular if its determinant

1S nonzero.
10:43 57

Eigenvalue of a square matrix: s is an eigenvalue of A if

1 0 .. 0
det[sT-A]=0 1={2 1 + O
o 0o .. 1

If Ais nxn, det[sI-A] is a polynomial of order n. An eigenvalue
is a root of the polynomial. A has n eigenvalues.

[o 1
A‘[—z —3}

det[s] — A] = detB S;ﬂ =5 +35+2=(s+1)(s+2)
Roots are s;=—1 and s, = 2.
Exercise: [_12 ﬂ { 8 (1) (1) }
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The inverse of a square matrix: If det A=0, A has a unique
inverse X such that AX=XA=I, denoted as X=A"!.

A=
Solving a system of equations:
ax+by=e
cx+dy=f
a b

c d

M

10:43

|

hE

a b
c d

b

I

i

e

f

X
Y

a b
c d

}

e & [5]

:#[d —b}
ad —bc| =€ 4

Exercise: What is the

:||:x:|:lie:| inverse of

v L
cos@ -—sind 9
sind cos@ |

AX =b=>X=A4A"b

59

The inverse of a block partitioned matrix:

|

4, B
0 4,

Assume that A, and A, are square and nonsingular, then

X
A4,

for certain X. What is X' ?

=

10:43

A—l

1

0

60
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Sub-matrix of a matrix

L2534 1 3 4 -
5 6 7 8 ‘[9 {1 12} a 2 by 3 matrix

910 11124

""" 1 234 1 3 4
e T (s e ‘ 5 7 8 a 3 by 3 square matrix
910 1112 9 11 12

There are ? 3 by 3 sub-matrices
? 2 by 2 sub-matrices
12 1 by 1 matrices
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Rank: The rank of M is the highest dimension of a
square sub-matrix whose determinant is nonzero.

M k(M).
denoted as p(M), or, rank( )1 4 7 10}

For example, a 3x4 matrix M=|2 5 8 11
xampre, x 36 9 12

3x3 sub-matrices — ?
2x2 submatrices — ?

1x1 sub-matrices — 12
Suppose that
» the number of 3x3 sub-matrices with nonzero det is N(3)

* the number of 2x2 sub-matrices with nonzero det is N(2)
* the number of 1x1 sub-matrices with nonzero det is N(1)

If N(3)#0, then p(M)=3 You need to work from the
If N(3)=0 and N(2)=0, p(M)=2 highest order submatrices.

IFN(3)=N(2)=0 and N(1)0, p(M)=1| The procedure stops whenever

pEM)=0 only if M=0 you find one nonzero d@t.
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1
Example 1: A{o 2 30

3x3 submatrices:

100 000 100 100 _
AI{O 2 31; AZ:[Z 3 0‘|;A3:l:0 3 o} A4:{0 2 0} p(A)=3

0 0 0 0 0 4 0 0 4 0 0 4
det=0 det=0 det=12 det=8
1 01 0
Example 2: 4=0 1 01
I -1 1 -1

All the 3x3 submatrices have 0 det. And there is at least
one 2x2 nonsingular submatrix — p(A)=2

It can be very tedious to check all sub-matrices.
= A systematic way to find the rank is to use elementary operation
tpfransform the matrix into a special form,.e.g., block diagogal.

Elementary operations that preserve the rank:

P {1 0 0 0} All operations that keep the determinant

8 3 (3) 2 or scale the determinant by a nonzero number
1) Add one row scaled by a number to another row
1000 1000
0590 WAL 0230
000 4 400 4

Add row 1 scaled by 4 to row 3
2) Add one column scaled by a number to another column

1 000 1 000
02 30| (Dege—e; o230

3)10}%§<change two columns or two rows o
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Add row 2 scaled by -1 to row 3: 1,*(-1)+1; — 135

1 4 7 10
2 5 8 11
I 1 1 1

Add row 1 scaled by -1 to row 2: r*(-1)+r,— 1,

1 4 7 10
1 1 1 1
1 1 1 1
Add row 2 scaled by -1 to row 3
1 4 710 Rank < 3, but detB ‘1‘}:1_4:_3?&0
1 1 1 1
0 0

0 0 Rank =2
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* Suppose M is nxm. rank(M) < min{m,n}

* If M is multiplied with a nonsingular matrix (square and
has non-zero determinant), the rank is preserved.
This is why elementary operations preserve the rank.

Since there are usually many sub-matrices, a systematic procedure
to compute the rank is to use elementary operation to make

it into upper or lower triangular form.

Another simple operation that preserves the rank is to

reorder the columns or rows (permutation). [4 A, AlX=A, X2
1 2 3 -3 -

Al A3 [AI 4, A ]Y =4,,Y="
Pl |=p|| 4] p([Al 4, A3])=p([A2 4, Al])
A, 4,
This operation is equivalent to multiply ~EXample: } ; ;
the matrix with a matrix L3 s
whose determinant is 1 or -1. 1 4 7]
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» Next Time :
— Math. Descriptions of Systems
* Classification of systems
* Linear systems
* Linear-time-invariant systems
« State variable description
* Linearization

10:43

Homework Set #1:

1. Compute the eigenvalues for

o1 -1
s8] B Bl 5 }
O Y R - a

O

2. Compute the ranks for

1 3 2
-1 -3 0| B -
—d =6 ¥

5 001 0 -1

1 13 4 0
FoCh=

0 2 0 3 1

1 -1 -2 2 1

B2

Lwo —
— = Lo
L= R S
2 O o S

el

"
—
1o e
-l -
o m oM oe
oL u =
[ T

-

=

4
0]
2
1

1
3
2
4

o

(Use elementary operation to simplify the matrices for Pb.2 and 3.

Please show the steps.)

Y(1)<}-14 may use computer to check your answer.
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