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16.513 Control Systems: Lecture note #2

Last Time:

 Introduction
− Motivation

− Course Overview

− Course project

 Matrix Operations  -- Fundamental to Linear Algebra 

− Determinant

− Matrix Multiplication

− Eigenvalue

− Rank 
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Today:
– Math. Descriptions of Systems

• Classification of systems
• Linear systems
• Linear-time-invariant  systems
• State variable description
• Linearization 

− Modeling of electric circuits
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2. Mathematical Descriptions of Systems
(Review)

– Classification of systems

– Linear systems

– Linear time invariant (LTI) systems
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 Basic assumption: When an input signal is applied 
to the system, a unique output is obtained

Q. How do we classify systems?
– Number of inputs/outputs; with/without memory; 

causality; dimensionality; linearity; time invariance

 The number of inputs and outputs
– When p = q = 1, it is called a single-input single-

output (SISO) system
– When p > 1 and q > 1, it is called a multi-input 

multi-output (MIMO) system
– MISO, SIMO defined similarly

2.1  Classification of Systems
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• Memoryless vs. with Memory
– If y(t) depends on u(t) only, the system is said to be 

memoryless, otherwise, it has memory

– An example of a memoryless system?  
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– An example of a system with memory?
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– i(t) depends on i(t0) and u() for t0    t, not just u(t)

– A system with memory

• Causality: No output before an input is applied
 
Input 

System
Output

– A system is causal or non-anticipatory if y(t0) depends 
only on u(t) for t  t0 and is independent of u(t) for t > t0

– Is the circuit discussed last time causal?
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– An example of a non-causal system?

– y(t) = u(t + 2)  

t

u(t)
1

 

t

y(t)

1

– Can you truly build a physical system like this?  

– All physical systems are causal!
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 The Concept of State

– The state of a system at t0 is the information at t0

that, together with u[t0,), uniquely determines the 
behavior of the system for t  t0

– The number of state variables = the number of ICs 
needed to solve the problem

– For an RLC circuit, the number of state variables = 
the number of C + the number of L (except for 
degenerated cases)

– A natural way to choose state variables as what we 
have done earlier: {vc} and {iL} 

– Is this the unique way to choose state variables?
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– Any invertible transformation of the above can 
serve as a state, e.g., 
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– Although the number of state variables = 2, there are 
infinite numbers of representations

 Order of dimension of a system: The number of 
state variables
– If the dimension is a finite number  Finite 

dimensional (or lumped) system

– Otherwise, an infinite dimensional (or distributed) 
system 
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 An example of an infinite dimensional system
 
u(t) 

System
y(t) = u(t-1) A delay line

 

t

u(t)

 

t

y(t)

1

– Given u(t) for t  0, what information is needed to know 
y(t) for t  0?

?

?

– We need an infinite amount of information An 
infinite dimensional system
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2.2  Linear Systems
Linearity

• Double the efforts double the outcome?
– Suppose we have the following (state,input)-output pairs:
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– If this is true ~ Additivity

– How about
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– If this is true ~ Homogeneity

– Combined together to have:

)()( 2211 tyty  

– If this is true ~ Superposition or linearity property

– A system with such a property: a Linear System
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• Also, KVL and KCL are linear constraints.  
When put together, we have a linear system

• Are R, L, and C linear elements?

dt
dv

Ci,
dt

di
Lv,Riv C

C
L

LRR 

– Yes (differentiation is a linear operation)
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Affine Nonlinear
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Linear 
System 

u(t) y(t) 

• The additivity property implies that

– Response = zero-input response + zero-state response
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Response of a Linear System

 How can we determine the output y(t)?
 Can be derived from u(t) + the unit impulse response 

based on  linearity
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 Let (t-) be a square pulse at time  with width 
and height 1/

t-


t

1/ Area = 1

 As  0, we obtain a shifted unit impulse

t 
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 Let the unit impulse response be g ( t,Based on 
linearity,
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 If the system is causal, 
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 A system is said to be relaxed at t0 if the initial 
state at t0 is 0
– In this case, y(t) for t  t0 is caused exclusively by 

u(t) for t  t0
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gij(t,): The impulse 
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• How about a system with p inputs and q outputs?
– Have to analyze the relationship for input/output pairs

State-Space Description
• A linear system can be described by
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2.3  Linear Time-Invariant (LTI) Systems

 Time Invariance: The characteristics of a system do 
not change over time
– What are some of the LTI examples?  Time-varying 

examples?

– What happens for an LTI system if u(t) is delayed by T? 

t 
u(t) y(t) 

t 

u(t-T) y(t-T)

If the same IC is also shifted by T
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– This property can be stated as:

0
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0( ) ( ),( ),
x T x y t T t Tu t T t T

    

Practice: Suppose  u(t)  y(t)=1-exp(-t), y(t)=0 for t<0. 
What is the response to u(t+1)+u(t-1)? 
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 What happens to the unit impulse response when 
the system is LTI?
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• ~ Transfer function, the Laplace transform of 
the unit impulse response
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Transfer-Function Matrix

 For SISO system, 

 For MIMO system, 
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Today:
– Math. Descriptions of Systems

• Classification of systems
• Linear systems
• Linear-time-invariant  systems
• State variable description
• Linearization 

− Modeling of electric circuits
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State Variable Description
 Start with a general lumped (finite-dimensional) system:

)t(u)t(D)t(x)t(C)t(y

)t(u)t(B)t(x)t(A)t(x




)t(Du)t(Cx)t(y

)t(Bu)t(Ax)t(x




)t),t(u),t(x(f)t(y

)t),t(u),t(x(h)t(x




 If the system is linear, the above reduces to:

 If the system is linear and time-invariant, then:
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 To find an LTI system's response to a particular 
input u(t), we can use Laplace transform:

)s(ûD)s(x̂C)s(ŷ

)s(ûB)s(x̂Ax)s(x̂s 0




 Solve the above linear algebraic equations:

   
     0

11

0
11

xAsIC)s(ûDBAsIC)s(ŷ

xAsI)s(ûBAsI)s(x̂








 x0 is the information needed to determine x(t) 
and y(t) for t>0, in addition to  the input u(t).

Transfer function matrix )s(Ĝ

x  is the state
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2.4  Linearization
 There are many results on linear systems while 

nonlinear systems are generally difficult to analyze
– What to do with a nonlinear system described by

)t),t(u),t(x(f)t(y

)t),t(u),t(x(h)t(x




 Linearization.  How?  Under what conditions?
– Using Taylor series expansion based on a nominal 

trajectory, ignoring second order terms and higher

– Effects are not bad if first order Taylor series 
expansion is a reasonable approximation over the 
duration under consideration 

28

 Suppose that with xo(t) and uo(t), we have

)t),t(u),t(x(h)t(x ooo 

– Suppose that the input is perturbed to )t(u)t(uo 

– Assume the solution is xo(t) +x(t), withx(t) satisfying

)t),t(u)t(u),t(x)t(x(h)t(x)t(x ooo  

...u
u
h

x
x
h

)t),t(u),t(x(h
oo

oo 

























































































































p

n

2

n

1

n

p

2

2

2

1

2

p

1

2

1

1

1

n

n

2

n

1

n

n

2

2

2

1

2

n

1

2

1

1

1

u
h

..
u
h

u
h

:..::
u
h

..
u
h

u
h

u
h

..
u
h

u
h

u
h

,

x
h

..
x
h

x
h

:..::
x
h

..
x
h

x
h

x
h

..
x
h

x
h

x
h

~ Jacobians



15

29

 Then the perturbed system can be described by

~ A linear systemu
u
h

x
x
h

)t(x
oo 





– The above is valid if the first order Taylor series 
expansion works out well within the time duration 
under consideration. It may lead to wrong prediction.

 What to do with the output y(t) = f(x(t), u(t), t)?

– The output equation can be similarly linearized, but 
most often there is no need for linearization unless 
with output feedback

 There is another approach to deal with nonlinear
time-varying systems: Conservative but reliable

30
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Example: A model for a pendulum 
l

mg

u
1 2

1

2

(the  angle) ,  (angular velocity) ,   

The state is   

x x
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The model is derived from Newton’s law,

Linearize the system at x1=0, x2=0, u=0, 

1 1 1

01 20 0

2 2 2
1 1 0 1 0

01 20 0

0, 1, 0

1 1 1
( cos sin ) | , 0, cos |

h h h

x x u

h g g h h
x x x

x l ml l x u ml ml

  
  

  

  
       

  

torque = forcearm
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cos
1

sin

;

)sin(sin
1

)sin(cossin

;


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











Exercise:  Linearize the following system at x =0, u=0.

32




Pulse-width
modulator

D

Q1
D1

L

C R

+

v



vg

RL

i

When MOSFET is on
When MOSFET is off




C R

+

v



vg

RL

i
onR




L

C R

+

v



vg

RL

i

 

Dv

 

10
0

1
0 00

0 1

on L

g

D

di R R
vidt L

L
vdv v

RCdt

y v

                                    

  

1
1

0

1 1
0 0

0 1

L

g

D

di R
vidt L L

L
vdv v

C RCdt

i
y

v

                                      

 
  

 

D= 0.2

D= 0.5

D= 0.8

Modeling the buck-boost converter 

A1
B1

C

A2
B2

C
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
















 



D

gTt

t

Tt

t v

v
v

v

i
xdv

T
tvdi

T
ti ,,)(

1
)(,)(

1
)( 

Let Average over one switching period

The averaged model is: 
xCy

vBDDBxADDAx


 ))1(())1(( 2121


Let the nominal working point be 000 ,, yyxxDD 

At steady state,
0 1 0 2 0 0 1 0 2

0 0

0 ( (1 ) ) ( (1 ) )             (1)D A D A x D B D B v
y Cx
     


Relationship between 
output voltage yss and 
duty cycle  D
*  : by experiment
__ : by equation  (1)

34

To achieve robust stability and tracking, so that the same output
y0 is produced when parameters have changed, we obtain a 
perturbation model around the nominal working point: 

000 ,,  Define yyyDDuxxxp 

ppbpp CxyuBuxAxAx  ,
vBBxAAB

AAAADADA b

)()(

,)1(

21021

212010




0 1 0 2 0 0 1 0 2

0 0

0 ( (1 ) ) ( (1 ) )             (1)D A D A x D B D B v
y Cx
     


At nominal working condition:

This is obtained by subtracting (1) from the averaged model: 

xCy
vBDDBxADDAx


 ))1(())1(( 2121



If the perturbation is small,  xpu can be ignored as a second-order term
The approximate linear model is 

,p p px Ax Bu y Cx  
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Linear Differential Inclusion (LDI)

)t(Du)t(Cx)t(y

)t(Bu)t(Ax)t(x




An LTI system:


























u

x

DC

BA

y

x

In many situations, A,B,C,D are not constant, but nonlinear
time varying , and/or depend on a parameter , such as,

t)u(t)α,D(x,t)x(t)α,C(x,y(t)
t)u(t)α,B(x,t)x(t)α,A(x,(t)x




We can find a set such that Ω
t)α,D(x,t)α,C(x,

t)α,B(x,t)α,A(x,









The system satisfies









































Ω

DC

BA
:

u

x

DC

BA

y

x

36









































Ω

DC

BA
:

u

x

DC

BA

y

x

 This is a linear differential inclusion (LDI)

 An LDI uses a set of linear systems to describe a 
complicated  nonlinear system.  

 In many cases is a polytope:  the behavior of an LDI 
can be characterized by finite  many linear systems, e,g.,

N,1,iu(t),Dx(t)Cy(t)
u(t)Bx(t)A(t)x

ii

ii







 Like a polygon, its properties are determined by finite 
many vertices. 
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1 1 2

2 2 1 1

( )

1
( ) sin cos

x h x x

g
x h x x x u

l ml

 

   





Example: A model for a pendulum 

1
1 1 1

2 1
1

0 1 0
sin ( ) ( )10 cos

xg xx u A x x B x u
x x

l x ml

                  



If the angle is restricted between  0 and  /4,  we can write 

 1 1 1( ), ( ) :   [0, / 4]
x

x A x B x x
u

       


38

Today:
– Math. Descriptions of Systems

• Classification of systems
• Linear systems
• Linear-time-invariant  systems
• State variable description
• Linearization 

− Modeling of electric circuits
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2.5  Modeling of Selected Systems

 We will briefly go over the following systems

– Electrical Circuits

– Operational Amplifiers

– Mechanical Systems

– Integrator/Differentiator Realization

 For any of the above system, we derive a state space 
description: 

)t(Du)t(Cx)t(y

)t(Bu)t(Ax)t(x




 Different engineering systems are unified into the same
framework, to be addressed by system and control theory. 

40

Electrical Circuits

State variables?  

– i of  L and v of C

DuCxy
BuAxx




 

++

- - - 
u(t) R C

L

+ 
y

i

v

• How to describe the evolution of the state variables?

vuv
dt

di
L L 

R

v
ii

dt

dv
C C  RC

v
i

C

1

dt

dv

u
L

1
v

L

1

dt

di



 State Equation: Two first-order 
differential equations in terms 
of state variables and input

Output equation:

u
0
L

1

v

i

RC

1

C

1
L

1
0

dt

dv
dt

di



























































In matrix form:

y = v   0u
v

i
10 










x x
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 Steps to obtain state and output equations:
Step 1: Pick {iL, vC} as state variables

Step 2: 

u),v,(ifi
dt

dv
C

u),v,(ifv
dt

di
L

CL2C
C

CL1L
L



 Linear functions

By using KVL and KCL

Step 3:
L

1 C L

C
2 C L

di
(1/L)f (i ,v ,u)

dt
dv

(1/C)f (i ,v ,u)
dt





Step 4: Put the above in matrix form

Step 5: Do the same thing for y in terms of state variables and 
input, and put in matrix form

42

Example
• State variables?  

– i1, i2, and v, 

 

++

- - - 
u(t) R2 C

L1 

+ 
y

L2 R1

i1

v

• State and output equations?

1L
1

1 v
dt

di
L 

Cidt

dv
C 

21

2
2

2

22

11
1

1

11

i
C

v
i

C

1

dt

dv

v
L

1
i

L

R

dt

di

u
L

1
v

L

1
i

L

R

dt

di







u

0

0
L

1

v

i

i

0
C

1

C

1
L

1

L

R
0

L

1
0

L

R

dt

dv
dt

di
dt

di

1

2

1

22

2

11

1

2

1


























































































i2

2L
2

2 v
dt

di
L 

 

















v

i

i

0R0iRy 2

1

222

viRu 11 

22iRv 

21 ii 

x
x DuCxy

BuAxx


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Practice:   Derive the state space model for the following circuit:

+
v1


+

- -
u(t) 2

1F

1H

+
y

2F
1

i

+      v2 

1

2

v

x v

i

 
   
  
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Operational Amplifiers (Op Amps)

• Usually, A > 104

– Ideal Op Amp:
• A  ~ Implying that (va - vb)  0, or va  vb

• ia  0 and ib  0 

– Problem: How to analyze a circuit with ideal Op Amps

 

-Vcc, -15V 

Non-inverting 
terminal, va 

Inverting 
terminal, vb 

Output, vo

io
ia 

ib 

Vcc, 15V 

+

- 

v0 = A (va - vb), with -VCC  v0  VCC

 

-Vcc

va - vb 

Slope = A

Vcc

Vo
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• Key ideas:
– Make effective use of ia = ib = 0 and va = vb

– Do not apply the node equation to output terminals of 
op amps and ground nodes, since the output current 
and power supply current are generally unknown

 

+ 
u1(t) 

R2 R1 

y 
u2(t) 

+ + 

- 

- 
- 

-

+
i1

i2 i1 + i2 = 0

0
R

uy
R

uu

2

2

1

21 

2
1

2
1

1

2 u
R
R

1u
R
R

y 









Delineate the relationship between input and output

Input/Output description

Pure gain, no SVs

u2

46

 

R2 

R1 

+ +

-
+ 

u(t) 
- 

- 

y 
-

+

- 
+ C1 

C2

v1

v2
State and output equations


dt

dv
C 1

1

1vy 

v1 + v2
What are the state 
variables?

State variables: v1 and v2

 
2

2

2

121
R
v

R
vvv 


dt

dv
C 2

2
 

2

2

1

21
R
v

R
vvu




v1

u
CR
1
0

v

v

R
1

R
1

C
1

CR
1

CR
1

0

dt
dv
dt

dv

212

1

11221

12

2

1
































































  u0
v

v
01

2

1 






i1

ic2

ic1
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Today:  
 Math. descriptions of  systems
 Modeling of electric circuit

 Next Time:
 Modeling of Selected Systems

• Continuous-time systems (§2.5)

– mechanical systems, integrator/differentiator realization

• Discrete-Time systems (§2.6)

– difference equations,  simple financial systems

 Advanced Linear Algebra, Chapter 3

48

Problem Set #2:

1. Give examples for nonlinear systems and infinite 
dimensional systems respectively. What are the inputs, outputs
and states? 

2. Suppose we have a linear time-invariant system. 
Its response to u1 is  y1(t)= t+3, for t 0, and its 
response to u2 is y2(t)= 2t , for t  0. For t< 0, y1(t) = y2(t)=0. 
Assume zero initial conditions.  What is the response to
2u1(t-1)-u2(t+1)? Plot the response for  t[-2,4] with Matlab.

3. An LTI system is described by  

What is y(t) for u=0 and y(0)=1, y’(0)=-1?   
What is y(t) for a unit step u (u=1(t)) and y(0)=y’(0)=0?
What is y(t) for u=1(t) and y(0)=2, y’(0)=-2?
What is the state of the system? 

4 3 ,y y y u   
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4.  Derive state-space description for the circuit:

+  

R1 LC1

i

+      






C2u(t)
+      
y2



+  y1 
1

2

1

2

Input:   u(t)

y
Output:   y =

y

State:    x =

v

v

i

 
 
 
 
 
 
  


