16.513 Control Systems: Lecture note \#2

Last Time:

- Introduction
- Motivation
- Course Overview
- Course project
- Matrix Operations -- Fundamental to Linear Algebra
- Determinant
- Matrix Multiplication
- Eigenvalue
- Rank

Today:

- Math. Descriptions of Systems
- Classification of systems
- Linear systems
- Linear-time-invariant systems
- State variable description
- Linearization
- Modeling of electric circuits

2. Mathematical Descriptions of Systems

(Review)

- Classification of systems
- Linear systems
- Linear time invariant (LTI) systems

2.1 Classification of Systems

- Basic assumption: When an input signal is applied to the system, a unique output is obtained
Q. How do we classify systems?
- Number of inputs/outputs; with/without memory; causality; dimensionality; linearity; time invariance
- The number of inputs and outputs
- When $\mathrm{p}=\mathrm{q}=1$, it is called a single-input singleoutput (SISO) system
- When $\mathrm{p}>1$ and $\mathrm{q}>1$, it is called a multi-input multi-output (MIMO) system
- MISO, SIMO defined similarly

- Memoryless vs. with Memory

- If $y(t)$ depends on $u(t)$ only, the system is said to be memoryless, otherwise, it has memory
- An example of a memoryless system?

- An example of a system with memory?

- $i(t)$ depends on $i\left(t_{0}\right)$ and $u(\tau)$ for $t_{0} \leq \tau \leq t$, not just $u(t)$
- A system with memory
- Causality: No output before an input is applied

- A system is causal or non-anticipatory if $y\left(t_{0}\right)$ depends only on $u(t)$ for $t \leq t_{0}$ and is independent of $u(t)$ for $t>t_{0}$
- Is the circuit discussed last time causal?

- An example of a non-causal system?
$-\mathrm{y}(\mathrm{t})=\mathrm{u}(\mathrm{t}+2)$

- Can you truly build a physical system like this?
- All physical systems are causal!

- The Concept of State

- The state of a system at t_{0} is the information at t_{0} that, together with $u_{\left[t_{0}, \infty\right)}$, uniquely determines the behavior of the system for $t \geq t_{0}$
- The number of state variables $=$ the number of ICs needed to solve the problem
- For an RLC circuit, the number of state variables = the number of $\mathrm{C}+$ the number of L (except for degenerated cases)
- A natural way to choose state variables as what we have done earlier: $\left\{\mathrm{v}_{\mathrm{c}}\right\}$ and $\left\{\mathrm{i}_{\mathrm{L}}\right\}$
- Is this the unique way to choose state variables?
- Any invertible transformation of the above can serve as a state, e.g.,

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v(t) \\
i(t)
\end{array}\right]=\left[\begin{array}{c}
2 v(t)+i(t) \\
i(t)
\end{array}\right]
$$

- Although the number of state variables $=2$, there are infinite numbers of representations
- Order of dimension of a system: The number of state variables
- If the dimension is a finite number \Rightarrow Finite dimensional (or lumped) system
- Otherwise, an infinite dimensional (or distributed) system
- An example of an infinite dimensional system

$$
\xrightarrow{\mathrm{u}(\mathrm{t})} \text { System } \xrightarrow{\mathrm{y}(\mathrm{t})=\mathrm{u}(\mathrm{t}-1)} \quad \text { A delay line }
$$

- Given $u(t)$ for $t \geq 0$, what information is needed to know $y(t)$ for $t \geq 0$?

- We need an infinite amount of information $\Rightarrow A n$ infinite dimensional system

2.2 Linear Systems

Linearity

- Double the efforts double the outcome?
- Suppose we have the following (state,input)-output pairs:

$$
\begin{gathered}
\left.\begin{array}{c}
x_{1}\left(t_{0}\right) \\
u_{1}(t), t \geq t_{0}
\end{array}\right\} \rightarrow y_{1}(t), t \geq t_{0} \\
\left.\begin{array}{c}
x_{2}\left(t_{0}\right) \\
u_{2}(t), t \geq t_{0}
\end{array}\right\} \rightarrow y_{2}(t), t \geq t_{0}
\end{gathered}
$$

- What would be the output of

$$
\left.\begin{array}{c}
x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right) \\
u_{1}(t)+u_{2}(t), t \geq t_{0}
\end{array}\right\} \rightarrow \quad y_{1}(t)+y_{2}(t), t \geq t_{0}
$$

- If this is true \sim Additivity
- How about

$$
\left.\begin{array}{c}
\alpha x_{1}\left(t_{0}\right) \\
\alpha u_{1}(t), t \geq t_{0}
\end{array}\right\} \rightarrow \quad \alpha y_{1}(t), t \geq t_{0}
$$

- If this is true \sim Homogeneity
- Combined together to have:

$$
\left.\begin{array}{c}
\alpha_{1} x_{1}\left(t_{0}\right)+\alpha_{2} x_{2}\left(t_{0}\right) \\
\alpha_{1} u_{1}(t)+\alpha_{2} u_{2}(t), t \geq t_{0}
\end{array}\right\} \rightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t)
$$

- If this is true \sim Superposition or linearity property
- A system with such a property: a Linear System
- Are R, L, and C linear elements?

$$
\mathrm{v}_{\mathrm{R}}=\mathrm{Ri}_{\mathrm{R}}, \quad \mathrm{v}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}, \quad \mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}}
$$

- Yes (differentiation is a linear operation)

- Also, KVL and KCL are linear constraints. When put together, we have a linear system
- The additivity property implies that
$y(t)$ due to $\left\{\begin{array}{c}x_{1}\left(t_{0}\right) \\ u_{1}(t), t \geq t_{0}\end{array}=y(t)\right.$ due to $\left\{\begin{array}{c}x_{1}\left(t_{0}\right) \\ u_{1}(t) \equiv 0\end{array}+y(t)\right.$ due to $\left\{\begin{array}{c}x_{1}\left(t_{0}\right)=0 \\ u_{1}(t), t \geq t_{0}\end{array}\right.$
- Response $=$ zero-input response + zero-state response

Response of a Linear System

- How can we determine the output $y(t)$?
- Can be derived from $u(t)+$ the unit impulse response based on linearity
- Let $\delta_{\Delta}(\mathrm{t}-\tau)$ be a square pulse at time τ with width Δ and height $1 / \Delta$

- As $\Delta \rightarrow 0$, we obtain a shifted unit impulse

$$
\underbrace{\stackrel{\uparrow}{i}(t-\tau)^{\text {\& }}}_{\tau}
$$

- Let the unit impulse response be $g(t, \tau)$. Based on linearity,

$$
y(t)=\int_{-\infty}^{\infty} g(t, \tau) u(\tau) d \tau
$$

- If the system is causal,

$$
g(t, \tau)=0 \text { for } t<\tau \quad y(t)=\int_{-\infty}^{t} g(t, \tau) u(\tau) d \tau
$$

- A system is said to be relaxed at t_{0} if the initial state at t_{0} is 0
- In this case, $y(t)$ for $t \geq t_{0}$ is caused exclusively by $u(t)$ for $t \geq t_{0}$

$$
y(t)=\int_{t_{0}}^{t} g(t, \tau) u(\tau) d \tau
$$

- How about a system with p inputs and q outputs?
- Have to analyze the relationship for input/output pairs

$$
\begin{aligned}
& y(t)=\int_{t_{0}}^{t} G(t, \tau) u(\tau) d \tau \\
& G(t, \tau)=\left[\begin{array}{lll}
g_{11}(t, \tau) & g_{12}(t, \tau) & g_{1 p}(t, \tau) \\
g_{21}(t, \tau) & g_{22}(t, \tau) & g_{2 p}(t, \tau) \\
g_{q 1}(t, \tau) & g_{q 2}(t, \tau) & g_{q p}(t, \tau)
\end{array}\right] \quad \begin{array}{l}
\mathrm{g}_{\mathrm{ij}}(\mathrm{t}, \tau) \text { : The impulse } \\
\text { response between the } \\
\text { jth input and } \mathrm{i}^{\text {th }} \text { output }
\end{array}
\end{aligned}
$$

State-Space Description

- A linear system can be described by

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t) \\
& y(t)=C(t) x(t)+D(t) u(t)
\end{aligned}
$$

2.3 Linear Time-Invariant (LTI) Systems

- Time Invariance: The characteristics of a system do not change over time
- What are some of the LTI examples? Time-varying examples?
- What happens for an LTI system if $u(t)$ is delayed by T?

If the same IC is also shifted by T

- This property can be stated as:

$$
\begin{gathered}
\left.\begin{array}{c}
x(0)=x_{0} \\
u(t), t \geq 0
\end{array}\right\} \rightarrow y(t), t \geq t_{0} \\
\left.\begin{array}{c}
x(T)=x_{0} \\
u(t-T), t \geq T
\end{array}\right\} \rightarrow y(t-T), t \geq T
\end{gathered}
$$

Practice: Suppose $u(t) \rightarrow y(t)=1-\exp (-t), y(t)=0$ for $t<0$. What is the response to $u(t+1)+u(t-1)$?

- What happens to the unit impulse response when the system is LTI?

$$
\begin{aligned}
& g(t, \tau)=g(t+T, \tau+T) \quad \text { for any } T \\
& g(t, \tau)=g(t-\tau, \tau-\tau)=g(t-\tau, 0)=g(t-\tau)
\end{aligned}
$$

- Only the difference between t and τ matters
- What happens to $\mathrm{y}(\mathrm{t})$?

$$
\begin{aligned}
& y(t)=\int_{t_{0}}^{t} g(t, \tau) u(\tau) d \tau \\
&=\int_{t_{0}}^{t} g(t-\tau) u(\tau) d \tau \\
&=\int_{t_{0}}^{t} g(\tau) u(t-\tau) d \tau \\
&=g(t) * u(t) \quad \sim \text { Convolution integral } \\
& \Longrightarrow \hat{y}(s)=\hat{g}(s) \hat{u}(s)
\end{aligned}
$$

Proof of $\hat{y}(s)=\hat{g}(s) \hat{u}(s)$

$$
\begin{aligned}
\hat{y}(s) & \equiv \int_{0}^{\infty} y(t) e^{-s t} d t \\
& =\int_{t=0}^{\infty}\left(\int_{\tau=0}^{\infty} g(t-\tau) u(\tau) d \tau\right) e^{-s t} d t \\
& =\int_{t=0}^{\infty}\left(\int_{\tau=0}^{\infty} g(t-\tau) u(\tau) d \tau\right) e^{-s(t-\tau)} e^{-s \tau} d t \\
& =\int_{\tau=0}^{\infty}\left(\int_{t=0}^{\infty} g(t-\tau) e^{-s(t-\tau)} d t\right) u(\tau) e^{-s \tau} d \tau,
\end{aligned}
$$

(Let $v=t-\tau$)

$$
\begin{aligned}
& \hat{y}(s)= \int_{\tau=0}^{\infty}\left(\int_{v=-\tau}^{\infty} g(v) e^{-s v} d v\right) u(\tau) e^{-s \tau} d \tau, \\
&(\text { Note } g(v)=0 \text { for } v<0) \\
&= \int_{\tau=0}^{\infty}\left(\int_{v=0}^{\infty} g(v) e^{-s v} d v\right) u(\tau) e^{-s \tau} d \tau \\
&=\left(\int_{v=0}^{\infty} g(v) e^{-s v} d v\right)\left(\int_{\tau=0}^{\infty} u(\tau) e^{-s \tau} d \tau\right) \\
& \hat{y}(s)=\hat{g}(s) \cdot \hat{u}(s)
\end{aligned}
$$

Transfer-Function Matrix

- For SISO system, $\hat{y}(s)=\hat{g}(s) \cdot \hat{u}(s)$
- $\hat{\mathrm{g}}(\mathrm{s}) \sim$ Transfer function, the Laplace transform of the unit impulse response
- For MIMO system,

$$
\begin{aligned}
& \hat{y}(s)=\hat{G}(s) \cdot \hat{u}(s) \\
& \hat{G}(s)=\left[\begin{array}{lll}
\hat{g}_{11}(s) & \hat{g}_{12}(s) & \hat{g}_{1 p}(s) \\
\hat{g}_{21}(s) & \hat{g}_{22}(s) & \hat{g}_{2 p}(s) \\
\hat{g}_{q 1}(s) & \hat{g}_{q 2}(s) & \hat{g}_{q p}(s)
\end{array}\right] \quad \sim \begin{array}{l}
\text { Transfer-function } \\
\text { matrix, or transfer } \\
\text { matrix }
\end{array}
\end{aligned}
$$

Today:

- Math. Descriptions of Systems
- Classification of systems
- Linear systems
- Linear-time-invariant systems
- State variable description
- Linearization
- Modeling of electric circuits

State Variable Description

- Start with a general lumped (finite-dimensional) System:

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{h}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})
\end{aligned}
$$

- If the system is linear, the above reduces to:

$$
\begin{aligned}
& \dot{\mathrm{x}}(\mathrm{t})=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{u}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{C}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{D}(\mathrm{t}) \mathrm{u}(\mathrm{t})
\end{aligned}
$$

- If the system is linear and time-invariant, then:

$$
\begin{aligned}
& \dot{\mathrm{x}}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned}
$$

- To find an LTI system's response to a particular input $u(t)$, we can use Laplace transform:

$$
\begin{aligned}
& s \hat{x}(s)-x_{0}=A \hat{x}(s)+B \hat{u}(s) \\
& \hat{y}(s)=C \hat{x}(s)+D \hat{u}(s)
\end{aligned}
$$

- Solve the above linear algebraic equations:

$$
\begin{aligned}
& \hat{\mathrm{x}}(\mathrm{~s})=(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{Bu}(\mathrm{~s})+(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{x}_{0} \\
& \hat{\mathrm{y}}(\mathrm{~s})=\mathrm{C}_{\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}+\mathrm{D} \hat{\mathrm{~h}}(\mathrm{~s})+\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{x}_{0}}^{\text {Transfer function matrix } \hat{\mathrm{G}}(\mathrm{~s})}
\end{aligned}
$$

- x_{0} is the information needed to determine $\mathrm{x}(\mathrm{t})$ and $y(t)$ for $t>0$, in addition to the input $u(t)$.

2.4 Linearization

- There are many results on linear systems while nonlinear systems are generally difficult to analyze
- What to do with a nonlinear system described by

$$
\begin{aligned}
& \dot{\mathrm{x}}(\mathrm{t})=\mathrm{h}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})
\end{aligned}
$$

- Linearization. How? Under what conditions?
- Using Taylor series expansion based on a nominal trajectory, ignoring second order terms and higher
- Effects are not bad if first order Taylor series expansion is a reasonable approximation over the duration under consideration
- Suppose that with $x_{0}(t)$ and $u_{0}(t)$, we have

$$
\dot{x}_{\mathrm{o}}(\mathrm{t})=\mathrm{h}\left(\mathrm{x}_{\mathrm{o}}(\mathrm{t}), \mathrm{u}_{\mathrm{o}}(\mathrm{t}), \mathrm{t}\right)
$$

- Suppose that the input is perturbed to $u_{0}(t)+\bar{u}(t)$
- Assume the solution is $x_{0}(t)+\bar{x}(t)$, with $\overline{\mathrm{x}}(\mathrm{t})$ satisfying

$$
\dot{\mathrm{x}}_{0}(\mathrm{t})+\dot{\mathrm{x}}(\mathrm{t})=\mathrm{h}\left(\mathrm{x}_{0}(\mathrm{t})+\overline{\mathrm{x}}(\mathrm{t}), \mathrm{u}_{\mathrm{o}}(\mathrm{t})+\overline{\mathrm{u}}(\mathrm{t}), \mathrm{t}\right)
$$

$$
=\underbrace{h\left(x_{o}(t), \mathrm{u}_{\mathrm{o}}(\mathrm{t}), \mathrm{t}\right)}+\left.\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right|_{\mathrm{o}} \overline{\mathrm{x}}+\left.\frac{\partial \mathrm{h}}{\partial \mathrm{u}}\right|_{\mathrm{o}} \overline{\mathrm{u}}+\ldots
$$

- Then the perturbed system can be described by

$$
\dot{\mathrm{x}}(\mathrm{t})=\left.\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right|_{\mathrm{o}} \overline{\mathrm{x}}+\left.\frac{\partial \mathrm{h}}{\partial \mathrm{u}}\right|_{\mathrm{o}} \overline{\mathrm{u}} \quad \sim \mathrm{~A} \text { linear system }
$$

- The above is valid if the first order Taylor series expansion works out well within the time duration under consideration. It may lead to wrong prediction.
- What to do with the output $\mathrm{y}(\mathrm{t})=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t})$?
- The output equation can be similarly linearized, but most often there is no need for linearization unless with output feedback

There is another approach to deal with nonlinear time-varying systems: Conservative but reliable

Example: A model for a pendulum
$x_{1}=\theta\left(\right.$ the angle) , $x_{2}=\dot{\theta}$ (angular velocity),
The state is $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}\theta \\ \dot{\theta}\end{array}\right]$
The model is derived from Newton's law,

$\dot{X}_{1}=h_{1}(x)=x_{2}$
$\dot{x}_{2}=h_{2}(x)=-\frac{g}{l} \sin x_{1}+\frac{1}{m l} \cos x_{1} \quad u$
Linearize the system at $\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{u}=0$,
$\left.\frac{\partial h_{1}}{\partial x_{1}}\right|_{0}=0,\left.\quad \frac{\partial h_{1}}{\partial x_{2}}\right|_{0}=1,\left.\quad \frac{\partial h_{1}}{\partial u}\right|_{0}=0$
$\left.\frac{\partial \boldsymbol{h}_{2}}{\partial x_{1}}\right|_{0}=\left.\left(-\frac{g}{l} \cos x_{1}-\frac{1}{m l} \sin x_{1}\right)\right|_{0}=-\frac{g}{l},\left.\quad \frac{\partial h_{2}}{\partial x_{2}}\right|_{0}=0,\left.\quad \frac{\partial h_{2}}{\partial u}\right|_{0}=\left.\frac{1}{m l} \cos x_{1}\right|_{00}=\frac{1}{m l}$

$$
\frac{\partial h}{\partial x}=\left[\begin{array}{ll}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} \\
\frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & 0
\end{array}\right], \quad \frac{\partial h}{\partial u}=\left[\begin{array}{c}
\frac{\partial h_{1}}{\partial u} \\
\frac{\partial h_{2}}{\partial u}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{m l}
\end{array}\right]
$$

Linearized system:

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\frac{1}{m l}
\end{array}\right] u
$$

Exercise: Linearize the following system at $\mathrm{x}=0, \mathrm{u}=0$.

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} ; \\
& \dot{x}_{2}=-\frac{g}{l_{1}} \sin x_{1}+\frac{m_{2} g}{m_{1} l_{1}} \cos x_{3} \sin \left(x_{3}-x_{1}\right)+\frac{1}{m_{1} l_{1}} \sin x_{3} \sin \left(x_{3}-x_{1}\right) u \\
& \dot{x}_{3}=x_{4} ; \\
& \dot{x}_{4}=-\frac{g}{l_{2}} \sin x_{3}+\frac{1}{m_{2} l_{2}} \cos x_{3} u
\end{aligned}
$$

Modeling the buck-boost converter

When MOSFET is off
When MOSFET is on

$\left[\begin{array}{l}\frac{d i}{d t} \\ \frac{d v}{d t}\end{array}\right]=\left[\begin{array}{cc}-\frac{R_{o n}+R_{L}}{L} & 0 \\ 0 & -\frac{1}{R C}\end{array}\right]\left[\begin{array}{c}{\left[\begin{array}{c}i \\ v \\ v\end{array}\right]+\left[\begin{array}{cc}\frac{1}{L} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}v_{g} \\ v_{0}\end{array}\right]} \\ \mathrm{B}_{1}\end{array}\right.$ $y={ }^{0} \begin{array}{ll}0 & 1 l_{0} v \\ C\end{array}$

$y=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{l}i \\ i v e\end{array}\right]$
$\left[\begin{array}{l}\frac{d i}{d t} \\ \frac{d v}{d t}\end{array}\right]=\underbrace{\left[\begin{array}{l}i \\ v\end{array}\right]+\left[\begin{array}{cc}{\left[\begin{array}{cc}0 & -\frac{1}{L} \\ 0 & 0\end{array}\right]}\end{array}\left[\begin{array}{l}v_{g} \\ v_{D}\end{array}\right]\right.}_{\left[\begin{array}{cc}-\frac{R_{L}}{L} & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{R C}\end{array}\right]}$
$y=\left[\begin{array}{ll}0 & 1\end{array}\right]$
32

Let - Average over one switching period

$$
\bar{i}(t)=\frac{1}{T} \int_{t}^{t+T} i(\tau) d \tau, \quad \bar{v}(t)=\frac{1}{T} \int_{t}^{t+T} v(\tau) d \tau, \quad \bar{x}=\left[\begin{array}{l}
\bar{i} \\
\bar{v}
\end{array}\right], \quad v=\left[\begin{array}{l}
v_{g} \\
v_{D}
\end{array}\right]
$$

The averaged model is: $\dot{\bar{x}}=\left(D A_{1}+(1-D) A_{2}\right) \bar{x}+\left(D B_{1}+(1-D) B_{2}\right) v$

$$
\bar{y}=C \bar{x}
$$

Let the nominal working point be $D=D_{0}, \bar{x}=\bar{x}_{0}, \bar{y}=\bar{y}_{0}$
At steady state, $\quad 0=\left(D_{0} A_{1}+\left(1-D_{0}\right) A_{2}\right) \bar{x}_{0}+\left(D_{0} B_{1}+\left(1-D_{0}\right) B_{2}\right) v$

Relationship between output voltage y_{ss} and duty cycle D

* : by experiment __ : by equation (1) 33

At nominal working condition:

$$
\begin{align*}
& 0=\left(D_{0} A_{1}+\left(1-D_{0}\right) A_{2}\right) \bar{x}_{0}+\left(D_{0} B_{1}+\left(1-D_{0}\right) B_{2}\right) v \tag{1}\\
& \bar{y}_{0}=C \bar{x}_{0}
\end{align*}
$$

To achieve robust stability and tracking, so that the same output y_{0} is produced when parameters have changed, we obtain a perturbation model around the nominal working point:
Define $x_{p}=\bar{x}-\bar{x}_{0}, \quad u=D-D_{0}, \quad y=\bar{y}-\bar{y}_{0}$

$$
\dot{x}_{p}=\bar{A} x_{p}+\bar{A}_{b} x_{p} u+\bar{B} u, \quad y=C x_{p} \quad \begin{aligned}
& \bar{A}=D_{0} A_{1}+\left(1-D_{0}\right) A_{2}, \bar{A}_{b}=A_{1}-A_{2} \\
& \bar{B}=\left(A_{1}-A_{2}\right) \bar{x}_{0}+\left(B_{1}-B_{2}\right) v
\end{aligned}
$$

This is obtained by subtracting (1) from the averaged model:

$$
\begin{aligned}
& \dot{\bar{x}}=\left(D A_{1}+(1-D) A_{2}\right) \bar{x}+\left(D B_{1}+(1-D) B_{2}\right) v \\
& \bar{y}=C \bar{x}
\end{aligned}
$$

If the perturbation is small, $x_{p} u$ can be ignored as a second-order term The approximate linear model is

$$
\dot{x}_{p}=\bar{A} x_{p}+\bar{B} u, y=C x_{p}
$$

Linear Differential Inclusion (LDI)

An LTI system:

$$
\begin{aligned}
\dot{x}(t) & =\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
\mathrm{y}(\mathrm{t}) & =\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned} \quad \Longrightarrow\left[\begin{array}{l}
\dot{\mathrm{x}} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{u}
\end{array}\right]
$$

In many situations, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are not constant, but nonlinear time varying, and/or depend on a parameter α, such as,

$$
\begin{aligned}
\dot{\mathrm{x}}(\mathrm{t}) & =\mathrm{A}(\mathrm{x}, \alpha, \mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{x}, \alpha, \mathrm{t}) \mathrm{u}(\mathrm{t}) \\
\mathrm{y}(\mathrm{t}) & =\mathrm{C}(\mathrm{x}, \alpha, \mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{D}(\mathrm{x}, \alpha, \mathrm{t}) \mathrm{u}(\mathrm{t})
\end{aligned}
$$

We can find a set Ω such that

$$
\left[\begin{array}{ll}
\mathrm{A}(\mathrm{x}, \alpha, \mathrm{t}) & \mathrm{B}(\mathrm{x}, \alpha, \mathrm{t}) \\
\mathrm{C}(\mathrm{x}, \alpha, \mathrm{t}) & \mathrm{D}(\mathrm{x}, \alpha, \mathrm{t})
\end{array}\right] \in \Omega
$$

The system satisfies $\left[\begin{array}{l}\dot{\mathrm{x}} \\ \mathrm{y}\end{array}\right] \in\left\{\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{u}\end{array}\right]:\left[\begin{array}{cc}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right] \in \Omega\right\}$

$$
\left[\begin{array}{l}
\dot{\mathrm{x}} \\
\mathrm{y}
\end{array}\right] \in\left\{\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{u}
\end{array}\right]: \quad\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right] \in \Omega\right\}
$$

- This is a linear differential inclusion (LDI)
- An LDI uses a set of linear systems to describe a complicated nonlinear system.
- In many cases Ω is a polytope: the behavior of an LDI can be characterized by finite many linear systems, e,g.,

$$
\begin{aligned}
& \dot{x}(t)=A_{i} x(t)+B_{i} u(t) \\
& y(t)=C_{i} x(t)+D_{i} u(t), \quad i=1, \cdots, N
\end{aligned}
$$

- Like a polygon, its properties are determined by finite many vertices.

Example: A model for a pendulum

$$
\begin{gathered}
\dot{x}_{1}=h_{1}(x)=x_{2} \\
\dot{x}_{2}=h_{2}(x)=-\frac{g}{l} \sin x_{1}+\frac{1}{m l} \cos x_{1} \quad u \\
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} \frac{\sin x_{1}}{x_{1}} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{m l} \cos x_{1}
\end{array}\right] u=A\left(x_{1}\right) x+B\left(x_{1}\right) u
\end{gathered}
$$

If the angle is restricted between 0 and $\pi / 4$, we can write

$$
\dot{x} \in\left\{\left[A\left(x_{1}\right), \quad B\left(x_{1}\right)\right]\left[\begin{array}{l}
x \\
u \\
u
\end{array}\right]: \quad x_{1} \in[0, \pi / 4]\right\}
$$

Today:

- Math. Descriptions of Systems
- Classification of systems
- Linear systems
- Linear-time-invariant systems
- State variable description
- Linearization
- Modeling of electric circuits

2.5 Modeling of Selected Systems

- We will briefly go over the following systems
- Electrical Circuits
- Operational Amplifiers
- Mechanical Systems
- Integrator/Differentiator Realization
- For any of the above system, we derive a state space description:

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned}
$$

$>$ Different engineering systems are unified into the same framework, to be addressed by system and control theory.

Electrical Circuits

State variables?

- i of L and v of C

- How to describe the evolution of the state variables?
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{L}}=\mathrm{u}-\mathrm{v} \Longrightarrow \frac{\mathrm{di}}{\mathrm{dt}}=-\frac{1}{\mathrm{~L}} \mathrm{v}+\frac{1}{\mathrm{~L}} \mathrm{u} \quad \begin{aligned} & \text { State Equation: Two first-order } \\ & \text { differential equations in terms }\end{aligned}$
$\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{i}_{\mathrm{C}}=\mathrm{i}-\frac{\mathrm{v}}{\mathrm{R}} \quad \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{1}{\mathrm{C}} \mathrm{i}-\frac{\mathrm{v}}{\mathrm{RC}} \quad \begin{aligned} & \text { of state variables and input }\end{aligned}$
In matrix form: $:\left(\left[\begin{array}{l}{\left[\frac{\mathrm{di}}{\mathrm{dt}}\right.} \\ \frac{\mathrm{dv}}{\mathrm{dt}}\end{array}\right]=\left[\begin{array}{cc}0 & -\frac{1}{\mathrm{~L}} \\ \frac{1}{\mathrm{C}} & -\frac{1}{\mathrm{RC}}\end{array}\right]\left[\begin{array}{c}\mathrm{i} \\ \mathrm{v}\end{array}\right]+\left[\begin{array}{c}\frac{1}{\mathrm{~L}} \\ 0\end{array}\right] \mathrm{u} \quad \begin{array}{l}\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} \\ \mathrm{y}=\mathrm{Cx}+\mathrm{Du}\end{array}\right.$
Output equation: $\quad y=v=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{l}i \\ v\end{array}\right]+0 u$
- Steps to obtain state and output equations:

Step 1: Pick $\left\{\mathrm{i}_{\mathrm{L}}, \mathrm{v}_{\mathrm{C}}\right\}$ as state variables
Step 2: $L \frac{\mathrm{di}_{\mathrm{L}}}{d t}=v_{L}=f_{1}\left(i_{L}, v_{C}, u\right) \quad$ Linear functions
$C \frac{d v_{C}}{d t}=i_{C}=f_{2}\left(i_{L}, v_{C}, u\right) \quad$ By using KVL and KCL
Step 3:

$$
\begin{aligned}
& \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=(1 / \mathrm{L}) \mathrm{f}_{1}\left(\mathrm{i}_{\mathrm{C}}, \mathrm{v}_{\mathrm{L}}, \mathrm{u}\right) \\
& \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}}=(1 / \mathrm{C}) \mathrm{f}_{2}\left(\mathrm{i}_{\mathrm{C}}, \mathrm{v}_{\mathrm{L}}, \mathrm{u}\right)
\end{aligned}
$$

Step 4: Put the above in matrix form
Step 5: Do the same thing for y in terms of state variables and input, and put in matrix form

41

Example

- State variables?

$$
-i_{1}, i_{2}, \text { and } v,
$$

- State and output equations?

$$
\underbrace{\left[\begin{array}{c}
\frac{\mathrm{di}_{1}}{\mathrm{dt}} \\
\frac{\mathrm{di}_{2}}{\mathrm{dt}} \\
\frac{\mathrm{dv}}{\mathrm{dt}}
\end{array}\right]}_{\dot{\mathrm{X}}}=\left[\begin{array}{ccc}
-\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} & 0 & -\frac{1}{\mathrm{~L}_{1}} \\
0 & -\frac{\mathrm{R}_{2}}{\mathrm{~L}_{2}} & \frac{1}{\mathrm{~L}_{2}} \\
\frac{1}{\mathrm{C}} & -\frac{1}{\mathrm{C}} & 0
\end{array}\right] \underset{\mathrm{x}}{\left[\begin{array}{c}
\mathrm{i}_{1} \\
\mathrm{i}_{2} \\
\mathrm{v}
\end{array}\right]}+\left[\begin{array}{c}
\frac{1}{\mathrm{~L}_{1}} \\
0 \\
0
\end{array}\right] \quad \begin{aligned}
& \mathrm{y}=\mathrm{R}_{2} \mathrm{i}_{2}=\left[\begin{array}{lll}
0 & \mathrm{R}_{2} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{i}_{1} \\
\dot{\mathrm{i}}_{2} \\
\mathrm{v}
\end{array}\right] \\
& \dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} \\
& \mathrm{y}=\mathrm{Cx}+\mathrm{Du}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}_{1} \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{L}_{1}}=\mathrm{u}-\mathrm{R}_{1} \mathrm{i}_{1}-\mathrm{v} \quad \frac{\mathrm{di}}{\mathrm{dt}}=-\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \mathrm{i}_{1}-\frac{1}{\mathrm{~L}_{1}} \mathrm{v}+\frac{1}{\mathrm{~L}_{1}} u \\
& \mathrm{~L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{L}_{2}}=\mathrm{v}-\mathrm{R}_{2} \mathrm{i}_{2} \quad \Longrightarrow \frac{\mathrm{di}_{2}}{\mathrm{dt}}=-\frac{\mathrm{R}_{2}}{\mathrm{~L}_{2}} \mathrm{i}_{2}+\frac{1}{\mathrm{~L}_{2}} \mathrm{v} \\
& \mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{i}_{\mathrm{C}}=\mathrm{i}_{1}-\mathrm{i}_{2} \quad \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{1}{\mathrm{C}} \mathrm{i}_{1}-\frac{\mathrm{v}}{\mathrm{C}} \mathrm{i}_{2}
\end{aligned}
$$

Practice: Derive the state space model for the following circuit:

$$
x=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
i
\end{array}\right]
$$

43

Operational Amplifiers (Op Amps)

- Usually, A > 10^{4}
- Ideal Op Amp:
- A $\rightarrow \propto \sim$ Implying that $\left(\mathrm{v}_{\mathrm{a}}-\mathrm{v}_{\mathrm{b}}\right) \rightarrow 0$, or $\mathrm{v}_{\mathrm{a}} \rightarrow \mathrm{v}_{\mathrm{b}}$
- $\mathrm{i}_{\mathrm{a}} \rightarrow 0$ and $\mathrm{i}_{\mathrm{b}} \rightarrow 0$
- Problem: How to analyze a circuit with ideal Op Amps

$$
\mathrm{i}_{1}+\mathrm{i}_{2}=0
$$

$$
\frac{\mathrm{u}_{1}-\mathrm{u}_{2}}{\mathrm{R}_{1}}+\frac{\mathrm{y}-\mathrm{u}_{2}}{\mathrm{R}_{2}}=0
$$

$$
\mathrm{y}=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{u}_{1}+\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \mathrm{u}_{2}
$$

Delineate the relationship between input and output
Input/Output description

- Key ideas:

Pure gain, no SVs

- Make effective use of $i_{a}=i_{b}=0$ and $v_{a}=v_{b}$
- Do not apply the node equation to output terminals of op amps and ground nodes, since the output current and power supply current are generally unknown

Today:

- Math. descriptions of systems
- Modeling of electric circuit

Next Time:

- Modeling of Selected Systems
- Continuous-time systems (§2.5) - mechanical systems, integrator/differentiator realization
- Discrete-Time systems (\$2.6)
- difference equations, simple financial systems
- Advanced Linear Algebra, Chapter 3

Problem Set \#2:

1. Give examples for nonlinear systems and infinite dimensional systems respectively. What are the inputs, outputs and states?
2. Suppose we have a linear time-invariant system.

Its response to u_{1} is $y_{1}(t)=t+3$, for $t \geq 0$, and its response to u_{2} is $y_{2}(t)=2 t$, for $t \geq 0$. For $t<0, y_{1}(t)=y_{2}(t)=0$. Assume zero initial conditions. What is the response to $2 \mathrm{u}_{1}(\mathrm{t}-1)-\mathrm{u}_{2}(\mathrm{t}+1)$? Plot the response for $\mathrm{t} \in[-2,4]$ with Matlab.
3. An LTI system is described by

$$
\ddot{y}+4 \dot{y}+3 y=u,
$$

What is $y(t)$ for $u=0$ and $y(0)=1, y^{\prime}(0)=-1$?
What is $\mathrm{y}(\mathrm{t})$ for a unit step $\mathrm{u}(\mathrm{u}=1(\mathrm{t}))$ and $\mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0$?
What is $y(t)$ for $u=1(t)$ and $y(0)=2, y^{\prime}(0)=-2$?
What is the state of the system?
4. Derive state-space description for the circuit:

