16.513 Control Systems: Lecture note #2

» Last Time:

= Introduction
— Motivation
— Course Overview

— Course project

= Matrix Operations -- Fundamental to Linear Algebra
— Determinant
— Matrix Multiplication
— Eigenvalue
— Rank

Today:

— Math. Descriptions of Systems
* Classification of systems
* Linear systems
* Linear-time-invariant systems
« State variable description
* Linearization

— Modeling of electric circuits



2. Mathematical Descriptions of Systems

(Review)
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— Classification of systems
— Linear systems
— Linear time invariant (LTI) systems

2.1 Classification of Systems

= Basic assumption: When an input signal is applied
to the system, a unique output is obtained
Q. How do we classify systems?
— Number of inputs/outputs; with/without memory;
causality; dimensionality; linearity; time invariance
» The number of inputs and outputs
— When p=q =1, itis called a single-input single-
output (SISO) system

— When p> 1 and q > 1, it is called a multi-input
multi-output (MIMO) system

— MISO, SIMO defined similarly



« Memoryless vs. with Memory

— If y(t) depends on u(t) only, the system is said to be
memoryless, otherwise, it has memory

— An example of a memoryless system?

A purely resistive circuit

y(t):RRZR u(t) ~ Memoryless
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— i(t) depends on i(t;) and u(7) for t, < 7<t, not just u(t)
— A system with memory

» Causality: No output before an input is applied

Input Output

— A system is causal or non-anticipatory if y(t,) depends
only on u(t) for t <t; and is independent of u(t) for t >t

— Is the circuit discussed last time causal?
u(t)

WA\
J’_
wp g e
B t

6




— An example of a non-causal system?

— YO =u(t+2) ey

y(1)

— Can you truly build a physical system like this?
— All physical systems are causal!

The Concept of State

— The state of a system at t; is the information at t,
that, together with U ooy uniquely determines the
behavior of the system for t > t,

— The number of state variables = the number of ICs
needed to solve the problem

— For an RLC circuit, the number of state variables =
the number of C + the number of L (except for
degenerated cases)

— A natural way to choose state variables as what we
have done earlier: {v_} and {i, }

— Is this the unique way to choose state variables?



— Any invertible transformation of the above can
serve as a state, e.g.,

x®] [2 1][v)] [2v)+ic)
x® | [0 1lity| | i)

— Although the number of state variables = 2, there are
infinite numbers of representations

= Order of dimension of a system: The number of
state variables

— If the dimension is a finite number = Finite
dimensional (or lumped) system

— Otherwise, an infinite dimensional (or distributed)
system

* An example of an infinite dimensional system

y(®) =u(t-1)

u A delay line

— Given u(t) for t > 0, what information is needed to know

y(t) for t > 0?
po_
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— We need an infinite amount of information = An
infinite dimensional system



2.2 Linear Systems
Linearity
* Double the efforts double the outcome?

— Suppose we have the following (state,input)-output pairs:

X (t)

), t>t
ul(t),tZtO}_) y]( )9 0

X, (%)

), t>t
uz(t),tZto}_)yZ() :

— What would be the output of

X (1) + %, ()

u,(t)+u,(t),t>t }_) Vi) +Yy, (), t=1,

— If this is true ~ Additivity
— How about

a % (L)

ay,(t),t>t
azul(t),tzto}_> HO.tt

— If this is true ~ Homogeneity
— Combined together to have:

o, X, () +a, %, (1)

o (0)+ U, (0), 12 to} = ahOr @y

— If this is true ~ Superposition or linearity property
— A system with such a property: a Linear System



* Are R, L, and C linear elements?
diL C CdViC

VR = RiR, VL = LE,

dt

— Yes (differentiation is a linear operation)

v Nonlinear

* Also, KVL and KCL are linear constraints.
When put together, we have a linear system

» The additivity property implies that

Y(t) due to X (to)
u (), t>t, y(t) due to

X (t)
u,(t)=0

X (to) =0

) due t
+y(t) due O{ul(t),tzto

— Response = zero-input response + zero-state response

Response of a Linear System

t u(®) Linear
System

y(t) :

= How can we determine the output y(t)?
= Can be derived from u(t) + the unit impulse response

based on linearity



= Let d,(t-1) be a square pulse at time t with width A
and height 1/A

'y

da(t-
(t-0) 1/A Area =1
-t
T T+HA
= As A -0, we obtain a shifted unit impulse

!6(1: -
T

= Let the unit impulse response be g (t,7). Based on
linearity,

y(t) = [g(t,nu(r)dz

= If the system is causal,

gt,r)=0fort<z Y= [gt,Du(r)de

= A system is said to be relaxed at t; if the initial
state at t, is 0

— In this case, y(t) for t > t,, is caused exclusively by
u(t) fort > t,

y(t) = [ g(t,0)u(r)dz



* How about a system with p inputs and q outputs?
— Have to analyze the relationship for input/output pairs

y(H) = [G(t,7)u(z)dz
gll(tar) glz(t’r) glp(taf) glj(t,r) The lmpulse
G(t.r)= 917 90 (D eghonse between the
j® input and i output
gql(t’r) ng(t> Z') gqp(taf)
State-Space Description

* A linear system can be described by
X(t) = A(t)x(t) + B(t)u(t)
y(t) = C(OX(1) + D(t)u(t)

2.3 Linear Time-Invariant (LTI) Systems

» Time Invariance: The characteristics of a system do
not change over time

— What are some of the LTI examples? Time-varying
examples?

— What happens for an LTI system if u(t) is delayed by T?

u(®) %\ y(t) I/\
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If the same IC is also shifted by T



— This property can be stated as:

ux((t())) TZX%)} S y(), t>t,

|

xT)=,

ut-T), t>T( YA t=T

Practice: Suppose u(t) 2 y(t)=1-exp(-t), y(t)=0 for t<0.
What is the response to u(t+1)+u(t-1)?

* What happens to the unit impulse response when
the system is LTI?

g(t,7)=9(t+T,z+T) foranyT

9(t,7)=9(t-7,7-7)=g(t-7,0)=g(t-7)
— Only the difference between t and t matters
— What happens to y(t)?

YO =] g(t.u(r)ds
- f g(t—r)u(r)dr

= f g(ou(t—7)dr
= E;(t) *uit) ~ Convolution integral

=> Y(s)=g(s)U(s) 2
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Proofof () = §(s)U(s)
y(s) EJ‘y(t)e*“clt

- t [ < g(t - T)U(T)dTJGStdt

t=0 \ =0

- . ( . g(t - T)U(Z')d TJGS(tT)eSTdt

7=0

i [ .g(tT)es(”)dtju(f)e”dr,
r.:O t.:()

(Let v=t—7)

y(s) = T [ Tg(u)es“du]u(r)e”dr,

=0\ v=—7

(Note g(v)=0 forv <0)

)
0\ v=

o0 o oy e

0

)
( ?g(u)esud“)( T U(f)e”dr}

y(s)=g(s)-u(s)
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Transfer-Function Matrix

= For SISO system,  §(s)=§(s)-U(S)

¢ §(s) ~ Transfer function, the Laplace transform of
the unit impulse response

» For MIMO system,
§(s) =G(s)-l(s)

g,() §,(s) d,,(8) ~ Transfer-function
R G,,(s) G, (5) gzp(s) matrix, or transfer
G(s)= matrix

dqi(8) G2 (9) e (9)

23

Today:

— Math. Descriptions of Systems
* Classification of systems
* Linear systems
* Linear-time-invariant systems
« State variable description
* Linearization

— Modeling of electric circuits
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State Variable Description
= Start with a general lumped (finite-dimensional) System:

X(t) = h(x(t),u(t), t)
y(0) =f(x(t),u(t),t)

= If the system is linear, the above reduces to:
(1) = A(H)x(t) + B(t)u(t)
y(t) = C()x(t) + D(t)u(t)

= If the system is linear and time-invariant, then:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

25

* To find an LTI system's response to a particular
input u(t), we can use Laplace transform:

sX(s) —xo = AX(s) + Bi(s)
¥(s) = Cx(s) + Di(s)

= Solve the above linear algebraic equations:
2(s)=(sI-A)'Ba(s)+(sT-A) 'xq
§(s) =|[C(sT - A) "B+ Di(s) + C(sI - A) 'xq
"\ Transfer function matrix G(s)

= X, 1s the information needed to determine x(t)
and y(t) for t>0, in addition to the input u(t).

m=) | x is the state

26
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2.4 Linearization
= There are many results on linear systems while
nonlinear systems are generally difficult to analyze
— What to do with a nonlinear system described by
X(t) = h(x(t), u(t),t)
y(t) = f(x(t),u(t),t)
= Linearization. How? Under what conditions?

— Using Taylor series expansion based on a nominal
trajectory, ignoring second order terms and higher

— Effects are not bad if first order Taylor series
expansion is a reasonable approximation over the
duration under consideration

27

= Suppose that with x (t) and u(t), we have
Xo(t) =h(Xo(1),u0(),1)
— Suppose that the input is perturbed to u,(t)+u(t)
— Assume the solution is x(t) + x(t), with x(t) satisfying
(RO £ = hxo (1) +X(0,16(0) + U0,

— —~S ;h(xo(t),uo(t),t)}r@ i+@ u+...
0x |y o
oh oh oy ohy oy by
aXI 5X2 h 6xn 8111 8112 aup
oh |G Shy  Ohy | Ohy Oy o Ohy
&_ 6X1 aXZ 6Xn 9%— 6u1 auz (’)up
oh, oh,  oh, oh, oh,  oh, _
ox; 0xy  0xy du; ou, ou,, ~ Jacobians
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= Then the perturbed system can be described by
L oh

) oh
(=8
x(t) 3 X

o

~ A linear system
0

— The above is valid if the first order Taylor series
expansion works out well within the time duration

under consideration. It may lead to wrong prediction.

= What to do with the output y(t) = f(x(t), u(t), t)?

— The output equation can be similarly linearized, but
most often there is no need for linearization unless
with output feedback

» There is another approach to deal with nonlinear
time-varying systems: Conservative but reliable

29

Example: A model for a pendulum

X, = @(the angle) ,Xx, = 0 (angular velocity) ,

The state is X = [Xl} = [9}
x| |6

The model is derived from Newton’s law,

X, =h(x)=x,
torque = forcexarm

! . 1
X, =h (X):—gsmx +—cosX U
2 2 I 1 ml 1

Linearize the system at x,=0, x,=0, u=0,

ol _o M|

x|, 0%, |, ©oaul,

87h2 :(_gcos XI—LSinXIHOZ—g, % =0, 87h2 :LCOSXI |0:7
X |, | ml | X, |, oul, ml 30 Ml
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oh,  oh oh,

o o oo | | O e | | ]
ox | oh, %_—%O’au_ahz_j
0%, 0%, ou m

Linearized system:

L

Exercise: Linearize the following system at x =0, u=0.

m,9

X, =X, .

. m . . .
X, = _Igsm X, + 29 cos X, sin(X,; — X, ) + ——sin X, sin(X, — X, )u
. 1 ih i
X3 =Xy,
g |
X, =—=sin X; + ——Cos X, U

|2 m2|2 3

Modeling the buck-boost converter

o o2l 1 [1 |

¢

+
7
e
n

R, -

When MOSFET is on
Ron ]
* V.
et ey y
R, -
di
dt
dv
dt
y =

16



Let Average over one switching period

()= Tl [Ti@dr, v)- Tl [T vnde, x= M v Bg }

The averaged model is: X =(DA +(1-D)A,)x+ (DB, +(1-D)B,)v

=CX

<l X

Let the nominal working point be D=D,, X=X, Y=Y,
At steady state,

0=(D0A1+(1_D0)A2)Yo+(DoBl+(1_Do)Bz)V ()
Yo =CX%,
| Relationship between
- ' output voltage y_ and
s e [ duty cycle D

* . by experiment
___:byequation (1)

15! - i . i 33
0.2 -4

At nominal working condition:
0=(DyA +(1=Dy)A)X, +(D,B, +(1-D,)B,)v (1)
Yo =CX,

To achieve robust stability and tracking, so that the same output
Yy, 1s produced when parameters have changed, we obtain a
perturbation model around the nominal working point:

Define x, =X-X,, u=D-D,, y=y-Y,
« = A A B = A=D,A +(1-D)A, A =A-A
X, = AX, + Ax,u+Bu, y=Cx, B (A~ A% (BB
This is obtained by subtracting (1) from the averaged model:

X = (DA +(1-D)A,)X+ (DB, +(1- D)B,)v
y=CX

If the perturbation is small, X,u can be ignored as a second-order term
The approximate linear model is

5 — — 34
X, = AX, +Bu, y=Cx,



Linear Differential Inclusion (LDI)

An LTI system:
x(t) = Ax(t)+ Bu(t) = x| [A Bjx
y(t) = Cx(t) + Du(t) y| |C D|lu
In many situations, A,B,C,D are not constant, but nonlinear
time varying , and/or depend on a parameter o, such as,
x(t) = A(x, a, t)x(t) + B(x, a, t)u(t)
y(t) = C(x, o, )x(t) + D(x, 0, t)u(t)

We can find a set Q such that | AX,a,t)  B(x,0,1) cO
C(x,a,t) D(x,a,t)

The system satisfies | X | _ A B X1 A B cO
y C Djlu C D 35

X A Bl/x A B
€ : e
u {C D}u {C D} }
= This is a linear differential inclusion (LDI)

= An LDI uses a set of linear systems to describe a
complicated nonlinear system.

= In many cases € is a polytope: the behavior of an LDI
can be characterized by finite many linear systems, e,g.,
x(t) = A.x(t) + B.u(t)
y(t)=Cx(t)+D,u(t), 1=1,---,N
= Like a polygon, its properties are determined by finite
many vertices.

36
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Example: A model for a pendulum
X =h()=x,

, . 1
X, =h,(X) = ~Ysin X, +—cosX, U
I ml

0 1 0
Xx=| _gsinx 0 [Xl}+ 1 u=A(X)X+B(x)u

X I
| x 5 ] <08 X,
If the angle is restricted between 0 and m/4, we can write
. X
X e {[A(Xl), B(Xl)]{u}: X, € [0,72/4]}

37

Today:

— Math. Descriptions of Systems
* Classification of systems
* Linear systems
* Linear-time-invariant systems
« State variable description
* Linearization

— Modeling of electric circuits
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2.5 Modeling of Selected Systems

= We will briefly go over the following systems
— Electrical Circuits

— Operational Amplifiers
— Mechanical Systems

— Integrator/Differentiator Realization

= For any of the above system, we derive a state space
description:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

» Different engineering systems are unified into the same
framework, to be addressed by system and control theory.

39

Electrical Circuits

i— L
State variables? + m +i -
_ u(t) C v R y
—1iof LandvofC - ‘ | -

* How to describe the evolution of the state variables?

di
L—=v, =u- State Equation: Two first-order
dt differential equations in terms
C i’ i = i—l of state variables and input
d¢ © R

In matrix form:

1

+[16}u X = Ax+Bu
X X y=Cx+Du
Output equation: y=v :[O 1] 1}+Ou

20



= Steps to obtain state and output equations:
Step 1: Pick {i;, v} as state variables

Step 2: di _
P d_tL =v, =f,(.,vc,u) Linear functions
dve _ i = £, ve,u) By using KVL and KCL
dt
Step 3:
e (8 Gy,
d

gc = (1/C)f, (i v, 1)

Step 4: Put the above in matrix form

Step 5: Do the same thing for y in terms of state variables and
input, and put in matrix form

41

Example ' L, —

1 2
» State variables? . V i
— 1, iy, and v, u(t) R, =Y

. State and output equations?

21



Practice: Derive the state space model for the following circuit:

+ v, -

2F| 1 10 {v,]

N | m + I , +y i
t A% Q

u()_(? —IT "

43

Operational Amplifiers (Op Amps)

Vo=A (v, - V), with -V < vy < Ve

Non-inverting Ve, 15V

terminal, v, Output, v, Vo
ia > + i Vcc
e © Va-Vp
iy —> |- N
Inverting AL Slope = A
terminal, vy, V.. -ISVT Ve

* Usually, A > 10*

— Ideal Op Amp:
* A — oc ~ Implying that (v, - v,) = 0, 0or v, = v,
*i, >0andi, —> 0

— Problem: How to analyze a circuit with ideal Op Amps

44
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i, +i,=0

Wi—w Y~hm _,
Ry R,

yz—&uﬁr 1+& us
Ry Ry

Delineate the relationship between input and output
Input/Output description

Pure gain, no SVs

* Key ideas:
— Make effective use of i, =1, =0 and v, = v,,

— Do not apply the node equation to output terminals of
op amps and ground nodes, since the output current
and power supply current are generally unknown

45

State and output equations

+ What are the state
Y variables?

[ State variables: v, and v,
dvi _ (vi+vy)-vi _ vy C dvy  u=(vi+vy) vy
dt R, R, 2 dt R R,
dvy 0 L 0
dt _ R2C1 |:V1j|+ 1 u
O I T e | O O 2 M e

y=v; =]l O][Vl}rOu
V2

46
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» Today:
= Math. descriptions of systems
= Modeling of electric circuit

> Next Time:

* Modeling of Selected Systems

 Continuous-time systems (§2.5)

— mechanical systems, integrator/differentiator realization
* Discrete-Time systems (§2.6)

— difference equations, simple financial systems

= Advanced Linear Algebra, Chapter 3

47

Problem Set #2:

1.

Give examples for nonlinear systems and infinite
dimensional systems respectively. What are the inputs, outputs
and states?
Suppose we have a linear time-invariant system.
Its response to u; is y,(t)=t+3, for t= 0, and its
response to u, is y,(t)= 2t , for t > 0. For t< 0, y,(t) = y,(t)=0.
Assume zero initial conditions. What is the response to
2u,(t-1)-u,y(t+1)? Plot the response for te[-2,4] with Matlab.
An LTI system is described by

y+4y+3y=u,
What is y(t) for u=0 and y(0)=1, y’(0)=-1?
What is y(t) for a unit step u (u=1(t)) and y(0)=y’(0)=0?
What is y(t) for u=I1(t) and y(0)=2, y’(0)=-2?
What is the state of the system?

48
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4. Derive state-space description for the circuit:

u(t)

Input: u(t)

Output: y={yﬂ
Y2
Vi

State: x=|V,
i

49
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