16.513 Control Systems

Last Time:

- Math. Descriptions of Systems
- Classification of systems
- Linear systems
- Linear-time-invariant systems
- State variable description
- Linearization
- Modeling of electric circuits

Today:

- Modeling of Selected Systems
- Continuous-time systems (§2.5)
- Mechanical systems
- Integrator/Differentiator realization
- Discrete-Time systems (§2.6)
- Derive state-space equations - difference equations
- Two simple financial systems
- Linear Algebra, Chapter 3
- Linear spaces over a field
- Linear dependence

2.5 Modeling of Selected Systems

- Deriving state-space model for the following systems
- Electrical Circuits
- Operational Amplifiers
- Mechanical Systems
- Integrator/Differentiator Realization
- For any of the above system, we derive a state space description:

$$
\begin{aligned}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned}
$$

$>$ Different engineering systems are unified into the same framework, to be addressed by system and control theory.

Mechanical Systems

- Elements: Spring, dashpot, and mass

- Dashpot:

$\mathrm{f}_{\mathrm{D}}=$ Dy', opposite direction
\sim D: Damping coefficient
- Mass: M, Newton's law of motion
- LTI elements, LTI systems
$\mathrm{My}=\mathrm{f}_{\mathrm{N}} \sim$ Net force
- Linear differential equations with constant coefficients

$$
\begin{aligned}
M \ddot{y}=u-K y-D \dot{y} & \ddot{y}+\frac{D}{M} \dot{y}+\frac{K}{M} y=\frac{1}{M} u \\
& \sim \text { Input/Output description }
\end{aligned}
$$

- Number of state variables? Which ones?
-2 state variables: $\mathrm{x}_{1} \equiv \mathrm{y}, \mathrm{x}_{2} \equiv \mathrm{x}_{1}{ }^{\prime}$
$\dot{x}_{1}=x_{2} \quad \dot{x}_{2}=\ddot{y}=\frac{u-K y-D \dot{y}}{M}=\frac{u-K x_{1}-D x_{2}}{M}$
$\left[\begin{array}{c}\frac{d x_{1}}{d t} \\ \frac{d x_{2}}{d t}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ \frac{-K}{M} & \frac{-D}{M}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}0 \\ \frac{1}{M}\end{array}\right] u \quad y=x_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+0 u$
- Steps to obtain state and output equations:

Step 1: Determine ALL junctions and label the displacement of each one
Step 2: Draw a free body diagram for each rigid body to obtain the net force on it
Step 3: Apply Newton's law of motion to each rigid body
Step 4: Select the displacement and velocity as state variables, and write the state and output equations in matrix form

- For rotational systems: $\tau=J \alpha$
- τ : Torque $=$ Tangential force \cdot arm
- J: Moment of inertia $=\int \mathrm{r}^{2} \mathrm{dm} \quad$ - α : Angular acceleration
- There are also angular spring/damper

- Number of state variables? How to select the state variables?

$$
\begin{array}{ll}
\mathrm{x}_{1} \equiv \mathrm{y}_{1} ; \mathrm{x}_{2} \equiv \dot{y}_{1} ; \mathrm{x}_{3} \equiv \mathrm{y}_{2} \\
\dot{\mathrm{x}}_{1} \equiv \dot{y}_{1}=\mathrm{x}_{2} & \dot{\mathrm{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -\frac{K}{M} \\
\dot{x}_{2} \equiv \ddot{y}_{1}=\frac{1}{\mathrm{M}}\left(\mathrm{u}-\mathrm{Dx}_{2}+\mathrm{D} \dot{\mathrm{x}}_{3}\right) & \mathrm{x}+\left[\begin{array}{c}
0 \\
\frac{1}{\mathrm{M}} \\
0
\end{array} 1\right. & -\frac{\mathrm{K}}{\mathrm{D}}
\end{array}\right] \mathrm{u} \\
\dot{\mathrm{x}}_{3}=\mathrm{x}_{2}-\frac{\mathrm{K}}{\mathrm{D}} \mathrm{x}_{3} & =-\frac{K}{\mathrm{M}} \mathrm{x}_{3}+\frac{1}{\mathrm{M}} \mathrm{u}
\end{array}
$$

Example: an axial artificial heart pump

Illustration

The forces acting on the rotor:

F_{1} : the active force that can be generated as desired
($\mathrm{F}=\mathrm{k} \mathrm{I}_{1}{ }^{2} /\left(\mathrm{c}+\mathrm{y}_{1}\right)^{2}-\mathrm{kI}_{2}{ }^{2} /\left(\mathrm{c}-\mathrm{y}_{1}\right)^{2}$
F_{2}, F_{3} : passive forces, $F_{2}=-k_{2} y_{2}, F_{3}=-k_{3} y_{3}$, similar to springs

Modeling

The motion of the rotor:

$$
\begin{aligned}
M \ddot{y}_{c} & =F_{1}+F_{2}+F_{3}, y_{c}=\left(l_{1} y_{2}+l_{2} y_{1}\right) / l \\
J \ddot{\alpha} & =-l_{1} F_{1}+l_{2} F_{2}-l_{3} F_{3}, \alpha=\left(y_{2}-y_{1}\right) / l
\end{aligned} \quad l=l_{1}+l_{2}
$$

F_{2} and F_{3} depend on y_{1} and y_{2}. Equation can be expressed in terms of y_{1} and y_{2}

$$
\begin{aligned}
& \ddot{y}_{1}=a_{11} y_{1}+a_{12} y_{2}+b_{1} F_{1} \\
& \ddot{y}_{2}=a_{21} y_{1}+a_{22} y_{2}+b_{2} F_{1}
\end{aligned}
$$

Let $x_{1}=y_{1}, \quad x_{2}=\dot{y}_{1}, \quad x_{3}=y_{2}, \quad x_{4}=\dot{y}_{2}$

$$
\begin{aligned}
& \quad \ddot{y}_{1}=a_{11} y_{1}+a_{12} y_{2}+b_{1} F_{1} \\
& \ddot{y}_{2}=a_{21} y_{1}+a_{22} y_{2}+b_{2} F_{1} \\
& \text { Let } x_{1}=y_{1}, \quad x_{2}=\dot{y}_{1}, \quad x_{3}=y_{2}, \quad x_{4}=\dot{y}_{2} \\
& \quad \dot{x}_{1}=\dot{y}_{1}=x_{2} \\
& \dot{x}_{2}=\ddot{y}_{1}=a_{11} x_{1}+a_{12} x_{3}+b_{1} F_{1} \\
& \dot{x}_{3}=\dot{y}_{2}=x_{4} \\
& \dot{x}_{4}=\ddot{y}_{2}=a_{21} x_{1}+a_{22} x_{3}+b_{2} F_{1}
\end{aligned}
$$

In matrix form?

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
a_{11} & 0 & a_{12} & 0 \\
0 & 0 & 0 & 1 \\
a_{21} & 0 & a_{22} & 0
\end{array}\right] X+\left[\begin{array}{c}
0 \\
b_{1} \\
0 \\
b_{2}
\end{array}\right] F_{1} \\
& =A x+B u \tag{11}
\end{align*}
$$

Integrator/Differentiator Realization

- Elements: Amplifiers, differentiators, and integrators

Amplifier
$f(t) \quad y(t)=a f(t)$

Differentiator
$\mathrm{f}(\mathrm{t}) \xrightarrow[{\mathrm{s} \xrightarrow{\mathrm{y}(\mathrm{t})}=\mathrm{df} / \mathrm{dt},} ~]{\square}$

Integrator $\mathrm{y}(\mathrm{t})=$
$\stackrel{f(t)}{\longrightarrow} \xrightarrow[\tau=t_{0}]{t} f(\tau) d \tau+y\left(t_{0}\right)$

- Are they LTI elements? Yes
- Which one has memory? What are their dimensions?
- Integrator has memory. Dimensions: 0,0 , and 1 , respectively
- They can be connected in various ways to form LTI systems
- Number of state variables = number of integrators
- Linear differential equations with constant coefficients

$\dot{x}_{1}=\mathrm{x}_{2}$
$\dot{\mathrm{x}}_{2}=\mathrm{u}-2 \mathrm{x}_{1} \quad \mathrm{y}=\mathrm{x}_{2}$
$[\begin{array}{l}{\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\underbrace{\left[\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right]}_{\mathrm{A}}\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{\mathrm{B}}}\end{array} \mathrm{y} \quad \mathrm{y}=\underbrace{\left[\begin{array}{ll}0 & 1\end{array}\right]}_{\mathrm{C}}\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\underset{\mathrm{D}}{0 \mathrm{a}}$
- Linear differential equations with constant coefficients
- Steps to obtain state and output equations:

Step 1: Select outputs of integrators as state variables
Step 2: Express inputs of integrators in terms of state variables and input based on the interconnection of the block diagram
Step 3: Put in matrix form
Step 4: Do the same thing for y in terms of state variables and input, and put in matrix form

Exercise: derive state equations for the following sys.

Today:

- Modeling of Selected Systems
- Continuous-time systems (§2.5)
- Electrical circuits
- Mechanical systems
- Integrator/Differentiator realization
- Operational amplifiers
- Discrete-Time systems (§2.6):
- Derive state-space equations - difference equations
- Two simple financial systems
- Linear Algebra, Chapter 3
- Linear spaces over a field
- Linear dependence

2.6 Discrete-Time Systems

- Thus far, we have considered continuous-time systems and signals

- In many cases signals are defined only at discrete instants of time
- T: Sampling period
- No derivative and no differential equations
- The corresponding signal or system is described by a set of difference equations

Elements: Amplifiers, delay elements, sources (inputs)
Amplifiers:
$\xrightarrow{u[k]} a \xrightarrow{y[k]}=a u[k]$
\sim LTI and memoryless

- Delay Element:

$$
\xrightarrow{\mathrm{u}[\mathrm{k}]} \mathrm{z}^{-1} \xrightarrow{\mathrm{y}[\mathrm{k}]}=\mathrm{u}[\mathrm{k}-1]
$$

\sim LTI with memory (1 initial condition)
They can be interconnected to form an LTI system

Example

- How to describe the above mathematically?
- I/O description:

$$
\begin{aligned}
& y[k+1]=-y[k]+3 u[k]+(u[k-1]-K y[k-1]), \text { or } \\
& y[k+1]=-y[k]-K y[k-1]+3 u[k]+u[k-1]
\end{aligned}
$$

- A linear difference equation with constant coefficient
- State space description: Select output of delay elements as state variables

$$
\begin{aligned}
& x_{1}[k+1]=-x_{1}[k]+x_{2}[k]+3 u[k] \\
& x_{2}[k+1]=-K x_{1}[k]+u[k] \\
& y[k]=x_{1}[k]
\end{aligned}
$$

Exercise:

- Two state variables, $x_{1}[k], x_{2}[k]$

$$
\begin{aligned}
& x_{1}[k+1]=u[k]+x_{2}[k] \\
& x_{2}[k+1]=-b x_{1}[k]+a x_{2}[k] \\
& y[k]=x_{1}[k] \\
& x[k+1]=\left[\begin{array}{cc}
0 & 1 \\
-b & a
\end{array}\right] x[k]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u[k] \quad y[k]=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x[k]
\end{aligned}
$$

Example 1: Balance in your bank account

- A bank offers interest r compounded every day at 12 am
$-u[k]$: The amount of deposit during day k ($u[k]<0$ for withdrawal)
$-y[k]$: The amount in the account at the beginning of day k
- What is $\mathrm{y}[\mathrm{k}+1]$?

$$
\mathrm{y}[\mathrm{k}+1]=(1+\mathrm{r}) \mathrm{y}[\mathrm{k}]+\mathrm{u}[\mathrm{k}]
$$

Example 2: Amortization

- How to describe paying back a car loan over four years with initial debt D, interest r, and monthly payment p ?
- Let $\mathrm{x}[\mathrm{k}]$ be the amount you owe at the beginning of the kth month. Then

$$
x[k+1]=(1+r) x[k]-p
$$

- Initial and terminal conditions: $\mathrm{x}[0]=\mathrm{D}$ and final condition $\mathrm{x}[48]=0$
- How to find p ?

The system:

Solution:

$$
x[k+1]=\underbrace{(1+r)}_{A} x[k]+\underbrace{(-1)}_{B} \underbrace{p}_{u}
$$

$$
\begin{aligned}
x[k] & =A^{k} x[0]+\sum_{m=0}^{k-1} A^{k-m-1} B u[m] \\
& =(1+r)^{k} x[0]+\sum_{m=0}^{k-1}(1+r)^{k-m-1}(-1) p \\
& =(1+r)^{k} D-\left(\sum_{m=0}^{k-1}(1+r)^{k-m-1}\right) p=(1+r)^{k} D-\frac{(1+r)^{k}-1}{r} p
\end{aligned}
$$

Given $D=20000 ; r=0.004 ; x[48]=0 ; \quad$ Your monthly payment

$$
0=(1+0.004)^{48} 20000-\frac{(1+0.004)^{48}-1}{0.004} \mathrm{p} \quad \mathrm{p}=458.7761
$$

Today:

- Modeling of Selected Systems
- Continuous-time systems (§2.5)
- Electrical circuits
- Mechanical systems
- Integrator/Differentiator realization
- Operational amplifiers
- Discrete-Time systems (§2.6):
- Derive state-space equations - difference equations
- Two simple financial systems
- Linear Algebra, Chapter 3
- Linear spaces over a field
- Linear dependence

Linear Algebra:

Tools for System Analysis and Design

- Our modeling efforts lead to a state-space description of LTI system

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+B u(t) & x[k+1]=A x[k]+B u[k] \\
y(t)=C x(t)+D u(t) & y[k]=C x[k]+D u[k]
\end{array}
$$

- Analysis problems: stability; transient performances; potential for improvement by feedback control, ...
- Consider an LTI continuous-time system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- For a practical system, usually there is a natural way to choose the state variables, e.g.,

$$
\mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right] \longrightarrow \mathrm{i}_{\mathrm{L}}
$$

- However, the natural state selection may not be the best for analysis. There may exist other selection to make the structure of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ simple for analysis
- If T is a nonsingular matrix, then $\mathrm{z}=\mathrm{Tx}$ is also the state and satisfies

$$
\begin{aligned}
& \dot{z}(t)=\mathrm{TAT}^{-1} z(t)+\mathrm{TBu}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{CT}^{-1} \mathrm{z}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned} \Longleftrightarrow \begin{aligned}
& \dot{z}(\mathrm{t})=\widetilde{\mathrm{A}} z(\mathrm{t})+\widetilde{\mathrm{B}} u(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\widetilde{\mathrm{C}} \mathrm{z}(\mathrm{t})+\widetilde{\mathrm{D}} u(\mathrm{t})
\end{aligned}
$$

- Two descriptions

$$
\begin{aligned}
& \dot{x}(t)=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t})+\mathrm{Du}(\mathrm{t})
\end{aligned} \Longleftrightarrow \begin{aligned}
& \dot{z}(\mathrm{t})=\widetilde{\mathrm{A}} \mathrm{~A}(\mathrm{t})+\widetilde{\mathrm{B}} u(\mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\widetilde{\mathrm{C}} \mathrm{z}(\mathrm{t})+\widetilde{\mathrm{D}} \mathrm{u}(\mathrm{t})
\end{aligned}
$$

are equivalent when I / O relation is concerned.

- For a particular analysis problem, a special form of $\widetilde{\mathrm{A}}, \widetilde{\mathrm{B}}, \widetilde{\mathrm{C}}, \widetilde{\mathrm{D}}$ may be the most convenient, e.g.,

$$
\begin{aligned}
& \widetilde{\mathrm{A}}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \widetilde{\mathrm{A}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right], \widetilde{\mathrm{B}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
& \widetilde{\mathrm{C}}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- We need to use tools from Linear Algebra to get a desirable description.
- The operation $\mathrm{x} \rightarrow \mathrm{z}=\mathrm{Tx}$ is called a linear transformation.
> It plays the essential role in obtaining a desired state-space description

$$
\begin{aligned}
& \dot{z}(t)=\widetilde{A} z(t)+\widetilde{B} u(t) \\
& y(t)=\widetilde{C} z(t)+\widetilde{D} u(t)
\end{aligned}
$$

- Linear algebra will be needed for the transformation and analysis of the system
- Linear spaces over a vector field
- Relationship among a set of vectors: LD and LI
- Representations of a vector in terms of a basis
- The concept of perpendicularity: Orthogonality
- Linear Operators and Representations

3.1 Linear Vector Spaces and Linear Operators

Notation:

R^{n} : n -dimensional real linear vector space
C^{n} : n -dimensional complex linear vector space
$\mathrm{R}^{\mathrm{n} \times \mathrm{m}}$: the set of $\mathrm{n} \times \mathrm{m}$ real matrices (also a vector space)
$\mathrm{C}^{\mathrm{n} \times \mathrm{m}}$: the set of $\mathrm{n} \times \mathrm{m}$ complex matrices (a vector space)

- A matrix $T \in \mathrm{R}^{\mathrm{nxm}}$ represents a linear operation from R^{m} to $\mathrm{R}^{\mathrm{n}}: \mathrm{x} \in \mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{Tx} \in \mathrm{R}^{\mathrm{n}}$.
- All the matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ in the state space equation are real

Linear Vector Spaces $\mathbf{R}^{\mathbf{n}}$ and $\mathbf{C n}^{\mathbf{n}}$

R: The set of real numbers; C: The set of complex numbers If x is a real number, we say $x \in R$;
If x is a complex number, we say $x \in C$
R^{n} : n -dimensional real vector space
C^{n} : n -dimensional complex vector space
$\mathrm{R}^{\mathrm{n}}=\left\{x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]: \quad x_{1}, x_{2}, \cdots, x_{n} \in \mathrm{R}\right\}, \quad \mathrm{C}^{\mathrm{n}}=\left\{x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]: \quad x_{1}, x_{2}, \cdots, x_{n} \in \mathrm{C}\right\}$
If $x, y \in R^{n}, a, b \in R$, then $a x+b y \in R^{n} \Rightarrow R^{n}$ is a linear space.
If $\mathrm{x}, \mathrm{y} \in \mathrm{C}^{\mathrm{n}}, \mathrm{a}, \mathrm{b} \in \mathrm{C}$, then $\mathrm{ax}+\mathrm{by} \in \mathrm{C}^{\mathrm{n}} \Rightarrow \mathrm{C}^{\mathrm{n}}$ is a linear space.

Subspace

- Consider $\mathrm{Y} \subset \mathrm{R}^{\mathrm{n}}$. Y is a subspace of R^{n} iff Y itself is a linear space
- Y is a subspace iff $\alpha_{1} \mathrm{y}_{1}+\alpha_{2} \mathrm{y}_{2} \in \mathrm{Y}$ for all $\mathrm{y}_{1}, \mathrm{y}_{2} \in Y$ and $\alpha_{1}, \alpha_{2} \in \mathrm{R}$ (linearity condition)
- Subspace of C^{n} can be defined similarly

Example: Consider R^{2}. The set of ($\mathrm{x}_{1}, \mathrm{x}_{2}$) satisfying
$\mathrm{x}_{1}-2 \mathrm{x}_{2}+1=0$ can be written as

$$
Y=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]: x_{1}-2 x_{2}+1=0, x_{1}, x_{2} \in \mathrm{R}\right\}
$$

Is the linearity condition satisfied?

- Then how about the set of $\left(x_{1}, x_{2}\right)$ satisfying $x_{1}-2 x_{2}=0$.

- Yes. In fact, any straight line passing through 0 form a subspace
- What would be a subspace for R^{3} ?
- Any plane or straight line passing through 0 $\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right): \mathrm{ax}_{1}+\mathrm{bx}_{2}+\mathrm{cx}_{3}=0\right\}$ for constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ denote a plane. How to represent a line in the space?
- The set of solutions to a system of homogeneous equation is a subspace: $\left\{\mathrm{x} \in \mathrm{R}^{\mathrm{n}}: \mathrm{Ax}=0\right\}$.
- How about $\left\{x \in R^{n}: A x=c\right\}$?

- Consider R ${ }^{\mathrm{n}}$,

- Given any set of vectors $\left\{x_{i}\right\}_{i=1 \text { to }}, x_{i} \in R^{n}$.
- Form the set of linear combinations

$$
\mathrm{Y} \equiv\left\{\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}: \alpha_{\mathrm{i}} \in \mathrm{R}\right\}
$$

- Then Y is a linear space, and is a subspace of R^{n}.
- It is the space spanned by $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{\mathrm{i}=1 \text { to }}$ n

Linear Independence

Relationship among a set of vectors.

- A set of vectors $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ in R^{n} is linearly dependent (LD)
iff $\exists\left\{\alpha_{1}, \alpha_{2}, . ., \alpha_{m}\right\}$ in R, not all zero, s.t.
$\alpha_{1} x_{1}+\alpha_{2} x_{2}+. .+\alpha_{n} x_{m}=0$
- If $\left(^{*}\right)$ holds and assume for example that $\alpha_{1} \neq 0$, then

$$
\mathrm{x}_{1}=-\left[\alpha_{2} \mathrm{x}_{2}+. .+\alpha_{\mathrm{n}} \mathrm{x}_{\mathrm{m}}\right] / \alpha_{1}
$$

i.e., x_{1} is a linear combination of $\left\{\alpha_{i}\right\}_{i=2}$ to m

- If the only set of $\left\{\alpha_{i}\right\}_{i=1 \text { to } \mathrm{m}}$ s.t. the above holds is

$$
\alpha_{1}=\alpha_{2}=. .=\alpha_{m}=0
$$

then $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{i=1 \text { to } \mathrm{m}}$ is said to be linearly independent (LI)

- None of x_{i} can be expressed as a linear combination of the rest
- A linearly dependent set ~ Some redundancy in the set

Example. Consider the following vectors:

- For the following sets, are they linearly dependent (LD) or independent (LI)?
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{3}\right\}$
- $\left\{\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$
$-\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$
If you have a LD set, $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}\right\}$, then $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}, \mathrm{y}\right\}$ is LD for any y.
- Given a set of vectors, $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\} \subset \mathrm{R}^{\mathrm{n}}$, how to find out if they are LD or LI?
- A general way to detect LD or LI:
$-\left\{x_{1}, x_{2}, . ., x_{m}\right\}$ are LD iff $\exists\left\{\alpha_{1}, \alpha_{2}, . ., \alpha_{m}\right\}$, not all zero, s.t. $\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}+. .+\alpha_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}=0$

$$
\begin{aligned}
& =A \in \mathrm{R}^{\mathrm{n} \times \mathrm{m}} \\
& \alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}+\cdots+\alpha_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}=\left[\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{m}}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{\mathrm{m}}
\end{array}\right]=0,
\end{aligned}
$$

$-\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{m}}\right\}$ are LD iff $\mathrm{A} \alpha=0$ has a nonzero solution
Need to understand the solution to a homogeneous equation.
There is always a solution $\alpha=0$.
Question: under what condition is the solution unique?

- Detecting LD and LI through solutions to linear equations

Given $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, . ., \mathrm{x}_{\mathrm{m}}\right\}$, form $\quad \mathrm{A}=\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{\mathrm{m}}\end{array}\right]$
Consider the equation $\quad \mathrm{A} \alpha=0$
If the equation has a unique solution, LI ;
If the equation has nonunique solution, LD.
This is related to the rank of A.
If $\operatorname{rank}(\mathrm{A})=\mathrm{m}$, (A has full column rank), the solution is unique; If $\operatorname{rank}(A)<m$, the solution is not unique.

- If $\mathrm{n}=\mathrm{m}$ and A is nonsingular, $\operatorname{det}(\mathrm{A}) \neq 0, \operatorname{rank}(\mathrm{~A})=\mathrm{m}$ only $\alpha=0$ satisfies. $A \alpha=0$, hence LI
- If $\mathrm{n}=\mathrm{m}$ and A is singular, $\operatorname{det}(\mathrm{A})=0, \operatorname{rank}(\mathrm{~A})<\mathrm{m}$ $\exists \alpha \neq 0$ s.t. $A \alpha=0$, hence LD
- Are the following vectors LD or LI?

$$
\begin{gathered}
\mathrm{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right], \mathrm{x}_{3}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
\begin{aligned}
\operatorname{det}(\mathrm{A})=\left|\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 5 \\
3 & 4 & 6
\end{array}\right| & =3 \times 6 \times 1+2 \times 5 \times 3+2 \times 4 \times 4 \\
& =18+30+32-36-24-20 \\
& =0
\end{aligned}
\end{gathered}
$$

- How about $x_{1}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right], x_{3}=\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right] \quad \operatorname{det}(\mathrm{A})=$? $\operatorname{det}(\mathrm{A})=\left|\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 4 \\ 4 & 5 & 7\end{array}\right|=-10 \neq 0$
- All depends on the uniqueness of solution for $\mathrm{A} \alpha=0$
- If $\mathrm{m}>\mathrm{n}, \mathrm{A}$ is a wide matrix, $\operatorname{rank}(\mathrm{A})<\mathrm{m}$, always has a nonzero solution, e.g.,

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], x_{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 2
\end{array}\right]
$$

- If $\mathrm{m}<\mathrm{n}$ and $\operatorname{rank}(\mathrm{A})=\mathrm{m}, \mathrm{LI}$; If $\mathrm{m}<\mathrm{n}$ and $\operatorname{rank}(\mathrm{A})<\mathrm{m}, \mathrm{LD}$;

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
0 & 0 \\
1 & -1 \\
1 & -1
\end{array}\right],
$$

$\operatorname{rank}\left(\mathrm{A}_{1}\right)=2=\mathrm{m}, \mathrm{LI}$

- Examples: determine the LD/LI for the following group of vectors

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
\sin \theta \\
\cos \theta
\end{array}\right],\left[\begin{array}{c}
-\cos \theta \\
\sin \theta
\end{array}\right]\right\}, \\
& \left\{\left[\begin{array}{l}
\sin \theta \\
\cos \theta
\end{array}\right],\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\right\} \\
& \left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right\}, \\
& \left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right\} \\
& \left.\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]\right\}
\end{aligned}
$$

Dimension

- For a linear vector space, the maximum number of LI vectors is called the dimension of the space, denoted as D
- Consider $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\} \subset \mathrm{R}^{\mathrm{n}}$
- If $\mathrm{m}>\mathrm{n}$, they are always dependent, $\mathrm{D} \leq \mathrm{n}$
- For $\mathrm{m}=\mathrm{n}$, there exist $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ such that with $\mathrm{A}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right],|\mathrm{A}| \neq 0, \mathrm{x}_{\mathrm{i}}$'s LI, $\mathrm{D} \geq \mathrm{n}$
- Hence D = n

Today:

- Modeling of Selected Systems
- Continuous-time systems (§2.5)
- Electrical circuits, Mechanical systems
- Integrator/Differentiator realization
- Operational amplifiers
- Discrete-Time systems (§2.6):
- Derive state-space equations - difference equations
- Two simple financial systems
- Linear Algebra, Chapter 3
- Linear spaces over a field
- Linear dependence
- Next time: More linear algebra.

Homework Set \#3

1. Derive state-space description for the diagram:

2. Are the following sets subspace of R^{2} ?

$$
\begin{aligned}
& Y_{1}=\left\{a\left[\begin{array}{l}
0 \\
1
\end{array}\right]+b\left[\begin{array}{c}
0 \\
-2
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]: a, b \in R\right\}, \\
& Y_{2}=\left\{a\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+b\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]: a, b \in R\right\}, \\
& Y_{2}=\left\{a\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+b\left[\begin{array}{l}
1 \\
0
\end{array}\right]: a \geq 0, b \in R\right\},
\end{aligned}
$$

3. Are the following groups of vectors LD or LI ?

$$
\begin{aligned}
& \text { 1) } \left.\left\{\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]\right\}, 2\right)\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \\
& \text { 3) } \left.\left\{\left[\begin{array}{l}
a \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-a
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}, ~ 4\right)\left\{\left[\begin{array}{c}
\cos \theta \\
2 \sin \theta \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-\sin \theta \\
\cos \theta \\
1
\end{array}\right]\right\} \\
& \text { 5) } \left.\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}, ~ 6\right)\left\{\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
2 \\
-1
\end{array}\right]\right\},
\end{aligned}
$$

