16.513 Control Systems

Last Time:

- Math. Descriptions of Systems
 - Classification of systems
 - Linear systems
 - Linear-time-invariant systems
 - State variable description
 - Linearization
- Modeling of electric circuits

Today:

- Modeling of Selected Systems
 - Continuous-time systems (§2.5)
 - Mechanical systems
 - Integrator/Differentiator realization
 - Discrete-Time systems (§2.6)
 - Derive state-space equations difference equations
 - Two simple financial systems
- Linear Algebra, Chapter 3
 - Linear spaces over a field
 - Linear dependence

1

2.5 Modeling of Selected Systems

- Deriving state-space model for the following systems
 - Electrical Circuits
 - Operational Amplifiers
 - Mechanical Systems
 - Integrator/Differentiator Realization
- For any of the above system, we derive a state space description:

 $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t)

Different engineering systems are unified into the same framework, to be addressed by system and control theory.

Mechanical Systems

- Steps to obtain state and output equations:
 - Step 1: Determine ALL junctions and label the displacement of each one
 - Step 2: Draw a free body diagram for each rigid body to obtain the net force on it
 - Step 3: Apply Newton's law of motion to each rigid body
 - Step 4: Select the displacement and velocity as state variables, and write the state and output equations in matrix form
- For rotational systems: $\tau = J\alpha$
 - τ : Torque = Tangential force arm
 - *J*: Moment of inertia = $\int r^2 dm$ α : Angular acceleration

6

- There are also angular spring/damper

$$\begin{array}{c} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{K} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{U(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ & & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & \\ \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \begin{array}{c} & & \\ \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_2(t)} \end{array} \xrightarrow{V_$$

The forces acting on the rotor:

terms of y_1 and y_2

$$\ddot{y}_1 = a_{11}y_1 + a_{12}y_2 + b_1F_1$$

$$\ddot{y}_2 = a_{21}y_1 + a_{22}y_2 + b_2F_1$$

Let $x_1 = y_1$, $x_2 = \dot{y}_1$, $x_3 = y_2$, $x_4 = \dot{y}_2$

10

$$\ddot{y}_{1} = a_{11}y_{1} + a_{12}y_{2} + b_{1}F_{1}$$

$$\ddot{y}_{2} = a_{21}y_{1} + a_{22}y_{2} + b_{2}F_{1}$$

Let $x_{1} = y_{1}, \quad x_{2} = \dot{y}_{1}, \quad x_{3} = y_{2}, \quad x_{4} = \dot{y}_{2}$

$$\dot{x}_{1} = \dot{y}_{1} = x_{2}$$

$$\dot{x}_{2} = \ddot{y}_{1} = a_{11}x_{1} + a_{12}x_{3} + b_{1}F_{1}$$

$$\dot{x}_{3} = \dot{y}_{2} = x_{4}$$

$$\dot{x}_{4} = \ddot{y}_{2} = a_{21}x_{1} + a_{22}x_{3} + b_{2}F_{1}$$

In matrix form?

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ a_{11} & 0 & a_{12} & 0 \\ 0 & 0 & 0 & 1 \\ a_{21} & 0 & a_{22} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ b_1 \\ 0 \\ b_2 \end{bmatrix} F_1$$
$$= Ax + Bu$$

Integrator/Differentiator Realization

• Elements: Amplifiers, differentiators, and integrators

AmplifierDifferentiatorIntegratorf(t)y(t) = af(t)f(t)y(t) = df/dtf(t)f(t)y(t) = df/dtf(t)y(t) = t

- Are they LTI elements? Yes
- Which one has memory? What are their dimensions?
 Integrator has memory. Dimensions: 0, 0, and 1, respectively
- They can be connected in various ways to form LTI systems
 - Number of state variables = number of integrators
 - Linear differential equations with constant coefficients

 $\dot{x}_1 = x_2$

 $\dot{x}_2 = u - 2x_1$

- What are the state variables?
- Select output of integrators as SVs
- What are the state and output equations?

 $y = x_2$

· Linear differential equations with constant coefficients

 Steps to obtain state and output equations: Step 1: Select outputs of integrators as state variables
 Step 2: Express inputs of integrators in terms of state variables and input based on the interconnection of the block diagram

- Step 3: Put in matrix form
- Step 4: Do the same thing for y in terms of state variables and input, and put in matrix form

Exercise: derive state equations for the following sys.

15

Today:

- Modeling of Selected Systems
 - Continuous-time systems (§2.5)
 - Electrical circuits
 - Mechanical systems
 - Integrator/Differentiator realization
 - Operational amplifiers
 - Discrete-Time systems (§2.6):
 - Derive state-space equations difference equations
 - Two simple financial systems
- Linear Algebra, Chapter 3
 - Linear spaces over a field
 - Linear dependence

2.6 Discrete-Time Systems

• Thus far, we have considered continuous-time systems and signals

- In many cases signals are defined only at discrete instants of time
 - T: Sampling period
 - No derivative and no differential equations
 - The corresponding signal or system is described by a set of difference equations

Elements: Amplifiers, delay elements, sources (inputs) Amplifiers:

~ LTI with memory (1 initial condition) They can be interconnected to form an LTI system

Example

- How to describe the above mathematically?
 - I/O description:

y[k+1] = -y[k] + 3u[k] + (u[k-1] - Ky[k-1]), or

y[k+1] = -y[k] - Ky[k-1] + 3u[k] + u[k-1]

- A linear difference equation with constant coefficient

19

 State space description: Select output of delay elements as state variables

Exercise:

Derive state equations for the discrete-time system.

• Two state variables,
$$x_1[k]$$
, $x_2[k]$
 $x_1[k+1] = u[k] + x_2[k]$
 $x_2[k+1] = -bx_1[k] + ax_2[k]$
 $y[k] = x_1[k]$
 $x[k+1] = \begin{bmatrix} 0 & 1 \\ -b & a \end{bmatrix} x[k] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[k]$ $y[k] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[k]$

21

Example 1: Balance in your bank account

- A bank offers interest r compounded every day at 12am
 - u[k]: The amount of deposit during day k(u[k] < 0 for withdrawal)
 - y[k]: The amount in the account at the beginning of day k
 - What is y[k+1]?

y[k+1] = (1 + r) y[k] + u[k]

Example 2: Amortization

- How to describe paying back a car loan over four years with initial debt D, interest r, and monthly payment p?
 - Let x[k] be the amount you owe at the beginning of the kth month. Then

x[k+1] = (1 + r) x[k] - p

- Initial and terminal conditions: x[0] = D and final condition x[48] = 0
 - How to find p?

~	~
2	5

The system:

$$\mathbf{x}[\mathbf{k}+1] = \underbrace{(1+\mathbf{r})}_{\mathbf{A}} \mathbf{x}[\mathbf{k}] + \underbrace{(-1)}_{\mathbf{B}} \mathbf{p}$$

Solution:

$$\begin{aligned} \mathbf{x}[k] &= \mathbf{A}^{k} \mathbf{x}[0] + \sum_{m=0}^{k-1} \mathbf{A}^{k-m-1} \mathbf{B} \mathbf{u}[m] \\ &= (1+r)^{k} \mathbf{x}[0] + \sum_{m=0}^{k-1} (1+r)^{k-m-1} (-1)p \\ &= (1+r)^{k} \mathbf{D} - \left(\sum_{m=0}^{k-1} (1+r)^{k-m-1}\right) \mathbf{p} = (1+r)^{k} \mathbf{D} - \frac{(1+r)^{k} - 1}{r} \mathbf{p} \end{aligned}$$

Given D=20000; r=0.004; x[48]=0; $0 = (1+0.004)^{48} 20000 - \frac{(1+0.004)^{48} - 1}{0.004} p$ Your monthly payment p=458.7761 24

Today:

- Modeling of Selected Systems
 - Continuous-time systems (§2.5)
 - Electrical circuits
 - Mechanical systems
 - Integrator/Differentiator realization
 - Operational amplifiers
 - Discrete-Time systems (§2.6):
 - Derive state-space equations difference equations
 - Two simple financial systems
- Linear Algebra, Chapter 3
 - Linear spaces over a field
 - Linear dependence

25

Linear Algebra: Tools for System Analysis and Design

 Our modeling efforts lead to a state-space description of LTI system

$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$	$\mathbf{x}[\mathbf{k}+1] = \mathbf{A}\mathbf{x}[\mathbf{k}] + \mathbf{B}\mathbf{u}[\mathbf{k}]$
$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$	y[k] = Cx[k] + Du[k]

 Analysis problems: stability; transient performances; potential for improvement by feedback control, ... Consider an LTI continuous-time system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

• For a practical system, usually there is a natural way to choose the state variables, e.g.,

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \xrightarrow{\longrightarrow} \mathbf{V}_c$$

- However, the natural state selection may not be the best for analysis. There may exist other selection to make the structure of A,B,C,D simple for analysis
- If T is a nonsingular matrix, then z = Tx is also the state and satisfies

$$\dot{z}(t) = TAT^{-1}z(t) + TBu(t) \qquad \dot{z}(t) = \widetilde{A}z(t) + \widetilde{B}u(t)$$
$$y(t) = CT^{-1}z(t) + Du(t) \qquad y(t) = \widetilde{C}z(t) + \widetilde{D}u(t) \qquad 27$$

• Two descriptions

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad \Leftrightarrow \qquad \dot{z}(t) = \widetilde{A}z(t) + \widetilde{B}u(t) y(t) = Cx(t) + Du(t) \qquad \Leftrightarrow \qquad \dot{z}(t) = \widetilde{A}z(t) + \widetilde{B}u(t) y(t) = \widetilde{C}z(t) + \widetilde{D}u(t)$$

are equivalent when I/O relation is concerned.

$$\widetilde{\mathbf{A}} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}, \quad \widetilde{\mathbf{A}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{bmatrix}, \quad \widetilde{\mathbf{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \widetilde{\mathbf{C}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

• We need to use tools from Linear Algebra to get a desirable description. 28

- The operation x → z = Tx is called a linear transformation.
 - It plays the essential role in obtaining a desired state-space description

$$\dot{z}(t) = \widetilde{A}z(t) + \widetilde{B}u(t)$$

 $y(t) = \widetilde{C}z(t) + \widetilde{D}u(t)$

- Linear algebra will be needed for the transformation and analysis of the system
 - Linear spaces over a vector field
 - Relationship among a set of vectors: LD and LI
 - Representations of a vector in terms of a basis
 - The concept of perpendicularity: Orthogonality
 - Linear Operators and Representations

3.1 Linear Vector Spaces and Linear Operators

Notation:

Rⁿ: n-dimensional real linear vector space
Cⁿ: n-dimensional complex linear vector space
R^{n×m}: the set of n×m real matrices (also a vector space)
C^{n×m}: the set of n×m complex matrices (a vector space)

- A matrix T∈R^{n×m} represents a linear operation from R^m to Rⁿ: x∈R^m → Tx∈Rⁿ.
- All the matrices A,B,C,D in the state space equation are real

Linear Vector Spaces Rⁿ and Cⁿ

R: The set of real numbers; C: The set of complex numbers If x is a real number, we say $x \in R$; If x is a complex number, we say $x \in C$ Rⁿ: n-dimensional real vector space Cⁿ: n-dimensional complex vector space $\int_{a} \left\{ x_{1} \\ x_{2} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{5$

$$\mathbf{R}^{\mathbf{n}} = \left\{ x = \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix} : \quad x_1, x_2, \cdots, x_n \in \mathbf{R} \right\}, \quad \mathbf{C}^{\mathbf{n}} = \left\{ x = \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix} : \quad x_1, x_2, \cdots, x_n \in \mathbf{C} \right\}$$

If $x,y \in \mathbb{R}^n$, $a,b \in \mathbb{R}$, then $ax + by \in \mathbb{R}^n \implies \mathbb{R}^n$ is a linear space.

If $x,y \in C^n$, $a,b \in C$, then $ax + by \in C^n \implies C^n$ is a linear space.

31

Subspace

- Consider Y ⊂ Rⁿ. Y is a subspace of Rⁿ iff Y itself is a linear space
 - Y is a subspace iff $\alpha_1 y_1 + \alpha_2 y_2 \in Y$ for all $y_1, y_2 \in Y$ and $\alpha_1, \alpha_2 \in R$ (linearity condition)
 - Subspace of Cⁿ can be defined similarly

Example: Consider R^2 . The set of (x_1, x_2) satisfying

$$x_1 - 2x_2 + 1 = 0$$
 can be written as

$$Y = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : \ x_1 - 2x_2 + 1 = 0, \ x_1, \ x_2 \in \mathbf{R} \right\}$$

Is the linearity condition satisfied?

• Then how about the set of (x_1, x_2) satisfying $x_1 - 2x_2 = 0$?

$$X_{2} \qquad Y: x_{1}-2x_{2}=0 \\ \downarrow \qquad \downarrow \qquad X_{1} \qquad Y = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}: x_{1}-2x_{2}=0, x_{1}, x_{2} \in \mathbb{R} \right\}$$

Yes. In fact, any straight line passing through 0 form a subspace

- What would be a subspace for R³?
 - Any plane or straight line passing through 0
 - $\{(x_1,x_2,x_3): ax_1+bx_2+cx_3=0\}$ for constants a,b,c denote a plane. How to represent a line in the space?
- The set of solutions to a system of homogeneous equation is a subspace: {x ∈ Rⁿ: Ax=0}.
- How about $\{x \in \mathbb{R}^n: Ax=c\}$?

- Consider Rⁿ,
 - Given any set of vectors $\{x_i\}_{i=1 \text{ to } n}, x_i \in \mathbb{R}^n$.
 - Form the set of linear combinations

$$Y \equiv \left\{ \sum_{i=1}^{n} \alpha_{i} x_{i} : \alpha_{i} \in R \right\}$$

- Then Y is a linear space, and is a subspace of Rⁿ.
- It is the space spanned by $\{x_i\}_{i=1 \text{ to } n}$

Linear Independence

- Relationship among a set of vectors.
- A set of vectors {x₁, x₂, ..., x_m} in Rⁿ is linearly dependent (LD) iff ∃ {α₁, α₂, ..., α_m} in R, not all zero, s.t.

(*)

 $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_m = 0$

– If (*) holds and assume for example that $\alpha_1 \neq 0$, then

 $x_1 = -[\alpha_2 x_2 + .. + \alpha_n x_m]/\alpha_1$

- i.e., x_1 is a linear combination of $\{\alpha_i\}_{i=2 \text{ to } m}$
- If the only set of $\{\alpha_i\}_{i=1 \text{ to } m}$ s.t. the above holds is

 $\alpha_1 = \alpha_2 = \dots = \alpha_m = 0$

then $\{x_i\}_{i=1 \text{ to } m}$ is said to be linearly independent (LI)

- None of x_i can be expressed as a linear combination of the rest

35

A linearly dependent set ~ Some redundancy in the set
 Example. Consider the following vectors:

- For the following sets, are they linearly dependent (LD) or independent (LI)?
 - $\{x_1, x_2\}$
 - $\{x_1, x_3\}$
 - $\{x_1, x_3, x_4\}$
 - $\{x_1, x_2, x_3, x_4\}$

If you have a LD set, $\{x_1, x_2, \dots x_m\}$, then $\{x_1, x_2, \dots x_m, y\}$ is LD for any y.

- Given a set of vectors, {x₁,x₂,...,x_m}⊂ Rⁿ, how to find out if they are LD or LI?
- A general way to detect LD or LI:

- {x₁, x₂, ..., x_m} are LD iff
$$\exists$$
 { $\alpha_1, \alpha_2, ..., \alpha_m$ }, not all
zero, s.t. $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_m x_m = 0$
= $A \in \mathbb{R}^{n \times m}$
 $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_m x_m = \begin{bmatrix} x_1 & x_2 & ... & x_m \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = 0,$
A $\alpha = 0$

- $\{x_1, x_2, ..., x_m\}$ are LD iff A α =0 has a nonzero solution

Need to understand the solution to a homogeneous equation. There is always a solution $\alpha = 0$.

Question: under what condition is the solution unique? 37

Detecting LD and LI through solutions to linear equations

Given $\{x_1, x_2, ..., x_m\}$, form $A = [x_1 \ x_2 \ ... \ x_m]$

Consider the equation $A\alpha = 0$

If the equation has a unique solution, LI; If the equation has nonunique solution, LD.

This is related to the rank of A.

If rank(A)=m, (A has full column rank), the solution is unique; If rank(A)<m, the solution is not unique.

- If n=m and A is nonsingular, det(A)≠ 0, rank(A)=m only α=0 satisfies. Aα=0, hence LI
- If n=m and A is singular, det(A)= 0, rank(A) < m $\exists \alpha \neq 0$ s.t. A $\alpha = 0$, hence LD

• Are the following vectors LD or LI?

$$x_{1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, x_{2} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, x_{3} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$det(A) = \begin{vmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 3 & 4 & 6 \end{vmatrix} = 3 \times 6 \times 1 + 2 \times 5 \times 3 + 2 \times 4 \times 4$$

$$-3 \times 3 \times 4 - 2 \times 2 \times 6 - 5 \times 4 \times 1$$

$$= 18 + 30 + 32 - 36 - 24 - 20$$

$$= 0$$

$$How about \qquad x_{1} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, x_{2} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, x_{3} = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} \qquad det(A) = ?$$

$$det(A) = \begin{vmatrix} 2 & 1 & 1 \\ 4 & 5 & 7 \end{vmatrix} = -10 \neq 0 \qquad \blacksquare \qquad LI$$

• All depends on the uniqueness of solution for $A\alpha=0$

If m> n, A is a wide matrix, rank(A)<m, always has a nonzero solution, e.g.,

nonzero solution, e.g.,

$$n \quad A$$

$$x_{1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, x_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, x_{3} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

$$- \quad If m < n \text{ and } rank(A) = m, LI; \qquad m$$

$$If m < n \text{ and } rank(A) < m, LD; \qquad n$$

$$A_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \\ 1 & -1 \end{bmatrix},$$

$$rank(A_{1})=2=m, LI$$

$$rank(A_{2})=1 < m, LD$$

$$40$$

• Examples: determine the LD/LI for the following group of vectors

 $\left\{ \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}, \begin{bmatrix} -\cos \theta \\ \sin \theta \end{bmatrix} \right\},$ $\left\{ \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}, \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \right\},$ $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\},$ $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \right\},$

41

Dimension

- For a linear vector space, the maximum number of LI vectors is called the dimension of the space, denoted as D
- Consider $\{x_1, x_2, \dots, x_m\} \subset \mathbb{R}^n$
 - If m>n, they are always dependent, $D \le n$
 - For m=n, there exist $x_1, x_2, \dots x_n$ such that
 - with A= $[x_1, x_2, ..., x_n]$, $|A| \neq 0$, x_i 's LI, $D \ge n$
 - Hence D = n

Today:

- Modeling of Selected Systems
 - Continuous-time systems (§2.5)
 - Electrical circuits, Mechanical systems
 - Integrator/Differentiator realization
 - Operational amplifiers
 - Discrete-Time systems (§2.6):
 - Derive state-space equations difference equations
 - Two simple financial systems
- Linear Algebra, Chapter 3
 - Linear spaces over a field
 - Linear dependence
- Next time: More linear algebra.

43

Homework Set #3

1. Derive state-space description for the diagram:

2. Are the following sets subspace of \mathbb{R}^2 ?

$$\begin{split} Y_1 &= \left\{ a \begin{bmatrix} 0\\1 \end{bmatrix} + b \begin{bmatrix} 0\\-2 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} : a, b \in R \right\}, \\ Y_2 &= \left\{ a \begin{bmatrix} 1\\-1 \end{bmatrix} + b \begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} : a, b \in R \right\}, \\ Y_2 &= \left\{ a \begin{bmatrix} 1\\-1 \end{bmatrix} + b \begin{bmatrix} 1\\0 \end{bmatrix} : a \geq 0, b \in R \right\}. \end{split}$$

3. Are the following groups of vectors LD or LI?