16.513 Control Systems, Lecture Note \#4

Last Time:

- Modeling of Selected Systems (§2.5, §2.6):
- Electrical circuits, Mechanical systems, simple financial systems
- Linear Algebra,
- Linear spaces over a field, subspace
- Linear dependence and Linear independence

Today:

- The base of a linear space: Basis
- Representations of a vector in terms of a basis
- Relationship among representations for different bases
- Linear Operators and Representations
- Current Research on power management for nanogenerators

Basis and Representations

- Basis: The basic elements from which everything can be constructed.
- A set of vectors $\left\{e_{1}, e_{2}, . ., e_{n}\right\}$ of R^{n} is said to be a basis of R^{n} if every vector in R^{n} can be uniquely expressed as a linear combination of them
- They span R^{n}
- For any $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$, there exist n real numbers $\beta_{1}, \beta_{2}, . ., \beta_{\mathrm{n}}$ s.t.

$$
\begin{gathered}
x=\beta_{1} e_{1}+\beta_{2} e_{2}+. .+\beta_{n} e_{n}=\sum_{i=1}^{n} \beta_{i} e_{i} \\
x=\left[\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right] \sim \equiv \beta \\
x=\left[\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{n}
\end{array}\right] \beta
\end{gathered}
$$

$-\beta$: Representation of x with respect to the basis
-x is uniquely identified with β

Now given a set of vectors, $e_{1}, e_{2}, \ldots, e_{n}$. What is the condition for the set to be a basis for R^{n} ?
Let $Y=\left\{\sum_{i=1}^{n} \beta_{i} e_{i}: \beta_{1}, \beta_{i}, \cdots \beta_{n} \in R\right\}=\left\{\beta_{1} e_{1}+\beta_{2} e_{2}+\cdots+\beta_{n} e_{n}: \quad \beta_{i} \in R\right\}$

$$
=\left\{\left[\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right]: \quad \beta_{1}, \beta_{i}, \cdots \beta_{n} \in R\right\}
$$

Y is a subset of $\mathrm{R}^{\mathrm{n}}\left(\mathrm{Y} \subseteq \mathrm{R}^{\mathrm{n}}\right)$, a subspace, to be precise .
If $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$ is a basis, we need to have $\mathrm{R}^{\mathrm{n}} \subseteq \mathrm{Y}$. To ensure this,

- For every $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$, there exist $\left\{\beta_{1}, \beta_{2}, . ., \beta_{\mathrm{n}}\right\}$ s.t.

$$
\mathrm{x}=\beta_{1} \mathrm{e}_{1}+\beta_{2} \mathrm{e}_{2}+. .+\beta_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \beta_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}
$$

A particular basis -- The orthonormal basis:

$$
\mathrm{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right], \cdots, \mathrm{e}_{\mathrm{n}-1}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right], \mathrm{e}_{\mathrm{n}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right],
$$

For all $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$, we have

$$
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]=\mathrm{x}_{1}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]+\mathrm{x}_{2}\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+\mathrm{x}_{\mathrm{n}}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]=\mathrm{x}_{1} \mathrm{e}_{1}+\mathrm{x}_{2} \mathrm{e}_{2}+\cdots+\mathrm{x}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}
$$

And the representation is unique.
Q. What else qualifies to be a basis?

Theorem: In an n-dimensional vector space, any set of n LI vectors qualifies as a basis

Proof:

- Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$ be linearly independent
- For any $\mathrm{x} \in \mathrm{R}^{\mathrm{n}},\left\{\mathrm{x}, \mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ are linearly dependent
$-\exists\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, . ., \alpha_{n}\right\}$, not all zero, such that

$$
\alpha_{0} \mathrm{x}+\alpha_{1} \mathrm{e}_{1}+\alpha_{2} \mathrm{e}_{2}+\ldots+\alpha_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}=0
$$

$-\alpha_{0} \neq 0$. Otherwise, $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ are not linearly independent. Thus

$$
x=-\frac{1}{\alpha_{0}}\left(\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{n} e_{n}\right)=\sum_{i=1}^{n} \beta_{i} e_{i}, \quad \beta_{i}=-\frac{\alpha_{i}}{\alpha_{0}}
$$

- Any x can be expressed as a linear combination of them
- Is the combination unique here?
- Suppose that \exists another linear combination

$$
\begin{aligned}
& x=\sum_{i=1}^{n} \widetilde{\beta}_{i} e_{i}=\sum_{i=1}^{n} \beta_{i} e_{i} \\
& \sum_{i=1}^{n}\left(\widetilde{\beta}_{i}-\beta_{i}\right) e_{i}=0
\end{aligned}
$$

- What can be said now?

$$
\widetilde{\beta}_{i}-\beta_{i}=0 \text { or } \widetilde{\beta}_{i}=\beta_{\mathrm{i}} \text { for all } \mathrm{i} \sim \text { since }\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\} \text { are LI }
$$

- The linear combination is unique
$-\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$ is a basis, and the proof is completed

Theorem: In an n-dimensional vector space, any set of n LI vectors qualifies as a basis

Another explanation: Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$ be linearly independent. Form a square matrix $A=\left[\begin{array}{llll}e_{1} & e_{2} & . . & e_{n}\end{array}\right]$. Then A is nonsingular, i.e., $\operatorname{det} \mathrm{A} \neq 0$

Consider the equation

$$
A \beta=x \quad \Leftrightarrow \quad \beta_{1} e_{1}+\beta_{2} e_{2}+\ldots .+\beta_{n} e_{n}=x
$$

There exists a unique solution $\beta=A^{-1} x$.
\Rightarrow For any $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$, there exists a unique β such that

$$
\beta_{1} e_{1}+\beta_{2} e_{2}+\cdots \beta_{n} e_{n}=x
$$

$>\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ is a basis.

Change of Basis

- Any set of nLI vectors qualify as a basis

$$
\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) ;\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right)
$$

- For a particular x , the representation is unique for each basis

$$
\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \beta_{\mathrm{i}} \mathrm{e}_{\mathrm{i}} ; \quad \mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \bar{\beta}_{\mathrm{i}} \overline{\mathrm{e}}_{\mathrm{i}} ;
$$

Example: Consider R ${ }^{2}$,

$$
\mathrm{e}_{1}=\binom{1}{0}, \mathrm{e}_{2}=\binom{0}{1} \quad \overline{\mathrm{e}}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \overline{\mathrm{e}}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Given $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, what are β and $\bar{\beta}$?

$$
x=e_{1}+2 e_{2}=\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right], \Rightarrow \beta=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$-\quad$ Given β, how to find $\bar{\beta}$?

$$
\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \beta_{\mathrm{i}} \mathrm{e}_{\mathrm{i}} ; \quad \mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \bar{\beta}_{\mathrm{i}} \overline{\mathrm{e}}_{\mathrm{i}} ;
$$

- Problem: Given β, find $\bar{\beta}$; or the otherwise
> We need to express one basis in terms of the other

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{ij}} \overline{\mathrm{e}}_{\mathrm{i}}=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right)\left(\begin{array}{c}
\mathrm{p}_{\mathrm{lj}} \\
\mathrm{p}_{2 \mathrm{j}} \\
\vdots \\
\mathrm{p}_{\mathrm{nj}}
\end{array}\right) \\
& \text { Or the other wav }
\end{aligned}
$$

Or the other way,

$$
\overline{\mathrm{e}}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{q}_{\mathrm{ij}} \mathrm{e}_{\mathrm{i}}=\left(\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots \\
\mathrm{e}_{\mathrm{n}}
\end{array}\right)\left(\begin{array}{c}
\mathrm{q}_{1 \mathrm{j}} \\
\mathrm{q}_{2 \mathrm{j}} \\
\vdots \\
\mathrm{q}_{\mathrm{nj}}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{ij}} \overline{\mathrm{e}}_{\mathrm{i}}=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array} \begin{array}{|c}
\left(\begin{array}{c}
\mathrm{p}_{1 \mathrm{j}} \\
\mathrm{p}_{2 \mathrm{j}} \\
: \\
\mathrm{p}_{\mathrm{nj}}
\end{array}\right) \\
\left.=\begin{array}{llll}
\left.\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{p}_{\mathrm{j}} \\
\left.\begin{array}{llll}
\text { Recall } \\
E p_{1} & E p_{2} & \ldots & E p_{n}
\end{array}\right] \\
=E\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right]
\end{array}\right]
\end{array}\right. \\
& \left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right)\left(\begin{array}{llll}
\mathrm{p}_{1} & \mathrm{p}_{2} & \ldots & \mathrm{p}_{\mathrm{n}}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{P} \quad \equiv \mathrm{P} \sim \mathrm{n} \times \mathrm{n}
\end{aligned}
$$

Given $x=\sum_{i=1}^{n} \beta_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}$

$$
\begin{aligned}
\mathrm{x}=\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) \beta & =\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{P} \beta \\
& =\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \bar{\beta}
\end{aligned}
$$

A new representation: $\bar{\beta}=\mathrm{P} \beta$
11

- Conversely, we can express $\overline{\mathrm{e}}_{\mathrm{j}}$ in terms of

$$
\begin{gathered}
\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) ; \\
\left(\begin{array}{lllllll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{lllll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & e_{\mathrm{n}}
\end{array}\right)\left(\begin{array}{llll}
\mathrm{q}_{1} & \mathrm{q}_{2} & \ldots & \mathrm{q}_{\mathrm{n}}
\end{array}\right) \\
\\
=\left(\begin{array}{lllll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) \mathrm{Q} \\
\mathrm{x}=\left(\begin{array}{lllll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \bar{\beta}=\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) \mathrm{Q} \bar{\beta} \\
\end{gathered}
$$

- What is the relationship between P and Q ?

$$
\bar{\beta}=\mathrm{P} \beta=\mathrm{PQ} \bar{\beta} \Rightarrow \mathrm{PQ}=\mathrm{I}, \quad \text { or } \mathrm{P}=\mathrm{Q}^{-1}
$$

In summary: Suppose we have an old basis:($\left.\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)$; And a new basis $\left(\begin{array}{llll}\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}\end{array}\right)$
Suppose $x=\sum_{i=1}^{n} \beta_{i} e_{i}=\left[\begin{array}{llll}\mathrm{e}_{1} & e_{2} & \cdots & e_{n}\end{array}\right] \beta$;
How to find $\bar{\beta}$ such that $\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \bar{\beta}_{\mathrm{i}} \overline{\mathrm{e}}_{\mathrm{i}}$?

- Express the old basis in terms of the new basis

$$
e_{j}=\left(\begin{array}{llll}
\bar{e}_{1} & \bar{e}_{2} & \ldots & \bar{e}_{\mathrm{n}}
\end{array}\right)\left(\begin{array}{c}
p_{1 \mathrm{j}} \\
p_{2 \mathrm{j}} \\
\vdots \\
\mathrm{p}_{\mathrm{nj}}
\end{array}\right)=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{p}_{\mathrm{j}} \quad \text { for each } \mathrm{j}
$$

Form $\mathrm{P}=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{n}\end{array}\right]$. Then $\bar{\beta}=P \beta$

Alternative approach:
An old base: ($\left.\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)$; A new base ($\left.\begin{array}{llll}\bar{e}_{1} & \bar{e}_{2} & \ldots & \bar{e}_{n}\end{array}\right)$ Suppose $x=\sum_{i=1}^{n} \beta_{i} e_{i}=\left[\begin{array}{llll}\mathrm{e}_{1} & e_{2} & \cdots & e_{n}\end{array}\right] \beta$;

- Express the new basis in terms of the old basis
$\bar{e}_{j}=\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)\left(\begin{array}{c}q_{1 j} \\ q_{2 j} \\ \vdots \\ q_{n j}\end{array}\right)=\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right) q_{j}$ for each j Form $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \ldots & q_{n}\end{array}\right]$. Then $\bar{\beta}=Q^{-1} \beta$
$\bar{\beta}$ is the representaion in terms of the new basis: $\mathrm{x}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \bar{\beta}_{\mathrm{i}} \overline{\mathrm{e}}_{\mathrm{i}}$.

Example: Consider R ${ }^{2}, \quad e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} \quad \bar{e}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \quad \bar{e}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
\overline{\mathrm{e}}_{1}=\mathrm{e}_{1}-\mathrm{e}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \overline{\mathrm{e}}_{2}=\mathrm{e}_{1}+\mathrm{e}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$\left(\overline{\mathrm{e}}_{1} \overline{\mathrm{e}}_{2}\right)=\left(\begin{array}{ll}\mathrm{e}_{1} & \mathrm{e}_{2}\end{array}\right)\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \Longrightarrow \mathrm{Q}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right], \quad \mathrm{P}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$

- Given $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ what are β and $\bar{\beta}$?

$$
\begin{gathered}
x=e_{1}+2 e_{2}=\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow \beta=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\bar{\beta}=P \beta=\frac{1}{2}\left[\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
1.5
\end{array}\right]
\end{gathered}
$$

- Verify: $\left(\begin{array}{ll}\left(\overline{\mathrm{e}}_{1}\right. & \overline{\mathrm{e}}_{2}\end{array}\right) \bar{\beta}=\left[\begin{array}{c}1 \\ -1\end{array}\right] \times(-0.5)+\left[\begin{array}{l}1 \\ 1\end{array}\right] \times 1.5=\left[\begin{array}{l}1 \\ 2\end{array}\right]=x \quad \sqrt{-}$

Example. Consider R^{2} with

$$
\mathrm{e}_{1}=\binom{1}{0}, \mathrm{e}_{2}=\binom{0}{1}
$$

$$
\overline{\mathrm{e}}_{1}=(\cos \psi) \mathrm{e}_{1}+(\sin \psi) \mathrm{e}_{2}=\left(\begin{array}{ll}
\mathrm{e}_{1} & e_{2}
\end{array}\right)\binom{\cos \psi}{\sin \psi} \sim \mathrm{q}_{1}
$$

$$
\bar{e}_{2}=(-\sin \psi) e_{1}+(\cos \psi) e_{2}=\left(\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right)\binom{-\sin \psi}{\cos \psi} \sim q_{2}
$$

$$
\mathrm{Q}=\left(\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right), \mathrm{P}=\mathrm{Q}^{-1}=\left(\begin{array}{cc}
\cos \psi & \sin \psi \\
-\sin \psi & \cos \psi
\end{array}\right)
$$

$$
\bar{\beta}=\mathrm{P} \beta \text { and } \beta=\mathrm{Q} \bar{\beta}
$$

- For $\psi=45^{\circ}$ and $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}e_{1} & e_{2}\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$, what is $\bar{\beta}$?

$$
\bar{\beta}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{1}{1}=\binom{\sqrt{2}}{0} \quad \square x=\sqrt{2} \bar{e}_{1} \quad \underset{\mathrm{e}_{1}}{\mathrm{e}_{2}}
$$

In summary:

\square Given a basis $\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)$;
Let the new basis be $\left(\begin{array}{llll}\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}\end{array}\right)=\left(\begin{array}{llll}\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}\end{array}\right) \mathrm{Q}$
Then $\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)=\left(\begin{array}{llll}\bar{e}_{1} & \bar{e}_{2} & \ldots & \bar{e}_{n}\end{array}\right) Q^{-1}$
For x such that $x=\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right) \beta$
We have $\mathrm{x}=\left(\begin{array}{llll}\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}\end{array}\right) \mathrm{Q}^{-1} \beta \Rightarrow \bar{\beta}=\mathrm{Q}^{-1} \beta$
\square For x such that $x=\left(\begin{array}{llll}\bar{e}_{1} & \bar{e}_{2} & \ldots & \bar{e}_{n}\end{array}\right) \bar{\beta}$
We have $x=\left(\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right) Q \bar{\beta} \Rightarrow \beta=Q \bar{\beta}$

Inverse for block diagonal matrices:

For a block diagonal matrix

$$
\begin{array}{ll}
S=\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right] \Rightarrow & S^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} C B^{-1} \\
0 & B^{-1}
\end{array}\right] \\
S=\left[\begin{array}{ll}
A & 0 \\
C & B
\end{array}\right] \Rightarrow & S^{-1}=\left[\begin{array}{cc}
A^{-1} & 0 \\
-B^{-1} C A^{-1} & B^{-1}
\end{array}\right]
\end{array}
$$

Exercise: Compute the inverse for

$$
S_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Exercise: The old basis: $\mathrm{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
The new basis is $\overline{\mathrm{e}}_{1}=e_{1}+e_{2} ; \overline{\mathrm{e}}_{2}=e_{2}+e_{3} ; \overline{\mathrm{e}}_{3}=e_{3}$

1) For $x=e_{1}+e_{2}+e_{3}$, find a, b, c such that $x=a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3}$,

- What is the representation of the new basis in terms of the old one?
$\left[\begin{array}{lll}\bar{e}_{1} & \bar{e}_{2} & \bar{e}_{3}\end{array}\right]=\left[\begin{array}{lll}e_{1} & e_{2} & e_{3}\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}e_{1} & e_{2} & e_{3}\end{array}\right] Q, \quad Q=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
- The representation of the old basis in terms of the new basis:

$$
\begin{aligned}
& \mathrm{P}=\mathrm{Q}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \overline{\mathrm{e}}_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right] \\
& \mathrm{x}=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \overline{\mathrm{e}}_{3}
\end{array}\right] \mathrm{P}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \overline{\mathrm{e}}_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \longrightarrow \begin{array}{c}
\mathrm{a}=1 \\
\mathrm{~b}=0 \\
\mathrm{c}=1
\end{array}
\end{aligned}
$$

Exercise: The old basis: $\mathrm{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
The new basis is $\bar{e}_{1}=e_{1}+e_{2} ; \overline{\mathrm{e}}_{2}=e_{2}+e_{3} ; \bar{e}_{3}=e_{3}$
2) Given $x=\bar{e}_{1}-\bar{e}_{2}+\bar{e}_{3}$, what are a, b, c such that $x=\mathrm{e}_{1}+b e_{2}+\mathrm{ce}_{3}$?

Need the representation of the new basis in terms of the old one:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \overline{\mathrm{e}}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right] \mathrm{Q}, \mathrm{Q}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]} \\
& \mathrm{x}=\left[\begin{array}{lll}
\mathrm{e}_{1} & \overline{\mathrm{e}}_{2} & \overline{\mathrm{e}}_{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right] Q\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \longrightarrow \mathrm{a}=1 \\
& \mathrm{~b}=0 \\
& \mathrm{c}=0
\end{aligned}
$$

- So far, we have addressed a few issues on linear vector spaces:
- Relation between vectors: LD/LI,
- Representation: basis
> Next we will discuss operations between vector spaces linear operations and matrices

Linear Operations

- Functions
- A function f is a mapping from domain X to codomain Y that assigns each $x \in X$ one and only one element of Y

- Range: $\{y \in Y \mid \exists x \in X$, s.t. $f(x)=y\} \subseteq Y$
- What is a "linear function"?
- A function L that maps from X to Y is said to be a linear operator (linear function, linear mapping, or linear transformation) iff

$$
\begin{aligned}
& \mathrm{L}\left(\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}\right)=\alpha_{1} \mathrm{~L}\left(\mathrm{x}_{1}\right)+\alpha_{2} \mathrm{~L}\left(\mathrm{x}_{2}\right) \\
& \left.\quad \forall \alpha_{1}, \alpha_{2} \in \mathrm{R} \text { (or } \mathrm{C}\right), \text { and } \forall \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}
\end{aligned}
$$

Linear Operations Associated with Matrices

- Consider $\mathrm{X}=\mathrm{R}^{\mathrm{n}}$ and $\mathrm{Y}=\mathrm{R}^{\mathrm{m}}$
- Given an $m \times n$ real matrix S;
- For $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$, define $y=L(x)=S x$

- You can show that L is a linear map
- Thus we can use a matrix to define a linear map.
- What if we define $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{Sx}+\mathrm{c}$ for a nozero $\mathrm{c} \in \mathrm{R}^{\mathrm{m}}$?
- Of course not a linear map
- More to say? Is every linear map from R^{m} to R^{n} associated with a matrix?
- Yes! :

Matrix Representation of Linear Operators

- Still consider $X=R^{n}$ to $Y=R^{m}$.
- A linear operator is uniquely determined by how the basis are mapped

Theorem. Suppose that
$-\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ is a basis of R^{n}

- Then $\mathrm{L}: \mathrm{X} \rightarrow \mathrm{Y}$ is uniquely determined by n pairs of mapping

$$
\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{y}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}
$$

- Let the basis of X be $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$
- Let the basis of Y be $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{m}}\right\}$
- Suppose that

$$
\mathrm{e}_{\mathrm{i}} \Rightarrow \mathrm{~L}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{y}_{i}=\left[\begin{array}{llll}
\mathrm{w}_{1} & \mathrm{w}_{2} & \cdots & \mathrm{w}_{\mathrm{m}}
\end{array} \mathrm{~s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}}=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{s}_{\mathrm{i}}} \\
\mathrm{~s}_{2 \mathrm{i}} \\
\vdots \\
\mathrm{~s}_{\mathrm{mi}}
\end{array}\right]\right.
$$

- Then by linearity, for any $x \in X$, with representation α, i.e., $x=\sum_{i=1}{ }^{n} \alpha_{i} e_{i}$, we have

$$
\begin{aligned}
& x \Rightarrow y=L(x)=\sum_{i=1}^{n} \alpha_{i} y_{i}=\sum_{i=1}^{n}\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{m}
\end{array}\right] \alpha_{i} \mathrm{~s}_{\mathrm{i}} \\
& \\
& =\left[\begin{array}{lllll}
w_{1} & w_{2} & \cdots & w_{m}
\end{array}\right] \sum_{i=1}^{n} \alpha_{i} s_{i}=\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{m}
\end{array}\right]\left[\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 n} \\
s_{21} & s_{22} & \cdots & s_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
s_{m 1} & s_{m 2} & \cdots & s_{m n},
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\text { - Representation of } y: \beta=S \alpha
\end{array}\right]
\end{aligned}
$$

The linear operator is determined by how the basis are mapped

Example. Rotating counter-clock-wise in R^{2} by φ

$$
\begin{aligned}
& \mathrm{y}_{2}= \\
& \xrightarrow{\mathrm{Le}_{2}} \underset{\sim}{\mathrm{e}_{2} \mathrm{Le}_{1}=\mathrm{y}_{1}} \quad \mathrm{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \mathrm{w}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathrm{w}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \mathrm{e}_{1} \rightarrow \mathrm{y}_{1}, \mathrm{e}_{2} \rightarrow \mathrm{y}_{2} \text { How to proceed? }
\end{aligned}
$$

$$
\begin{aligned}
& - \text { What is } \mathrm{y}_{1} \text { ? What is } \mathrm{y}_{2} \text { ? }
\end{aligned}
$$

Given 3 matrices:

$$
\mathrm{S}_{1}=\left[\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right] \times 1.5, \mathrm{~S}_{2}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right] \times 2, \quad \mathrm{~S}_{3}=\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right] \times 1.5,
$$

Subsets in R^{2}

$\left\{y=S_{1} x: x \in D_{i}\right\}$

$\left\{y=S_{2} x: x \in D_{i}\right\}$
$\left\{y=S_{3} x: x \in D_{i}\right\}$

Change of Basis

$-\mathrm{L}: \mathrm{x} \rightarrow \mathrm{y} \sim$ The mapping is independent of bases
$-\beta=A \alpha \sim$ The $i^{\text {th }}$ column of A is the representation of $\operatorname{Le}_{\mathrm{i}}\left(=\mathrm{y}_{\mathrm{i}}\right)$ w.r.t. $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, . ., \mathrm{w}_{\mathrm{m}}\right\}$

- The representation A depends on the bases for X and Y
- Consider a special case where $\mathrm{L}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ (or C^{n} to C^{n})
- With $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, . ., \mathrm{e}_{\mathrm{n}}\right\}$ as a basis, under operator L

$$
x \rightarrow y:\left[e_{1} e_{2} . . e_{n}\right] \alpha \rightarrow\left[e_{1} e_{2} \ldots e_{n}\right] A \alpha
$$

- For simplicity, we denote $\mathrm{L}: \alpha \rightarrow \beta=A \alpha$
- Suppose the basis is changed to $\left\{\hat{e}_{1}, \hat{\mathrm{e}}_{2}, \ldots, \hat{e}_{\mathrm{n}}\right\}$ for X,Y.
- What would be the new rep. of L?
- Suppose the new rep. is $\overline{\mathrm{A}}$. How are A and $\overline{\mathrm{A}}$ related?
- Still consider the map

$$
\mathrm{x} \rightarrow \mathrm{y}:\left[\mathrm{e}_{1} \mathrm{e}_{2} . . \mathrm{e}_{\mathrm{n}}\right] \alpha \rightarrow\left[\mathrm{e}_{1} \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}\right] \mathrm{A} \alpha
$$

Let the new basis be
$\left[\hat{\mathrm{e}}_{1} \hat{\mathrm{e}}_{2} \ldots \hat{\mathrm{e}}_{\mathrm{n}}\right]=\left[\mathrm{e}_{1} \mathrm{e}_{2} . . \mathrm{e}_{\mathrm{n}}\right] \mathrm{Q}$
Then equivalently,
$\left[\hat{e}_{1} \hat{e}_{2} \ldots \hat{e}_{n}\right] P=\left[e_{1} e_{2} \ldots e_{n}\right]$, where $P=Q^{-1}$
Under the new basis, we have
$\mathrm{x} \rightarrow \mathrm{y}:\left[\hat{\mathrm{e}}_{1} \hat{\mathrm{e}}_{2} . . \hat{\mathrm{e}}_{\mathrm{n}}\right] \mathrm{P} \alpha \rightarrow\left[\hat{\mathrm{e}}_{1} \hat{e}_{2} \ldots \hat{\mathrm{e}}_{\mathrm{n}}\right] \mathrm{PA} \alpha$
If we let $\mathrm{a}=\mathrm{P} \alpha, \mathrm{b}=\mathrm{PA} \alpha$, then $\mathrm{a} \rightarrow \mathrm{b}=\mathrm{PAP}^{-1} \mathrm{a}$
$>$ The new rep. for the operator is $\overline{\mathrm{A}}=\mathrm{PAP}^{-1}=\mathrm{Q}^{-1} \mathrm{AQ}$

$$
\begin{aligned}
& A \Rightarrow \overline{\mathrm{~A}}=\mathrm{PAP}^{-1} \\
& \text { or } \mathrm{A}=\mathrm{P}^{-1} \overline{\mathrm{~A}} \mathrm{P}=\mathrm{Q}_{\mathrm{A}} \mathrm{Q}^{-1}
\end{aligned}
$$

- This is called the similar transformation, and A and $\overline{\mathrm{A}}$ are similar matrices

$$
\text { Example. Consider } \dot{\mathrm{x}}=\mathrm{Ax}, \mathrm{~A}=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right]
$$

What is the dynamics for a new representation with

$$
\begin{aligned}
& \overline{\mathrm{x}}=\operatorname{Px}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \mathrm{x} \Rightarrow \dot{\overline{\mathrm{x}}}=\overline{\mathrm{A}} \overline{\mathrm{x}}, \text { with } \overline{\mathrm{A}} \equiv \mathrm{PAP}^{-1} \\
& \overline{\mathrm{~A}}=\mathrm{PAP}^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
& \dot{\overline{\mathrm{x}}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \overline{\mathrm{X}} \quad \\
& \begin{array}{l}
\text { The diagonal elements capture the main } \\
\text { characteristic of the system }
\end{array}
\end{aligned}
$$

- A much simpler structure
- Later on we will discuss how to find such a P matrix

Today:

- The base of a linear space: Basis
- Representations of a vector in terms of a basis
- Relationship among representations for different bases
- Linear Operators and Representations

- Next Time: 3.3 to 3.6

- Systems of linear algebraic equations
- Similarity transformation: the Companion form
- Eigenvalues and Eigenvectors
- Diagonal form and Jordan form
- Functions of a square matrix

Homework Set \#4

Problem 1: Given a basis for $R^{3},\left\{\left[\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]\right\}$
Express $x=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$ and $y=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ in terms of the basis.
Problem 2: Let the old basis be $\mathrm{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
The new basis is $\overline{\mathrm{e}}_{1}=\mathrm{e}_{1} ; \overline{\mathrm{e}}_{2}=-2 \mathrm{e}_{1}+\mathrm{e}_{2} ; \overline{\mathrm{e}}_{3}=\mathrm{e}_{1}-2 \mathrm{e}_{2}+\mathrm{e}_{3}$

1) For $x=2 \bar{e}_{1}-3 \overline{\mathrm{e}}_{2}+\overline{\mathrm{e}}_{3}$,
find a, b, c such that $x=a e_{1}+b e_{2}+e_{3}$
2) For $x=e_{1}-e_{2}+e_{3}$, find α, β, γ such that $x=\alpha \bar{e}_{1}+\beta \overline{\mathrm{e}}_{2}+\gamma \overline{\mathrm{e}}_{3}$,

Problem 4: Consider $\dot{x}=A x, A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0.5 & 0 & 0.5 \\ 0 & -2 & 1\end{array}\right]$

1) What is the dynamics for a new representation with

$$
\bar{x}=P x, P=\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \\
0 & 1 & 0 \\
0.5 & 0 & -0.5
\end{array}\right]
$$

