16.513 Control Systems Lecture Note \#5

Last time:

- The base of a linear space: Basis
- Representations of a vector in terms of a basis
- Relationship among representations for different bases
- Generalization of the idea of length: Norms
- A sense of orientation: Inner Product
- The concept of perpendicularity: Orthogonality
- Gram-Schmidt Process to obtain orthonormal vectors
- Linear Operators and Representations

Representation of vectors w.r.t. different basis

- What is a basis for R^{n} ? What can be used as a basis?
- A set of vectors $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ which can be used to represent every $\mathrm{x} \in \mathrm{R}^{\mathrm{n}}$ uniquely as:

$$
\mathrm{x}=\mathrm{a}_{1} \mathrm{e}_{1}+\mathrm{a}_{2} \mathrm{e}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}
$$

- Every set of n LI vectors can be used as a basis.
- Given an old basis ($\left.\begin{array}{llll}e_{1} & e_{2} & \ldots & e_{n}\end{array}\right)$;
- Let the new basis be:

$$
\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) \mathrm{Q}
$$

- Equivalently,

$$
\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \ldots & e_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{Q}^{-1}
$$

- For x such that

$$
\mathrm{x}=\left(\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \cdots & \mathrm{e}_{\mathrm{n}}
\end{array}\right) \quad \text { Different representations }
$$

- We have

$$
\mathrm{x}=\left(\begin{array}{llll}
\overline{\mathrm{e}}_{1} & \overline{\mathrm{e}}_{2} & \ldots & \overline{\mathrm{e}}_{\mathrm{n}}
\end{array}\right) \mathrm{Q}^{-1} \beta
$$

- How to obtain an orthonormalized basis?
- Gram-Schmidt process
- Linear operators and matrix representations
- A linear operator is completely determined by how the basis are mapped
- A matrix defines a linear operator
- Any linear operator can be defined by a matrix
- Matrix rep. under different basis

Consider the map

$$
x \rightarrow y:\left[e_{1} e_{2} . . e_{n}\right] \alpha \rightarrow\left[e_{1} e_{2} \ldots e_{n}\right] A \alpha
$$

Let the new basis be $\left[\hat{e}_{1} \hat{e}_{2} \ldots \hat{e}_{n}\right]=\left[e_{1} \mathrm{e}_{2} . . \mathrm{e}_{\mathrm{n}}\right] \mathrm{Q}$
$>$ The new rep. for the operator is $\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ}$

Today: More discussions on linear algebra

 (§3.3-3.5, 3.8)- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Systems of Linear Algebraic Equations

- A system of linear equations:

$$
\begin{array}{cl}
a_{11} x_{1}+a_{12} x_{2}+. .+a_{1 n} x_{n}=y_{1} & n \text { variables, } \\
a_{21} x_{1}+a_{22} x_{2}+. .+a_{2 n} x_{n}=y_{2} & x_{1}, x_{2}, \ldots, x_{n} \text {, to satisfy } \\
: & \text { m equations } \\
a_{m 1} x_{1}+a_{m 2} x_{2}+. .+a_{m n} x_{n}=y_{m} &
\end{array}
$$

where $\mathrm{a}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{i}} \in \mathrm{R}$ or C are given, x_{i} 's are to be solved.

- In matrix form: $A x=y$

$$
\begin{gathered}
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \cdots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \cdots & \mathrm{a}_{2 \mathrm{n}} \\
\cdots & \cdots & \ddots & \vdots \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \cdots & \mathrm{a}_{\mathrm{mn}}
\end{array}\right], \quad \mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right], \quad \mathrm{y}=\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\vdots \\
\mathrm{y}_{\mathrm{m}}
\end{array}\right] \\
\mathrm{m} \times \mathrm{n} \times 1 \quad \mathrm{~m} \times 1
\end{gathered}
$$

Let the ith column of A be a_{i}, i.e., $A=\left[a_{1} a_{2} \ldots a_{n}\right]$, then

$$
A x=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}
$$

A linear combination of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

The equation $A x=y$ has a solution if y is a linear combination of the columns of A.

Example. $2 \mathrm{x}_{1}-\mathrm{x}_{2}=0$ and $\mathrm{x}_{1}+2 \mathrm{x}_{2}=4$. Find x_{1} and x_{2}.
Geometric interpretation:

- Each equation represents a straight line in the plane.
- The solution is the intersection

- For this case, there is a unique intersection: $\mathrm{x}=(0.8,1.6)^{\mathrm{T}}$
- In general, there are 3 possibilities:
- Unique sol.; inf. number of sol.; and no sol.

- For a system of linear equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+. .+a_{1 n} x_{n}=y_{1} \\
a_{21} x_{1}+a_{22} x_{2}+. .+a_{2 n} x_{n}=y_{2} \\
: \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+. .+a_{m n} x_{n}=y_{m}
\end{gathered}
$$

- When $\mathrm{n}=3$, each equation represents a plane; The solution of $A x=y$ is the intersection of several planes
- For general n, each equation represents a hyperplane; The solution is the intersection of hyperplanes.
- How to analyze $\mathrm{Ax}=\mathrm{y}$ systematically?
- We will examine from the viewpoint of a linear operator $A: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}\left(\right.$ or $\left.\mathrm{C}^{\mathrm{n}} \rightarrow \mathrm{C}^{\mathrm{m}}\right)$
- Range of a linear operator A is of the columns of A

$$
\mathcal{R}(\mathrm{A}) \equiv\left\{\mathrm{Ax}: \mathrm{x} \in \mathrm{R}^{\mathrm{n}}\right\}=\left\{\mathrm{y} \in R^{m}: \exists \mathrm{x} \in \mathrm{R}^{\mathrm{n}} \text { s.t. } \mathrm{y}=\mathrm{Ax}\right\}
$$

- Is $\mathbb{R}(A)$ a space? If so, it is a subspace of what?

Theorem. $R(A)$ is a subspace of R^{m}
Proof: - Clearly it is a subset of R^{m}.

- Need to show that if $y_{1}, y_{2} \in \mathcal{R}(A)$,

$$
\text { then } \alpha_{1} y_{1}+\alpha_{2} y_{2} \in \mathcal{R}(A) \text { for all } \alpha_{1}, \alpha_{2} \in R
$$

$$
-\exists x_{1}, x_{2} \in R^{n} \text { s.t. } y_{1}=A x_{1}, y_{2}=A x_{2}
$$

$$
\alpha_{1} \mathrm{y}_{1}+\alpha_{2} \mathrm{y}_{2}=\alpha_{1} \mathrm{Ax}_{1}+\alpha_{2} \mathrm{Ax}_{2}=\mathrm{A}\left(\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}\right)
$$

$\Rightarrow \alpha_{1} \mathrm{y}_{1}+\alpha_{2} \mathrm{y}_{2} \in R(\mathrm{~A})$, and $R(\mathrm{~A})$ is a subspace

- What is the dimension of $\mathcal{R}(\mathrm{A})$?
- Recall that the dim. is the maximum number of LI vectors in $\mathcal{R}(A)$.
- Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{n}}$ be the columns of A, i.e.,
$A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$. Then
- $\mathcal{R}(A)$ is a subspace spanned by a_{i} 's:

$$
\mathcal{R}(A)=\left\{A x: x \in R^{n}\right\}=\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: x \in R^{n}\right\}
$$

- The dim.of $\mathcal{R}(A)$ is the maximum number of a_{i} 's which are LI, $\leq \min \{\mathrm{m}, \mathrm{n}\}$
- It also equals the rank of A : denoted $\rho(\mathrm{A})$
- If $\rho(A)=m$, then $R(A)=R^{m}$

Example: $\quad \mathrm{A}=\left[\begin{array}{cccc}0 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 2 & 0\end{array}\right] \quad \begin{aligned} & \text { • } a_{1}, a_{2} \text { are independent; } \\ & \mathrm{a}_{1} \\ & \mathrm{a}_{2}\end{aligned} \mathrm{a}_{3} \mathrm{a}_{4} \quad$ How about a_{1}, a_{2}, a_{3} ? \quad - How about a_{1}, a_{2}, a_{4} ?

- $\mathrm{a}_{3}=\mathrm{a}_{1}+\mathrm{a}_{2} ; \quad \mathrm{a}_{4}=2 \mathrm{a}_{2} ;$
\rightarrow If $z=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}$, then

$$
\mathrm{z}=\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}+\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \mathrm{x}_{3}+\mathrm{a}_{2} 2 \mathrm{x}_{4}
$$

$$
=a_{1}\left(x_{1}+x_{3}\right)+a_{2}\left(x_{2}+x_{3}+2 x_{4}\right)=a_{1} y_{1}+a_{2} y_{2}
$$

$>$ All $\mathrm{z} \in \mathcal{R}(\mathrm{A})$ can also be expressed as linear combinations of a_{1} and a_{2}
$\Rightarrow R(A)=R\left(\left[\begin{array}{ll}a_{1} & \mathrm{a}_{2}\end{array}\right]\right), \operatorname{dim} .=2$

In general, consider $C=[A B] ; A=\left[a_{1} \ldots a_{n 1}\right], B=\left[b_{1} \ldots b_{n 2}\right]$ Every b_{i} can be expressed as linear combination of a_{j} ' s if and only if $\mathcal{R}(\mathrm{C})=\mathcal{R}(\mathrm{A}) ; \rho(\mathrm{C})=\rho(\mathrm{A})$

Basis for the range space

- Let $a_{1}, a_{2}, \ldots a_{n}$ be the columns of A, i.e., $A=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$. Then
- $\mathcal{R}(A)$ is a subspace of R^{m}. It is spanned by a_{i} ' s :

$$
\mathcal{R}(A)=\left\{A x: x \in R^{n}\right\}=\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: x \in R^{n}\right\}
$$

- If $\operatorname{rank}(A)=n$, then $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ are LI, and they form the basis for the range space.
- If $\operatorname{rank}(\mathrm{A})=\mathrm{n}_{1}<\mathrm{n}, \quad\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{n}}\right\}$ are LD. We can choose n_{1}
columns of A that are LI. They form the basis of the range.

Meaning of the rank:

$\operatorname{rank}(\mathrm{A})=$ the maximal size of all square sub-matrices having none-zero determinant
$\operatorname{rank}(\mathrm{A})=$ the maximal number of vectors in a LI set which is formed by the columns of A.
$\operatorname{rank}(\mathrm{A})=$ the dimension of the range space.

Example. Find the rank and basis for the range space for the following

$$
A_{1}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right], \quad \operatorname{rank}\left(\mathrm{A}_{1}\right)=2, \mathcal{R}\left(\mathrm{~A}_{1}\right)=?
$$

Since $m=2, R\left(A_{1}\right) \subseteq R^{2}$,
Since $\operatorname{rank}\left(A_{1}\right)=2$, the dimension of $R\left(A_{1}\right)$ is 2 .
$\Rightarrow R\left(\mathrm{~A}_{1}\right)=\mathrm{R}^{2}$.
\Rightarrow Basis for the range space:

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Example. Find the rank and basis for the range space, given

$$
\begin{aligned}
& \mathrm{A}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right], \quad \mathrm{m}=3, \mathrm{n}=2 \\
& \rho\left(\mathrm{~A}_{2}\right)=2=\mathrm{n}, \text { full column rank, }\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\} \text { are } \mathrm{LI}
\end{aligned}
$$

Basis for the range space is $\left\{a_{1}, a_{2}\right\}$.
$R\left(\mathrm{~A}_{2}\right)=\left\{\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}: \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}\right\}, \Leftarrow$ spanned by a_{1} and a_{2}

Example: $\quad A_{3}=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right], \quad m=n=3$ $\rho\left(\mathrm{A}_{3}\right)=2$, $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\}$ are LI; $\left\{\mathrm{a}_{1}, \mathrm{a}_{3}\right\}$ are LI; $\left\{\mathrm{a}_{2}, \mathrm{a}_{3}\right\}$ are LI.

- Any pair of the columns can be used as a basis for the range space.

$$
\begin{aligned}
\mathcal{R}\left(\mathrm{A}_{3}\right) & =\left\{\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}: \mathrm{x}_{\mathrm{i}} \in \mathrm{R}\right\}=\left\{\mathrm{a}_{2} \mathrm{x}_{1}+\mathrm{a}_{3} \mathrm{x}_{2}: \mathrm{x}_{\mathrm{i}} \in \mathrm{R}\right\} \\
& =\left\{\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{3} \mathrm{x}_{2}: \mathrm{x}_{\mathrm{i}} \in \mathrm{R}\right\}
\end{aligned}
$$

What about $\mathrm{A}_{4}=\left[\begin{array}{lll}3 & 0 & 3 \\ 0 & 4 & 4 \\ 1 & 2 & 3\end{array}\right]$?
$\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}$
15

- More facts about the rank of a matrix , Rank (A) = Number of LI columns $=$ Number of LI rows $\leq \min (n, m)$
$-A$ is full rank if $\rho(A)=\min (n, m)$
$-\rho(A)=\rho\left(A^{\prime}\right)=\rho\left(A^{*}\right)$
- A square matrix $(\mathrm{n} \times \mathrm{n})$ has full $\operatorname{rank}(\rho(\mathrm{A})=\mathrm{n})$ iff $|\mathrm{A}| \neq$ 0 , or equivalently A^{-1} exists
- Question: Under what condition does $y=A x$ have a solution for a specific y ? for every y in R^{m} ?

Theorem.

$$
\begin{aligned}
& y=A x \text { has a solution iff } y \in \mathcal{R}(A) \text {, or } \rho(A)=\rho([A: y]) \\
& y=A x \text { has a solution } \forall y \in R^{m} \text { iff } \mathcal{R}(A)=R^{m}(\rho(A)=m)
\end{aligned}
$$

Question: Under what condition will the solution be not unique?
$>$ We need to use null space to describe this.

Def. The null space of $A, N(A)$, is defined as

$$
N(A) \equiv\left\{x \mid x \in R^{n} \text { s.t. } A x=0\right\}
$$

- How can we see that $N(A)$ is a subspace?

Theorem. $N(A)$ is a subspace of R^{n}
Proof: Need to show that if $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}(\mathrm{~A})$, then

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2} \in N(A) \text { for all } \alpha_{1}, \alpha_{2} \in R
$$

$\mathrm{Ax}_{1}=0, \mathrm{Ax}_{2}=0 \Rightarrow \mathrm{~A}\left(\alpha_{1} \mathrm{x}_{1}+\alpha_{2} \mathrm{x}_{2}\right)=\alpha_{1} \mathrm{Ax}_{1}+\alpha_{2} \mathrm{Ax}_{2}=0$

- Note that $\mathrm{N}(\mathrm{A}) \subseteq \mathrm{R}^{\mathrm{n}}$ (domain) and

$$
\mathcal{R}(\mathrm{A}) \subseteq \mathrm{R}^{\mathrm{m}}(\text { Codomain })
$$

- The dimension of $N(A)$ is called the nullity, notation $v(A)$

Theorem. $\rho(\mathrm{A})+v(\mathrm{~A})=\mathrm{n}$
Proof. Will not be covered

Corollary. The number of linearly independent solutions of $A x=0$ is $v(A)(=n-\rho(A))$

$$
\rho(\mathrm{A})+v(\mathrm{~A})=\mathrm{n}
$$

Example. Find the nullity and null space for the following

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right], \quad N\left(A_{1}\right)=\left\{x \mid x \in R^{3}, \text { s.t. } A_{1} x=0\right\} \\
& \operatorname{rank}\left(\mathrm{A}_{1}\right)=2, \quad v\left(A_{1}\right)=\mathrm{n}-\operatorname{rank}\left(\mathrm{A}_{1}\right)=3-2=1
\end{aligned}
$$

Note that a_{3} can be expressed as a linear combination of a_{1} and a_{2}

$$
a_{3}=2 a_{1}+3 a_{2} \Rightarrow 2 a_{1}+3 a_{2}-a_{3}=0
$$

$$
\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right]\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]=0 \Rightarrow \mathrm{~A}\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]=0
$$

$$
\mathrm{h}=\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right] \text { is a basis for the null space. } \Rightarrow N\left(A_{1}\right)=\{\mathrm{k} \mathrm{~h}: \mathrm{k} \in \mathrm{R}\}
$$

Example: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$,
a_{1} and a_{2} are LI, $\operatorname{rank}(\mathrm{A})=2, \mathrm{n}=2, v(\mathrm{~A})=v-\operatorname{rank}(\mathrm{A})=0$
Dimension of the null space is 0
The only x such that $\mathrm{Ax}=0$ is $\mathrm{x}=0$.
Example: $A=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right], \quad n=m=3$
$\operatorname{rank}(\mathrm{A})=2, v(\mathrm{~A})=3-2=1$
$\left\{a_{1}, a_{2}\right\}$ are LI, $a_{3}=a_{1} / 3+a_{2} / 2 \Rightarrow\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\left[\begin{array}{l}1 / 3 \\ 1 / 2 \\ -1\end{array}\right]=0\right.$
Let $\mathrm{h}=\left[\begin{array}{c}1 / 3 \\ 1 / 2 \\ -1\end{array}\right] \Rightarrow \mathrm{Ah}=0 \Rightarrow \mathrm{~N}(\mathrm{~A})=\{\mathrm{kh}: \mathrm{k} \in \mathrm{R}\} \quad{ }_{20}$

Example:

$$
A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
1 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right], n=m=3
$$

$$
\begin{aligned}
& \operatorname{rank}(\mathrm{A})=2, v(\mathrm{~A})=3-2=1 \\
& \left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\} \text { are LI, } \mathrm{a}_{3}=0 \mathrm{a}_{1}+0 \mathrm{a}_{2} \Rightarrow\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=0 \\
& \text { Let } \mathrm{h}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Rightarrow N\left(A_{1}\right)= \begin{cases}\mathrm{k} h: & \mathrm{k} \in \mathrm{R}\}\end{cases}
\end{aligned}
$$

Practice: find the null space and range space for

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
-1 & 2 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}
$$

- What is the implication of $v(A)>0$ for equ. $A x=y$?
- Suppose that x_{s} is a solution to $A x=y\left(A x_{s}=y\right)$, and $x_{0}(\neq 0) \in N(A)$. What can be said about $x_{s}+\alpha x_{0}$?
Theorem. $\mathrm{x}_{\mathrm{s}}+\alpha \mathrm{x}_{0}$ is also a solution to $\mathrm{Ax}=\mathrm{y}$
Proof:

$$
\begin{aligned}
& A x_{s}=y, A x_{0}=0 \\
& A\left(x_{s}+\alpha x_{0}\right)=A x_{s}+\alpha A x_{0}=y+0=y
\end{aligned}
$$

$>$ If $v(\mathrm{~A})>0$, then $\mathrm{Ax}=\mathrm{y}$ has infinite number of solutions if it has one.

Parameterization of all solutions

Theorem: Given $m \times n$ matrix A and a $m \times 1$ vector y.

- Let x_{p} be a solution to $A x=y$.
- Let $v(A)=k$.
- Suppose $\mathrm{k}>0$ and the null space is spanned by

$$
\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right\}
$$

$>$ The set of all solutions is given by

$$
\left\{x=x_{p}+\alpha_{1} n_{1}+\alpha_{2} n_{2}+\ldots+\alpha_{k} n_{k}: \alpha_{i} \in R\right\}
$$

Summary:

- If $\rho(A) \neq \rho([A: y])$ (i.e., $y \notin \mathcal{R}(A)$), then the equations are inconsistent, and there is no solution
- If $\rho(A)=\rho([A: y])$, then \exists at least one solution - If $\rho(A)=\rho([A: y])<n(i . e ., v(A)>0)$, then there are infinite number of solutions
- If $\rho(A)=\rho([A: y])=n(i . e ., v(A)=0)$, then there is a unique solution
- For an $\mathrm{n} \times \mathrm{n}$ matrix, $\mathrm{Ax}=\mathrm{y}$ has a unique solution $\forall \mathrm{y} \in \mathrm{R}^{\mathrm{m}}$ iff A^{-1} exists, or $|\mathrm{A}| \neq 0$

Example: $\mathrm{Ax}=\mathrm{y} ; \quad \mathrm{A}=\left[\begin{array}{cccc}0 & -4 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 2 & 0\end{array}\right], \quad \mathrm{y}=\left[\begin{array}{c}-4 \\ -8 \\ 0\end{array}\right]$ $a_{1} a_{2} a_{3} a_{4}$

- $\mathrm{n}=4 ; \rho(\mathrm{A})=2 ; \Rightarrow v(\mathrm{~A})=4-2=2$. Two LI solutions for $\mathrm{Ax}=0$.
- Observe that $\mathrm{y}=-4 \mathrm{a}_{2}=0 \mathrm{a}_{1}-4 \mathrm{a}_{2}+0 \mathrm{a}_{3}+0 \mathrm{a}_{4}=\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \mathrm{a}_{4}\end{array}\right]\left[\begin{array}{lll}0 & -4 & 0\end{array}\right]$,

A particular solution: $x_{p}=\left[\begin{array}{llll}0 & -4 & 0 & 0\end{array}\right]$ '

- Note that $\left.a_{3}=a_{1}+a_{2} \Leftrightarrow a_{1}+a_{2}-a_{3}+0 a_{4}=0 \Leftrightarrow A\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\right]^{\prime}=0$

$$
a_{4}=2 a_{2} \Leftrightarrow 0 a_{1}+2 a_{2}+0 a_{3}-a_{4}=0 \Leftrightarrow A[020-1]^{\prime}=0
$$

$>$ Two solutions for $\mathrm{Ax}=0$:

- All solutions:

$$
\mathrm{n}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0
\end{array}\right], \quad \mathrm{n}_{2}=\left[\begin{array}{c}
0 \\
2 \\
0 \\
-1
\end{array}\right]
$$

$$
x=x_{p}+k_{1} n_{1}+k_{2} n_{2}=\left[\begin{array}{c}
k_{1} \\
-4+k_{1}+2 k_{2} \\
-k_{1} \\
-k_{2}
\end{array}\right], k_{1}, k_{2} \in R
$$

Exercise: $\begin{aligned} \mathrm{Ax}=\mathrm{y} ; \quad \mathrm{A}=\left[\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & -1 & 1\end{array}\right], \quad \mathrm{y}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \begin{array}{l}\text { Find null space, } \\ \begin{array}{l}\text { Solution, } \\ \text { All solutions }\end{array} \\ \mathrm{a}_{2}\end{array} \mathrm{a}_{3} & \mathrm{a}_{4}\end{aligned}$
Observe that a_{1} and a_{2} are LI, $a_{3}=a_{2}-a_{1}, a_{4}=a_{1}+a_{2}$, $\rho(A)=2, v(A)=4-2=2, \rho[A y]=3>\rho(A) . \Rightarrow$ No solution
From $a_{3}=a_{2}-a_{1}, \Rightarrow a_{1}-a_{2}+a_{3}+0 a_{4}=0,\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} a_{4}\end{array}\right]\left[\begin{array}{llll}1 & -1 & 1 & 0\end{array}\right]^{\prime}=0$
From $a_{4}=a_{1}+a_{2}, \Rightarrow a_{1}+a_{2}+0 a_{3}-a_{4}=0,\left[\begin{array}{lll}a_{1} & a_{2} & a_{2} \\ a_{3}\end{array}\right]\left[\begin{array}{llll}1 & 1 & 0 & -1\end{array}\right]{ }^{\prime}=0$
> Two solutions for $\mathrm{Ax}=0$

$$
\mathrm{n}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right], \quad \mathrm{n}_{2}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right]
$$

What if $y=\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]^{\prime}$? Then $y=a_{1}+a_{4}=\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0\end{array} 1\right]^{\prime}$, Hence a particular solution is $x_{p}=\left[\begin{array}{lll}1 & 0 & 0\end{array} 1\right]^{\prime}$

$$
\text { All solutions: } \quad x=x_{p}+k_{1} n_{1}+k_{2} n_{2}=\left[\begin{array}{c}
1+k_{1}+k_{2} \\
-k_{1}+k_{2} \\
k_{1} \\
1-k_{2}
\end{array}\right], k_{1}, k_{2} \in R
$$

Solution for $\mathrm{xA}=\mathrm{y}$:

- A: m×n; y: $1 \times \mathrm{n}$ row vector;
$\mathrm{x}: 1 \times \mathrm{m}$ unknown row vector.
- Notice $x A=y \Leftrightarrow A^{T} x^{T}=y^{T}$
$\mathrm{A}^{\mathrm{T}}: \mathrm{n} \times \mathrm{m} ; \mathrm{y}^{\mathrm{T}}$: $\mathrm{n} \times 1$ column vector;
$\mathrm{x}^{\mathrm{T}}: \mathrm{m} \times 1$ unknown column vector.
- Transformed into the former systems of equations.

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
> Similarity transformation: companion form
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Similarity transformation: Companion form

Review: Let A be a $\mathrm{n} \times \mathrm{n}$ matrix and x the representation of a vector w.r.t the basis $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$, where

$$
\mathrm{e}_{\mathrm{i}}=\underset{\mathrm{i}^{\text {th }}}{\left[\begin{array}{llll}
0 & \cdots 1 & \cdots & \text { element }
\end{array}\right]^{\mathrm{T}}} \Rightarrow\left[\mathrm{e}_{1} \quad \mathrm{e}_{2} \ldots \mathrm{e}_{\mathrm{n}}\right]=\mathrm{I}
$$

- The linear operator L w.r.t the basis is: $x \rightarrow A x$
- Let the new basis be $\left[\hat{e}_{1}, \hat{e}_{2} \ldots \hat{e}_{n}\right]=\left[e_{1} e_{2} \ldots e_{n}\right] \mathrm{Q}=\mathrm{Q}$
$>$ Then the operator w.r.t the new basis is: $\mathrm{z} \rightarrow \overline{\mathrm{A}} \mathrm{z}$

$$
\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ} \Longleftarrow \text { Similarity transformation }
$$

Question: How to choose Q so that $\overline{\mathrm{A}}$ has a desired form? Which forms are desired?

The companion form

$$
\overline{\mathrm{A}}_{1}=\left[\begin{array}{ccc}
0 & 0 & -\mathrm{a} \\
1 & 0 & -\mathrm{b} \\
0 & 1 & -\mathrm{c}
\end{array}\right] \quad \overline{\mathrm{A}}_{2}=\left[\begin{array}{ccccc:c}
0 & 0 & \cdots & 0 & 0 & -\beta_{1} \\
\hline 1 & 0 & \cdots & 0 & 0 & -\beta_{2} \\
0 & 1 & \cdots & 0 & 0 & -\beta_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & -\beta_{\mathrm{n}-1} \\
0 & 0 & \cdots & 0 & 1 & -\beta_{\mathrm{n}}
\end{array}\right]
$$

What are $\operatorname{det} \overline{\mathrm{A}}_{1}, \operatorname{det} \overline{\mathrm{~A}}_{2}$?

$$
\begin{aligned}
& \operatorname{det} \bar{A}_{1}=-a, \operatorname{det} \bar{A}_{2}=(-1)^{n} \beta_{1}, \\
& \operatorname{det}\left(\lambda I-\bar{A}_{1}\right)=\left|\begin{array}{ccc}
\lambda & 0 & a \\
-1 & \lambda & b \\
0 & -1 & \lambda+c
\end{array}\right|=\lambda^{3}+c \lambda^{2}+b \lambda+a \\
& \operatorname{det}\left(\lambda I-\bar{A}_{2}\right)=\lambda^{n}+\beta_{n} \lambda^{n-1}+\beta_{n-1} \lambda^{n-2}+\cdots+\beta_{1}
\end{aligned}
$$

- Clean structures, easy for analysis.
- How to get them?

Transformation to companion form

Example: $A=\left[\begin{array}{ccc}3 & 2 & -1 \\ -2 & 1 & 0 \\ 4 & 3 & 1\end{array}\right] \quad$ Let $\quad b=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
We have: $\mathrm{Ab}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \mathrm{A}^{2} \mathrm{~b}=\left[\begin{array}{c}-4 \\ 2 \\ -3\end{array}\right], \mathrm{A}^{3} \mathrm{~b}=\left[\begin{array}{c}-5 \\ 10 \\ -13\end{array}\right]$,
It can be verified that $A^{3} b=17 b-15 A b+5 A^{2} b$
Also, $\mathrm{b}, \mathrm{Ab}, \mathrm{A}^{2} \mathrm{~b}$ are linearly independent. We can choose

$$
\left[\begin{array}{lll}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
b & A b & A^{2} b
\end{array}\right]=: Q
$$

The new rep. for the linear operator is $\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ} \Rightarrow \mathrm{AQ}=\mathrm{Q} \overline{\mathrm{A}}$

$$
\begin{aligned}
& \text { Observe that: } \\
& \begin{array}{ll}
\mathrm{Ab}=\left[\begin{array}{ll}
\mathrm{b} & \mathrm{Ab} \\
\mathrm{~A}^{2} \mathrm{~b}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathrm{A}^{2} \mathrm{~b}=\left[\begin{array}{lll}
\mathrm{b} & \mathrm{Ab} & \mathrm{~A}^{2} \mathrm{~b}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \mathrm{A}^{3} \mathrm{~b}=\left[\begin{array}{lll}
\mathrm{b} & \mathrm{Ab} & \mathrm{~A}^{2} \mathrm{~b}
\end{array}\right]\left[\begin{array}{c}
17 \\
-15 \\
5
\end{array}\right], \\
{\left[\begin{array}{lll}
\mathrm{Ab}^{2} \mathrm{~b} & \left.\mathrm{~A}^{3} \mathrm{~b}\right] & = \\
\mathrm{AQ} & {\left[\mathrm{Ab} \mathrm{~A}^{2} \mathrm{~b}\right]}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 17 \\
1 & 0 & -15 \\
0 & 1 & 5
\end{array}\right]} & \square \mathrm{Q}
\end{array} \quad \overline{\mathrm{~A}}=\left[\begin{array}{ccc}
0 & 0 & 17 \\
1 & 0 & -15 \\
0 & 1 & 5
\end{array}\right] 1
\end{aligned}
$$

In general: consider $\mathrm{n} \times \mathrm{n}$ matrix A . Choose b such that
$b, A b, A^{2} b, \cdots A^{n-1} b$ are linearly independent
Then $A^{n} b=-\beta_{1} b-\beta_{2} A b-\cdots-\beta_{n} A^{n-1} b$
If we choose $Q=\left[b^{A b ~ A} A^{2} b A^{n-1} b\right]$,

$$
\bar{A}=Q^{-1} A Q=\left[\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & -\beta_{1} \\
1 & 0 & \cdots & 0 & 0 & -\beta_{2} \\
0 & 1 & \cdots & 0 & 0 & -\beta_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & -\beta_{\mathrm{n}-1} \\
0 & 0 & \cdots & 0 & 1 & -\beta_{\mathrm{n}}
\end{array}\right]
$$

- A and $\overline{\mathrm{A}}$ are said similar to each other
- The transformation $A \rightarrow Q^{-1} A Q$ similar transformatien

The dual case: consider $\mathrm{n} \times \mathrm{n}$ matrix A . Choose c such that

$$
\mathrm{Q}:=\left[\begin{array}{c}
\mathrm{c} \\
\mathrm{cA} \\
\vdots \\
\mathrm{cA}^{\mathrm{n}-1}
\end{array}\right] \text { is nonsingular, i.e., }\left\{\mathrm{c}^{\prime}, \mathrm{A}^{\prime} \mathrm{c}^{\prime}, \ldots \mathrm{A}^{\mathrm{m}-1} \mathrm{c}^{\prime}\right\} \quad \mathrm{LI}
$$

Then $\mathrm{cA}^{\mathrm{n}}=-\beta_{1} \mathrm{c}-\beta_{2} \mathrm{cA}-\cdots-\beta_{\mathrm{n}} \mathrm{cA}^{\mathrm{n}-1}$

$$
\overline{\mathrm{A}}=\mathrm{QAQ}^{-1}=\left[\begin{array}{c:ccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{1} & -\beta_{2} & -\beta_{3} & \cdots & -\beta_{\mathrm{n}-1} & -\beta_{\mathrm{n}}
\end{array}\right]
$$

- We next discuss how to transform A into a diagonal matrix. i.e., find a matrix Q such that

$$
\mathrm{Q}^{-1} \mathrm{AQ}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \lambda_{\mathrm{n}}
\end{array}\right]
$$

* Why this form?
- Stability of the system $\dot{x}=A x$ is reflected by these diagonal elements λ_{i} 's
- $|\mathrm{A}|=\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{n}}$
- $|\mathrm{s} I-\mathrm{A}|=\left(\mathrm{s}-\lambda_{1}\right)\left(\mathrm{s}-\lambda_{2}\right) \ldots\left(\mathrm{s}-\lambda_{\mathrm{n}}\right)$
$>$ These λ_{i} 's are called eigenvalues of A

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
$>$ Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Eigenvalues and Eigenvectors

Definition. Let A be a linear operator from C^{n} to C^{n}.

- A scalar λ is called an eigenvalue of A if \exists a nonzero
$x \in C^{n}$, such that $A x=\lambda x \Leftrightarrow(\lambda I-A) x=0$.
$-(\lambda I-A) x=0$ has a non-zero sol. iff $\Delta(\lambda)=|\lambda I-A|=0$
\sim Characteristic polynomial of A with degree n
- λ must be a root of $\Delta(\lambda)$.
- A has n eigenvalues, not necessarily distinct, and some of them could be complex \sim So we consider C^{n} instead of R^{n}.
-x is the eigenvector associated with λ. What can be said?
$-(\lambda I-A) x=0 \Leftrightarrow x \in N(\lambda I-A)$
- The set of eigenvalues of A , or, the set of the roots of $\Delta(\lambda)$, is called the spectrum and denoted eig(A)

Example

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right] \text {, find } \lambda_{1}, \lambda_{2}, x_{1}, \text { and } x_{2} \\
& \Delta(\lambda)=|\lambda I-A|=\left|\begin{array}{cc}
\lambda & -1 \\
3 & \lambda+4
\end{array}\right|=\lambda^{2}+4 \lambda+3 \\
& =(\lambda+1)(\lambda+3) \quad \Rightarrow \lambda_{1}=-1, \lambda_{2}=-3 \\
& \left(\lambda_{1} I-A\right) x_{1}=0 \quad\left[\begin{array}{cc}
-1 & -1 \\
3 & 3
\end{array}\right] x_{1}=0, \quad x_{1}=\binom{1}{-1} \\
& \left(\lambda_{2} I-A\right) x_{2}=0, \quad\left[\begin{array}{cc}
-3 & -1 \\
3 & 1
\end{array}\right] x_{2}=0, \quad x_{2}=\binom{1}{-3}
\end{aligned}
$$

- We will see later that
- Eigenvalues are associated with system stability
- Eigenvectors form a convenient set of basis
- Will examine two cases of eigenvalues and eigenvectors
- Case 1: All eigenvalues are distinct
- Case 2: Eigenvalues with multiplicity > 1

Case 1: All Eigenvalues are Distinct

- Consider first the case where all the eigenvalues of A are distinct, i.e., $\Delta(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{\mathrm{n}}\right)$, $\lambda_{\mathrm{i}} \neq \lambda_{\mathrm{j}}$ for $\mathrm{i} \neq \mathrm{j}$.
Let v_{i} be the associated eigenvector for λ_{i}
- What can we say about $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$?

Theorem. $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ are linearly independent
How to proof this theorem?
Proof. By contradiction
Suppose that they are linearly dependent, then assume without loss of generality that

$$
\begin{aligned}
& \Sigma_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}=0 \text {. At least one } \alpha_{\mathrm{i}} \text { nonzero. Assume } \alpha_{1} \neq 0 \\
& \left(\begin{array}{l}
\mathrm{A}
\end{array}-\lambda_{2} \mathrm{I}\right)\left(\sum_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=0 \\
& \quad=\sum_{\mathrm{i}} \alpha_{\mathrm{i}}\left(\mathrm{~A}-\lambda_{2} \mathrm{I}\right) \mathrm{v}_{\mathrm{i}}=\Sigma_{\mathrm{i}} \alpha_{\mathrm{i}}\left(\mathrm{Av}_{\mathrm{i}}-\lambda_{2} \mathrm{v}_{\mathrm{i}}\right)=\Sigma_{\mathrm{i}} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}-\lambda_{2} \mathrm{v}_{\mathrm{i}}\right) \\
& \quad=\sum_{\mathrm{i}} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right) \mathrm{v}_{\mathrm{i}} \\
& \quad=\Sigma_{\mathrm{i} \neq 2} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right) \mathrm{v}_{\mathrm{i}} \sim \text { The second term drops out } \\
& \left(\begin{array}{c}
\mathrm{A}
\end{array}-\lambda_{3} \mathrm{I}\right)\left[\Sigma_{\mathrm{i} \neq 2} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right) \mathrm{v}_{\mathrm{i}}\right]=0 \\
& \quad=\sum_{\mathrm{i} \neq 2} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right)\left(\mathrm{A}-\lambda_{3} \mathrm{I}\right) \mathrm{v}_{\mathrm{i}} \\
& \quad=\sum_{\mathrm{i} \neq 2} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right)\left(\lambda_{\mathrm{i}}-\lambda_{3}\right) \mathrm{v}_{\mathrm{i}} \\
& \quad=\Sigma_{\mathrm{i} \neq 2,3} \alpha_{\mathrm{i}}\left(\lambda_{\mathrm{i}}-\lambda_{2}\right)\left(\lambda_{\mathrm{i}}-\lambda_{3}\right) \mathrm{v}_{\mathrm{i}}
\end{aligned}
$$

\sim The third term drops out
Finally, $\alpha_{1}\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right) . .\left(\lambda_{1}-\lambda_{n}\right) v_{1}=0$
Since $\lambda_{\mathrm{i}} \neq \lambda_{\mathrm{j}}$ for $\mathrm{i} \neq \mathrm{j}$, the above implies $\mathrm{v}_{1}=0$
\sim Contradiction $\Rightarrow\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ are LI

- Let $\mathrm{Q}=\left[\begin{array}{llll}\mathrm{v}_{1} & \mathrm{v}_{2} & \ldots & \mathrm{v}_{\mathrm{n}}\end{array}\right]$, choose the new basis as

$$
\left[\hat{e}_{1}, \hat{e}_{2} \ldots \hat{e}_{n}\right]=\left[\begin{array}{lll}
e_{1} & e_{2} & \ldots e_{n}
\end{array}\right] \mathrm{Q}=\mathrm{Q}
$$

- What is the new rep. of A in terms of the new basis? What is $\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ}$, or an $\overline{\mathrm{A}}$ such that $\mathrm{AQ}=\mathrm{Q} \overline{\mathrm{A}}$?
Notice that $A v_{i}=\lambda_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ for all i

$$
A Q=A\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{llll}
A v_{1} & A v_{2} & \cdots & A v_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots & \lambda_{n} v_{n}
\end{array}\right]
$$

$$
\mathrm{AQ}=\left[\begin{array}{llll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \cdots & \mathrm{v}_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & . . & 0 \\
0 & \lambda_{2} & . . & 0 \\
\vdots & \vdots & & : \\
0 & 0 & . . & \lambda_{\mathrm{n}}
\end{array}\right]=\mathrm{Q}\left[\begin{array}{cccc}
\lambda_{1} & 0 & . . & 0 \\
0 & \lambda_{2} & . . & 0 \\
\vdots & \vdots & & : \\
0 & 0 & . . & \lambda_{\mathrm{n}}
\end{array}\right]
$$

Example (Continued)

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right], \text { find } \overline{\mathrm{A}} \\
& \Rightarrow \lambda_{1}=-1, \lambda_{2}=-3, \quad \mathrm{~V}_{1}=\binom{1}{-1}, \quad \mathrm{~V}_{2}=\binom{1}{-3}
\end{aligned}
$$

- First by inspection: $\bar{A}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -3\end{array}\right]$
- Then by similar transformation:

$$
\begin{aligned}
& \mathrm{Q}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -3
\end{array}\right], \quad \mathrm{Q}^{-1}=\frac{-1}{2}\left[\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right], \\
& \overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ}=\frac{-1}{2}\left[\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & -3
\end{array}\right]= {\left[\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right] } \\
& \checkmark \mathrm{C}_{42}
\end{aligned}
$$

Another way to understand the Example

$\mathrm{A}=\left[\begin{array}{cc}0 & 1 \\ -3 & -4\end{array}\right], \quad \begin{aligned} & \text { Find a diagonal matrix } \bar{A} \text { and a nonsingular matrix } \\ & Q \text { such that } \bar{A}=Q^{-1} A Q\end{aligned}$
$\lambda_{1}=-3 ; \lambda_{2}=-1, \quad v_{1}=\left[\begin{array}{c}1 \\ -3\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Let $Q=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ -3 & -1\end{array}\right]$ Must have $\bar{A}=\left[\begin{array}{cc}-3 & 0 \\ 0 & -1\end{array}\right]$
To verify, check $A Q \stackrel{?}{=} Q \bar{A}$

$$
\begin{aligned}
& A Q=\left[\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-3 & -1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
9 & 1
\end{array}\right] \\
& Q \bar{A}=\left[\begin{array}{cc}
1 & 1 \\
-3 & -1
\end{array}\right]\left[\begin{array}{cc}
-3 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
9 & 1
\end{array}\right]
\end{aligned}
$$

Indeed, $A Q=Q \bar{A}, \Rightarrow Q^{-1} A Q=\bar{A}$

Similarity transformation for a LTI system:

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C x+D u \tag{*}
\end{align*}
$$

Let the new state be $z=Q^{-1} x$. Then $x=Q z$ and

$$
\begin{gather*}
\dot{\mathrm{z}}=\mathrm{Q}^{-1} \dot{\mathrm{x}}=\mathrm{Q}^{-1}(\mathrm{Ax}+\mathrm{Bu})=\mathrm{Q}^{-1} \mathrm{AQ} \mathrm{z}+\mathrm{Q}^{-1} \mathrm{Bu} \\
\mathrm{y}=\mathrm{Cx}+\mathrm{Du}=\overline{\mathrm{CQ} z+\sqrt{\mathrm{D}} \mathrm{u}} \overline{\mathrm{~A}} \quad \overline{\mathrm{~B}} \\
\quad \square \quad \overline{\mathrm{C}} \quad \overline{\mathrm{D}} \tag{**}\\
\dot{\mathrm{z}}=\overline{\mathrm{A}} \mathrm{z}+\overline{\mathrm{B}} \mathrm{u} ; \\
\mathrm{y}=\overline{\mathrm{C}} \mathrm{z}+\overline{\mathrm{D}} \mathrm{u}
\end{gather*}
$$

If we pick $Q=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$, then \bar{A} has a diagonal form, making the analysis easy.
The similar transformation does not change the input-output relationship

Example. $\dot{x}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right] x+\left[\begin{array}{l}2 \\ 1\end{array}\right] u, \quad y=\left[\begin{array}{ll}1 & 0\end{array}\right] x$
Find the matrix Q :

$$
\begin{gathered}
\Delta(\lambda)=|\lambda I-A|=\left|\begin{array}{cc}
\lambda & -1 \\
2 & \lambda+3
\end{array}\right|=\lambda^{2}+3 \lambda+2 \\
=(\lambda+1)(\lambda+2) \Rightarrow \lambda_{1}=-1, \lambda_{2}=-2 \\
\left(\lambda_{1} \mathrm{I}-\mathrm{A}\right) \mathrm{v}_{1}=0, \quad\left[\begin{array}{cc}
-1 & -1 \\
2 & 2
\end{array}\right] \mathrm{v}_{1}=0, \quad \mathrm{v}_{1}=\binom{1}{-1} \\
\left(\lambda_{2} \mathrm{I}-\mathrm{A}\right) \mathrm{v}_{2}=0, \quad\left[\begin{array}{cc}
-2 & -1 \\
2 & 1
\end{array}\right] \mathrm{v}_{2}=0, \quad \mathrm{v}_{2}=\binom{1}{-2} \\
\mathrm{Q}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right], \quad \mathrm{Q}^{-1}=\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right]
\end{gathered}
$$

- What is the system dynamics in terms of $\mathrm{z}=\mathrm{Q}^{-1} \mathrm{x}$?

$$
\begin{aligned}
& \mathrm{z} \equiv \mathrm{Q}^{-1} \mathrm{x}, \quad \mathrm{x}=\mathrm{Qz} \\
& \dot{\mathrm{z}}=\mathrm{Q}^{-1} \dot{\mathrm{x}}=\mathrm{Q}^{-1}(\mathrm{Ax}+\mathrm{Bu}) \\
& \quad=\mathrm{Q}^{-1} \mathrm{AQz}+\mathrm{Q}^{-1} \mathrm{Bu}=\overline{\mathrm{A} z+\overline{\mathrm{B}} \mathrm{u}} \\
& \underline{\mathrm{~A} \equiv \mathrm{Q}^{-1} \mathrm{AQ}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right], \overline{\mathrm{B}} \equiv \mathrm{Q}^{-1} \mathrm{~B}
\end{aligned}=\left[\begin{array}{c}
5 \\
-3
\end{array}\right] \quad \begin{aligned}
& \mathrm{y}=\mathrm{Cx}=\mathrm{CQz}=\overline{\mathrm{C}} \mathrm{z}, \quad \overline{\mathrm{C}=\mathrm{CQ}}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& \dot{\mathrm{z}}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \mathrm{z}+\left[\begin{array}{c}
5 \\
-3
\end{array}\right] \mathrm{u}, \quad \mathrm{y}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \mathrm{z}
\end{aligned}
$$

- Two decoupled modes and can be easily analyzed
- The system is stable since $\operatorname{Re}\left(\lambda_{\mathrm{i}}\right)<0 \forall \mathrm{i}$

Theorem. All similar matrices have the same eigenvalues

- How to prove this?

$$
\begin{aligned}
& \mid \lambda I-\overline{\mathrm{A}}\left|=\left|\lambda \mathrm{I}-\mathrm{Q}^{-1} \mathrm{AQ}\right|\right. \\
&=\left|\lambda \mathrm{Q}^{-1} \mathrm{Q}-\mathrm{Q}^{-1} \mathrm{AQ}\right| \\
&=\left|\mathrm{Q}^{-1}(\lambda \mathrm{I}-\mathrm{A}) \mathrm{Q}\right| \\
&=\left|\mathrm{Q}^{-1} \cdot\right| \cdot(\lambda \mathrm{I}-\mathrm{A}) \cdot|\cdot \mathrm{Q}| \\
&=|\lambda \mathrm{I}-\mathrm{A}|
\end{aligned}
$$

- The two matrices have the same characteristic polynomial, and therefore have the same set of eigenvalues

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form
> Generalized eigenvectors, Jordan form

Case 2: Eigenvalues with Multiplicity > 1

- What may happen when the multiplicity of an eigenvalue is greater than 1 ?
- The matrix may not be diagonalizable

Example. $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \Delta(\lambda)=|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
0 & \lambda-1 & -1 \\
1 & 0 & \lambda
\end{array}\right|=\lambda(\lambda-1)^{2} \\
& \Rightarrow \lambda_{1}=0, \lambda_{2}=\lambda_{3}=1 \\
& \left(\lambda_{1} \mathrm{I}-\mathrm{A}\right) \mathrm{v}_{1}=0, \quad\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & -1 \\
1 & 0 & 0
\end{array}\right] \mathrm{v}_{1}=0, \quad \mathrm{v}_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\left(\lambda_{2} I-A\right) v_{2}=0, \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
1 & 0 & 1
\end{array}\right] \mathrm{v}_{2}=0, \quad \mathrm{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

- What is v_{3} ? Recall $\lambda_{2}=\lambda_{3}$.
$-v_{3}=v_{2}$
- $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ are not LI, and cannot be used as a basis
- Q formed by them is not invertible, and there is no similar transformation to diagonalize A. ©
- Have to think something different for v_{2} and v_{3}
- Let us find v_{3} such that $\left(\mathrm{A}-\lambda_{2} \mathrm{I}\right)^{2} \mathrm{v}_{3}=0, \quad\left(\mathrm{~A}-\lambda_{2} \mathrm{I}\right) \mathrm{v}_{3} \neq 0 \sim \begin{gathered}\text { Different from the } \\ \text { previous } \mathrm{v}_{2}\end{gathered}$
- Then $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ are LI.
- If we take $\mathrm{Q}=\left[\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3}\right]$, what is $\overline{\mathrm{A}}=\mathrm{Q}^{-1} \mathrm{AQ}$?
- We need to find $\overline{\mathrm{A}}$ such that $\mathrm{AQ}=\mathrm{Q} \overline{\mathrm{A}}$. Observe that

$$
\begin{aligned}
& \qquad \operatorname{Av}_{1}=\lambda_{1} \mathrm{v}_{1}=\left[\begin{array}{lll}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}
\end{array}\right]\left[\begin{array}{|c}
{\left[\begin{array}{c}
\lambda_{1} \\
0 \\
0
\end{array}\right]} \\
\qquad \mathrm{Av}_{2}=\lambda_{2} \mathrm{v}_{2}=\left[\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{v}_{2} \\
\mathrm{v}_{3}
\end{array}\right]\left[\begin{array}{c}
0 \\
\lambda_{2} \\
0
\end{array}\right] \\
\text { From }\left(\mathrm{A}-\lambda_{2} \mathrm{I}\right) \mathrm{v}_{2}=\left(\mathrm{A}-\lambda_{2} \mathrm{I}\right)^{2} \mathrm{v}_{3}=0
\end{array}\right.
\end{aligned}
$$

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form

Next Time: More on linear algebra $\S 3.5,3.6,3.8$
State space solutions §4.1,4.2

- Generalized eigenvectors, Jordan form
- Some useful results, matrix norms
- Functions of a square matrix

Homework Set \#5:

1. Find
1) nullities,
2) bases for the range spaces and 3) bases for the null spaces
for the following matrices

$$
\left.\begin{array}{l}
A_{1}=\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 \\
-1 & 1 & -3
\end{array} 0\right.
\end{array}\right],
$$

2. Find the general solutions for the following equations
a). $\left[\begin{array}{lll}1 & 0 & 2\end{array}\right] x=1, \quad$ b). $\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 0\end{array}\right] x=\left[\begin{array}{l}2 \\ 3\end{array}\right]$,
c). $\left[\begin{array}{ccc}-2 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 1 & 0\end{array}\right] x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad$ d). $\left[\begin{array}{cccc}1 & 3 & 0 & -1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1\end{array}\right] x=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Note: these matrices are the same as those in Problem 1.
3. Compute the eigenvalues, eigenvectors and diagonal forms for these matrices

$$
A_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 3 & 1 \\
-2 & 0 & 3
\end{array}\right], \quad A_{3}=\left[\begin{array}{ccc}
6 & -2 & -3 \\
4 & 0 & -3 \\
8 & -2 & -5
\end{array}\right]
$$

4. Let

$$
\mathrm{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -1 & 4 \\
1 & 0 & 3
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Form $\mathrm{Q}=\left[\mathrm{A}^{2} \mathrm{~b} \quad \mathrm{Ab} \quad \mathrm{b}\right]$. Compute $\mathrm{M}=\mathrm{Q}^{-1} \mathrm{~A} \mathrm{Q}$.
Observe how M is related to the polynomial $\operatorname{det}(\lambda I-A)$.

