16.513 Control Systems Lecture Note #5

Last time:

- The base of a linear space: Basis
- Representations of a vector in terms of a basis
- Relationship among representations for different bases
- Generalization of the idea of length: Norms
- A sense of orientation: Inner Product
- The concept of perpendicularity: Orthogonality
- Gram-Schmidt Process to obtain orthonormal vectors

1

1

- Linear Operators and Representations

Representation of vectors w.r.t. different basis

- What is a basis for Rⁿ? What can be used as a basis?
 - A set of vectors $\{e_1, e_2, \dots, e_n\}$ which can be used to represent every $x \in \mathbb{R}^n$ uniquely as:
 - $x = a_1e_1 + a_2e_2 + \ldots + a_ne_n$
- Every set of n LI vectors can be used as a basis.
- Given an old basis $(e_1 e_2 \dots e_n)$;
 - Let the new basis be:

$$(\overline{e}_1 \quad \overline{e}_2 \quad \dots \quad \overline{e}_n) = (e_1 \quad e_2 \quad \dots \quad e_n)Q$$

Equivalently,

$$(\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_n) = (\overline{\mathbf{e}}_1 \quad \overline{\mathbf{e}}_2 \quad \dots \quad \overline{\mathbf{e}}_n) \mathbf{Q}^{-1}$$

For x such that

- How to obtain an orthonormalized basis?
 - Gram-Schmidt process
- Linear operators and matrix representations
 - A linear operator is completely determined by how the basis are mapped
 - A matrix defines a linear operator
 - Any linear operator can be defined by a matrix
 - Matrix rep. under different basis

Consider the map

 $x \rightarrow y$: $[e_1 \ e_2 \ .. \ e_n] \ \alpha \ \rightarrow [e_1 \ e_2 \ ... \ e_n] A \alpha$

Let the new basis be $[\hat{e}_1 \ \hat{e}_2 \dots \hat{e}_n] = [e_1 \ e_2 \dots e_n] Q$

3

4

> The new rep. for the operator is $\overline{A} = Q^{-1}AQ$

Today: More discussions on linear algebra (§3.3-3.5, 3.8)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Systems of Linear Algebraic Equations

• A system of linear equations:

 $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = y_1$ n variables, $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = y_2$ n variables, $x_1, x_2, ..., x_n$, to satisfy m equations

 $a_{m1}x_1 + a_{m2}x_2 + .. + a_{mn}x_n = y_m$

where $a_{ij}, y_i \in R$ or C are given, x_i 's are to be solved.

• In matrix form: Ax = y

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
$$m \times n \qquad n \times 1 \qquad m \times 1 \qquad 5$$

Let the ith column of A be a_i , i.e., A=[$a_1 a_2 \dots a_n$], then

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \dots + \mathbf{a}_n \mathbf{x}_n$$

A linear combination of $\{a_1, a_2, ..., a_n\}$

The equation Ax=y has a solution if y is a linear combination of the columns of A.

Example. $2x_1 - x_2 = 0$ and $x_1 + 2x_2 = 4$. Find x_1 and x_2 .

Geometric interpretation:

8

- The solution is the intersection
- For this case, there is a unique intersection: $x=(0.8,1.6)^T$
- In general, there are 3 possibilities: - Unique sol.; inf. number of sol.; and no sol.

• For a system of linear equations:

- When n=3, each equation represents a plane; The solution of Ax=y is the intersection of several planes
- For general n, each equation represents a hyperplane; The solution is the intersection of hyperplanes.

- How to analyze Ax = y systematically?
 - We will examine from the viewpoint of a linear operator A: $\mathbb{R}^n \to \mathbb{R}^m$ (or $\mathbb{C}^n \to \mathbb{C}^m$) All possible linear combination
 - Range of a linear operator A is of the columns of A $\mathcal{R}(A) \equiv \{Ax: x \in \mathbb{R}^n\} = \{y \in \mathbb{R}^m: \exists x \in \mathbb{R}^n \text{ s.t. } y = Ax\}$
 - Is $\mathcal{R}(A)$ a space? If so, it is a subspace of what?

Theorem. $\mathcal{R}(A)$ is a subspace of R^m

Proof: • Clearly it is a subset of R^m.

• Need to show that if $y_1, y_2 \in \mathcal{R}(A)$, then $\alpha_1 y_1 + \alpha_2 y_2 \in \mathcal{R}(A)$ for all $\alpha_1, \alpha_2 \in R$ $- \exists x_1, x_2 \in R^n \text{ s.t. } y_1 = Ax_1, y_2 = Ax_2$ $\alpha_1 y_1 + \alpha_2 y_2 = \alpha_1 Ax_1 + \alpha_2 Ax_2 = A(\alpha_1 x_1 + \alpha_2 x_2)$ $\Rightarrow \alpha_1 y_1 + \alpha_2 y_2 \in \mathcal{R}(A)$, and $\mathcal{R}(A)$ is a subspace ⁹

- What is the dimension of $\mathcal{R}(A)$?
 - Recall that the dim. is the maximum number of LI vectors in $\mathcal{R}(A)$.
- Let $a_1, a_2, \dots a_n$ be the columns of A, i.e.,
 - A= $[a_1 \ a_2 \dots a_n]$. Then
 - $\Re(A)$ is a subspace spanned by a_i 's: $\Re(A) = \{Ax: x \in \mathbb{R}^n\} = \{a_1x_1 + a_2x_2 + \dots + a_nx_n: x \in \mathbb{R}^n\}$
 - The dim.of $\Re(A)$ is the maximum number of a_i 's which are LI, $\leq \min\{m,n\}$
 - It also equals the rank of A : denoted $\rho(A)$
 - If $\rho(A)=m$, then $\Re(A)=R^m$

Example: $A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 2 & 0 \end{bmatrix}$ a₁ a₂ a₃ a₄ • a₃ = a₁+a₂; a₄=2a₂; • If z=a₁x₁+a₂x₂+a₃x₃+a₄x₄, then z= a₁x₁+a₂x₂+(a₁+a₂)x₃+a₂2x₄ = a₁(x₁+x₃)+a₂(x₂+x₃+2x₄)=a₁y₁+a₂y₂ • All z \in R(A) can also be expressed as linear combinations of a₁ and a₂ • R(A)=R([a₁ a₂]), dim.=2

In general, consider C=[A B]; A=[$a_1...a_{n1}$], B=[$b_1...b_{n2}$] Every b_i can be expressed as linear combination of a_j 's if and only if $\Re(C)=\Re(A)$; $\rho(C)=\rho(A)$

Basis for the range space

• Let $a_1, a_2, \dots a_n$ be the columns of A, i.e.,

A= $[a_1 \ a_2 \dots a_n]$. Then

- $\Re(A)$ is a subspace of \mathbb{R}^m . It is spanned by a_i 's: $\Re(A) = \{Ax: x \in \mathbb{R}^n\} = \{a_1x_1 + a_2x_2 + \dots + a_nx_n: x \in \mathbb{R}^n\}$
- If rank(A)=n, then {a₁,a₂,...a_n} are LI, and they form the basis for the range space.
- If rank(A)=n₁<n, {a₁,a₂,...a_n} are LD. We can choose n₁
 columns of A that are LI. They form the basis of the range.

Meaning of the rank:

- rank(A) = the maximal size of all square sub-matrices having none-zero determinant
- rank(A) = the maximal number of vectors in a LI set which is formed by the columns of A.
- rank(A) = the dimension of the range space. ¹²

Example. Find the rank and basis for the range space for the following

$$A_1 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$
, rank $(A_1) = 2$, $\mathcal{R}(A_1) = ?$

Since m=2, $\mathcal{R}(A_1) \subseteq R^2$, Since rank(A₁)=2, the dimension of $\mathcal{R}(A_1)$ is 2. $\Rightarrow \mathcal{R}(A_1) = R^2$. \Rightarrow Basis for the range space:

ſ	1		0	N
ĺ	0	,	1	Ĵ

- 1	-
	- 2
	. 2
-	-

Example. Find the rank and basis for the range space, given

$$A_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} \end{bmatrix}, \quad m = 3, \ n = 2$$

$$\rho(A_{2}) = 2 = n, \quad \text{full column rank}, \ \{a_{1}, a_{2}\} \text{ are LI}$$

Basis for the range space is $\{a_1, a_2\}$.

$$\mathcal{R}(A_2) = \{a_1x_1 + a_2x_2 : x_1, x_2 \in R\}, \iff \text{spanned by } a_1 \text{ and } a_2$$

Example: $A_3 = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, m = n = 3$ $\rho(A_3) = 2,$

 $\{a_1, a_2\}$ are LI; $\{a_1, a_3\}$ are LI; $\{a_2, a_3\}$ are LI.

• Any pair of the columns can be used as a basis for the range space.

$$\mathcal{R}(\mathbf{A}_{3}) = \{a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} : \mathbf{x}_{i} \in \mathbf{R}\} = \{a_{2}\mathbf{x}_{1} + a_{3}\mathbf{x}_{2} : \mathbf{x}_{i} \in \mathbf{R}\}$$
$$= \{a_{1}\mathbf{x}_{1} + a_{3}\mathbf{x}_{2} : \mathbf{x}_{i} \in \mathbf{R}\}$$
What about $\mathbf{A}_{4} = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 4 & 4 \\ 1 & 2 & 3 \\ a_{1} & a_{2} & a_{3} \end{bmatrix}$?

• More facts about the rank of a matrix,

Rank (A) = Number of LI columns

= Number of LI rows $\leq \min(n, m)$

- A is full rank if $\rho(A) = \min(n, m)$

 $- \rho(A) = \rho(A') = \rho(A^*)$

- A square matrix (n×n) has full rank ($\rho(A) = n$) iff $|A| \neq 0$, or equivalently A⁻¹ exists
- Question: Under what condition does y = Ax have a solution for a specific y? for every y in R^m?

Theorem.

y = Ax has a solution iff $y \in \mathcal{R}(A)$, or $\rho(A) = \rho([A : y])$ y = Ax has a solution $\forall y \in \mathbb{R}^m$ iff $\mathcal{R}(A) = \mathbb{R}^m (\rho(A) = m)$

Question: Under what condition will the solution be not unique?

We need to use null space to describe this.

Def. The null space of A, N(A), is defined as

 $N(A) \equiv \{x | x \in R^n \text{ s.t. } Ax = 0\}$

- How can we see that N(A) is a subspace?

17

Theorem. N(A) is a subspace of Rⁿ **Proof:** Need to show that *if* $x_1, x_2 \in N(A)$, *then* $\alpha_1 x_1 + \alpha_2 x_2 \in N(A)$ for all $\alpha_1, \alpha_2 \in R$ $Ax_1 = 0, Ax_2 = 0 \Rightarrow A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 Ax_1 + \alpha_2 Ax_2 = 0$ - Note that N(A) $\subseteq R^n$ (domain) and $\Re(A) \subseteq R^m$ (Codomain) - The dimension of N(A) is called the nullity, notation v(A) **Theorem.** $\rho(A) + v(A) = n$ **Proof.** Will not be covered

Corollary. The number of linearly independent solutions of Ax = 0 is $v(A) (= n - \rho(A))$

$\rho(A) + \nu(A) = n$

Example. Find the nullity and null space for the following

$$A_{1} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix}, \quad N(A_{1}) = \{x | x \in R^{3}, s. t. A_{1}x = 0\}$$

rank $(A_{1}) = 2, \quad v(A_{1}) = n - rank(A_{1}) = 3 - 2 = 1$

Note that a_3 can be expressed as a linear combination of a_1 and a_2

$$a_{3} = 2a_{1} + 3a_{2} \implies 2a_{1} + 3a_{2} - a_{3} = 0$$

$$[a_{1} \ a_{2} \ a_{3}]\begin{bmatrix} 2\\3\\-1 \end{bmatrix} = 0 \implies A\begin{bmatrix} 2\\3\\-1 \end{bmatrix} = 0$$

$$h = \begin{bmatrix} 2\\3\\-1 \end{bmatrix} \text{ is a basis for the null space.} \implies N(A_{1}) = \{k \ h: k \in R\}$$

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$$

Γ.

 a_1 and a_2 are LI, rank(A)=2, n=2, v(A)=v - rank(A) = 0 Dimension of the null space is 0

The only x such that Ax=0 is x=0.

Example: $A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, n = m = 3$ $\operatorname{rank}(A) = 2, \ \nu(A) = 3 - 2 = 1$ $\{a_1, a_2\} \text{ are LI}, \ a_3 = a_1/3 + a_2/2 \implies \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/2 \\ -1 \end{bmatrix} = 0$ $\operatorname{Let} \ h = \begin{bmatrix} 1/3 \\ 1/2 \\ -1 \end{bmatrix} \implies A \ h = 0 \implies N(A) = \{k \ h : k \in R\}$ 20

Example:

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, \quad n = m = 3,$$

$$rank(A) = 2, \quad v(A) = 3 - 2 = 1$$

$$\{a_1, a_2\} \text{ are LI}, \quad a_3 = 0 \quad a_1 + 0 \quad a_2 \implies [a_1 \quad a_2 \quad a_3] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0$$

$$Let \quad h = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \implies N(A_1) = \{k \ h : k \in R\}$$

Practice: find the null space and range space for

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ -1 & 2 & 0 & 1 \end{bmatrix}$$
$$a_1 \quad a_2 \quad a_3 \quad a_4$$

- What is the implication of v(A) > 0 for equ. Ax = y?
 - Suppose that x_s is a solution to Ax = y ($Ax_s = y$), and $x_0 (\neq 0) \in N(A)$. What can be said about $x_s + \alpha x_0$?

Theorem. $x_s + \alpha x_0$ is also a solution to Ax = y

Proof:

$$Ax_s = y, Ax_0 = 0$$
$$A(x_s + \alpha x_0) = Ax_s + \alpha Ax_0 = y + 0 = y$$

If v(A) > 0, then Ax = y has infinite number of solutions if it has one.

Parameterization of all solutions

Theorem: Given m×n matrix A and a m×1 vector y.

- Let x_p be a solution to Ax = y.
- Let v(A)=k.
- Suppose k>0 and the null space is spanned by $\label{eq:n1} \{n_1,n_2,\dots n_k\}$
- > The set of all solutions is given by

 $\{\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \alpha_1 \mathbf{n}_1 + \alpha_2 \mathbf{n}_2 + \ldots + \alpha_k \mathbf{n}_k: \alpha_i \in \mathbb{R}\}$

2	3
4	2

Summary:

- If ρ(A) ≠ ρ([A : y]) (i.e., y ∉ R(A)), then the equations are inconsistent, and there is no solution
- If $\rho(A) = \rho([A : y])$, then \exists at least one solution
 - If ρ(A) = ρ([A : y]) < n (i.e., ν(A) > 0), then there are infinite number of solutions
 - If ρ(A) = ρ([A : y]) = n (i.e., ν(A) = 0), then there is a unique solution
- For an n×n matrix, Ax = y has a unique solution $\forall y \in \mathbb{R}^m$ iff A⁻¹ exists, or $|A| \neq 0$

Example: $Ax = y; A = \begin{bmatrix} 0 & -4 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 0 & 2 & 0 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix}, y = \begin{bmatrix} -4 \\ -8 \\ 0 \end{bmatrix}$

- n=4; $\rho(A)=2$; $\Rightarrow \nu(A)=4-2=2$. Two LI solutions for Ax=0.
- Observe that $y=-4a_2=0a_1-4a_2+0a_3+0a_4=[a_1 a_2 a_3 a_4][0 4 0 0]$
- > A particular solution: $x_p = [0 -4 0 0]$ '
- Note that $a_3 = a_1 + a_2 \Leftrightarrow a_1 + a_2 a_3 + 0a_4 = 0 \Leftrightarrow A[1 1 1 0]' = 0$ $a_4 = 2a_2 \Leftrightarrow 0a_1 + 2a_2 + 0a_3 - a_4 = 0 \Leftrightarrow A[0 2 0 - 1]' = 0$

Two solutions for Ax=0:

$$n_1 = \begin{bmatrix} 1\\ 1\\ -1\\ 0 \end{bmatrix}, \quad n_2 = \begin{bmatrix} 0\\ 2\\ 0\\ -1 \end{bmatrix}$$
• All solutions:

$$\mathbf{x} = \mathbf{x}_{p} + \mathbf{k}_{1}\mathbf{n}_{1} + \mathbf{k}_{2}\mathbf{n}_{2} = \begin{bmatrix} \mathbf{k}_{1} \\ -\mathbf{4} + \mathbf{k}_{1} + 2\mathbf{k}_{2} \\ -\mathbf{k}_{1} \\ -\mathbf{k}_{2} \end{bmatrix}, \mathbf{k}_{1}, \mathbf{k}_{2} \in \mathbf{R}$$

25

Exercise:

$$Ax = y; A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & -1 & 1 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
Find null space,
Solution,
All solutions

Observe that a_1 and a_2 are LI, $a_3=a_2-a_1$, $a_4=a_1+a_2$, $\rho(A)=2$, $\nu(A)=4-2=2$, $\rho[A \ y]=3 > \rho(A)$. \Rightarrow No solution From $a_3=a_2-a_1$, $\Rightarrow a_1-a_2+a_3+0a_4=0$, $[a_1 \ a_2 \ a_3 \ a_4][1 \ -1 \ 1 \ 0]'=0$ From $a_4=a_1+a_2$, $\Rightarrow a_1+a_2+0a_3-a_4=0$, $[a_1 \ a_2 \ a_2 \ a_3][1 \ 1 \ 0 \ -1]'=0$ \blacktriangleright Two solutions for Ax=0 $n_1 = \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix}$, $n_2 = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$

What if y= $[1 \ 3 \ 2]$? Then y= $a_1 + a_4 = [a_1 \ a_2 \ a_3 \ a_4][1 \ 0 \ 0 \ 1]$, Hence a particular solution is $x_p = [1 \ 0 \ 0 \ 1]$?

All solutions:
$$\mathbf{x} = \mathbf{x}_{p} + \mathbf{k}_{1}\mathbf{n}_{1} + \mathbf{k}_{2}\mathbf{n}_{2} = \begin{bmatrix} 1 + \mathbf{k}_{1} + \mathbf{k}_{2} \\ -\mathbf{k}_{1} + \mathbf{k}_{2} \\ \mathbf{k}_{1} \\ 1 - \mathbf{k}_{2} \end{bmatrix}, \quad \mathbf{k}_{1}, \mathbf{k}_{2} \in \mathbf{R}$$

26

Solution for xA=y:

- A: m×n; y: 1×n row vector;
 x: 1×m unknown row vector.
- Notice xA=y ⇔ A^Tx^T=y^T A^T: n×m; y^T: n×1 column vector; x^T: m×1 unknown column vector.
- Transformed into the former systems of equations.

27

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Similarity transformation: Companion form

Review: Let A be a n×n matrix and x the representation of a vector w.r.t the basis $\{e_1, e_2, \dots, e_n\}$, where

$$\mathbf{e}_{i} = \begin{bmatrix} 0 & \cdots & 1 & 0 & \cdots & 0 \end{bmatrix}^{1}$$

$$i^{\text{th}} \text{ element} \qquad \Longrightarrow \begin{bmatrix} e_{1} & e_{2} & \cdots & e_{n} \end{bmatrix} = \mathbf{I}$$

- The linear operator L w.r.t the basis is: $x \rightarrow Ax$
- Let the new basis be $[\hat{e}_1, \hat{e}_2 \dots \hat{e}_n] = [e_1 e_2 \dots e_n]Q = Q$
- > Then the operator w.r.t the new basis is: $z \rightarrow \bar{A} z$

 $\bar{A}=Q^{-1}AQ$ \leftarrow Similarity transformation

Question: How to choose Q so that \overline{A} has a desired form? Which forms are desired?

29

The companion form

$$\overline{\mathbf{A}}_{1} = \begin{bmatrix} 0 & 0 & -a \\ 1 & 0 & -b \\ 0 & 1 & -c \end{bmatrix} \qquad \overline{\mathbf{A}}_{2} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & -\beta_{1} \\ 1 & 0 & \cdots & 0 & 0 & -\beta_{2} \\ 0 & 1 & \cdots & 0 & 0 & -\beta_{3} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -\beta_{n-1} \\ 0 & 0 & \cdots & 0 & 1 & -\beta_{n} \end{bmatrix}$$

What are det \bar{A}_1 , det \bar{A}_2 ?

$$\det \overline{A}_{1} = -a, \ \det \overline{A}_{2} = (-1)^{n} \beta_{1},$$
$$\det(\lambda I - \overline{A}_{1}) = \begin{vmatrix} \lambda & 0 & a \\ -1 & \lambda & b \\ 0 & -1 & \lambda + c \end{vmatrix} = \lambda^{3} + c\lambda^{2} + b\lambda + a$$

 $det(\lambda \ I - \overline{A}_2) = \lambda^n + \beta_n \lambda^{n-1} + \beta_{n-1} \lambda^{n-2} + \dots + \beta_1$

- Clean structures, easy for analysis.
- How to get them?

Transformation to companion form

Example:
$$A = \begin{bmatrix} 3 & 2 & -1 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix}$$
 Let $b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
We have: $Ab = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $A^2b = \begin{bmatrix} -4 \\ 2 \\ -3 \end{bmatrix}$, $A^3b = \begin{bmatrix} -5 \\ 10 \\ -13 \end{bmatrix}$,
It can be verified that $A^3b = 17b - 15Ab + 5A^2b$
Also, b, Ab, A²b are linearly independent. We can choose
 $[\hat{e}_1 \ \hat{e}_2 \ \hat{e}_3] = [b \ Ab \ A^2b] =: Q$
The new rep. for the linear operator is $\overline{A} = Q^{-1}AQ \implies AQ = Q\overline{A}$
Observe that:
 $Ab = [b \ Ab \ A^2b] \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $A^2b = [b \ Ab \ A^2b] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $A^3b = [b \ Ab \ A^2b] \begin{bmatrix} 17 \\ -15 \\ 5 \end{bmatrix}$
 $[Ab \ A^2b \ A^3b] = [b \ Ab \ A^2b] \begin{bmatrix} 0 & 0 & 17 \\ 1 & 0 & -15 \\ 0 & 1 & 5 \end{bmatrix}$ $\overline{AQ} = Q$ \overline{A}

In general: consider $n \times n$ matrix A. Choose b such that b, Ab, A^2b , $\cdots A^{n-1}b$ are linearly independent

Then
$$A^n b = -\beta_1 b - \beta_2 A b - \dots - \beta_n A^{n-1} b$$

If we choose Q = [b Ab A²b ··· Aⁿ⁻¹b],

$$\overline{A} = Q^{-1}AQ = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & -\beta_1 \\ 1 & 0 & \cdots & 0 & 0 & -\beta_2 \\ 0 & 1 & \cdots & 0 & 0 & -\beta_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & -\beta_{n-1} \\ 0 & 0 & \cdots & 0 & 1 & -\beta_n \end{bmatrix}$$

- A and \overline{A} are said similar to each other
- The transformation $A \rightarrow Q^{-1}AQ$ similar transformation

The dual case: consider n×n matrix A. Choose c such that

$$\mathbf{Q} := \begin{bmatrix} \mathbf{c} \\ \mathbf{c}\mathbf{A} \\ \vdots \\ \mathbf{c}\mathbf{A}^{n-1} \end{bmatrix} \text{ is nonsingular, i.e., } \{\mathbf{c}', \mathbf{A}'\mathbf{c}', \dots \mathbf{A}'^{n-1}\mathbf{c}'\} \quad \mathbf{LI}$$

Then $cA^{n} = -\beta_{1}c - \beta_{2}cA - \dots - \beta_{n}cA^{n-1}$ $\overline{A} = QAQ^{-1} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -\beta_{1} & -\beta_{2} & -\beta_{3} & \dots & -\beta_{n-1} & -\beta_{n} \end{bmatrix}$

~	~
3	3

 We next discuss how to transform A into a diagonal matrix. i.e., find a matrix Q such that

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

✤ Why this form?

- Stability of the system $\dot{x} = Ax$ is reflected by these diagonal elements λ_i 's
- $|A| = \lambda_1 \lambda_2 \dots \lambda_n$
- $|s I A| = (s \lambda_1)(s \lambda_2)...(s \lambda_n)$
- > These λ_i 's are called eigenvalues of A

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

35

Eigenvalues and Eigenvectors

Definition. Let A be a linear operator from C^n to C^n .

- A scalar λ is called an eigenvalue of A if \exists a nonzero $x \in C^n$, such that $Ax = \lambda x \Leftrightarrow (\lambda I A)x = 0$.
- $(\lambda I A)x = 0$ has a non-zero sol. iff $\Delta(\lambda) = |\lambda I A| = 0$ ~ Characteristic polynomial of A with degree n
- $-\lambda$ must be a root of $\Delta(\lambda)$.
- A has n eigenvalues, not necessarily distinct, and some of them could be complex ~ So we consider Cⁿ instead of Rⁿ.
- -x is the eigenvector associated with λ . What can be said?

 $- (\lambda I - A)x = 0 \iff x \in N(\lambda I - A)$

- The set of eigenvalues of A, or, the set of the roots of $\Delta(\lambda)$, is called the spectrum and denoted eig(A)

Example

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}, \text{ find } \lambda_1, \lambda_2, x_1, \text{ and } x_2$$
$$\Delta(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 3 & \lambda + 4 \end{vmatrix} = \lambda^2 + 4\lambda + 3$$
$$= (\lambda + 1) (\lambda + 3) \implies \lambda_1 = -1, \lambda_2 = -3$$
$$(\lambda_1 I - A) x_1 = 0 \qquad \begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix} x_1 = 0, \qquad x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$(\lambda_2 I - A) x_2 = 0, \qquad \begin{bmatrix} -3 & -1 \\ 3 & 1 \end{bmatrix} x_2 = 0, \qquad x_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

- We will see later that
 - Eigenvalues are associated with system stability
 - Eigenvectors form a convenient set of basis
 - Will examine two cases of eigenvalues and eigenvectors
 - Case 1: All eigenvalues are distinct
 - Case 2: Eigenvalues with multiplicity > 1

Case 1: All Eigenvalues are Distinct

Consider first the case where all the eigenvalues of A are distinct, i.e., Δ(λ) = (λ-λ₁)(λ-λ₂)... (λ-λ_n),

 $\lambda_i \neq \lambda_j$ for $i \neq j$.

Let v_i be the associated eigenvector for λ_i

- What can we say about $\{v_1, v_2, .., v_n\}$?

Theorem. $\{v_1, v_2, ..., v_n\}$ are linearly independent How to proof this theorem?

Proof. By contradiction

Suppose that they are linearly dependent, then assume without loss of generality that

39

$$\begin{split} \Sigma_{i} \alpha_{i} v_{i} &= 0. \quad \text{At least one } \alpha_{i} \text{ nonzero. Assume } \alpha_{1} \neq 0 \\ (A - \lambda_{2}I)(\Sigma_{i}\alpha_{i}v_{i}) &= 0 \\ &= \Sigma_{i} \alpha_{i}(A - \lambda_{2}I)v_{i} = \Sigma_{i} \alpha_{i}(Av_{i} - \lambda_{2}v_{i}) = \Sigma_{i} \alpha_{i}(\lambda_{i}v_{i} - \lambda_{2}v_{i}) \\ &= \Sigma_{i} \alpha_{i}(\lambda_{i} - \lambda_{2})v_{i} \\ &= \Sigma_{i\neq2} \alpha_{i}(\lambda_{i} - \lambda_{2})v_{i} \sim \text{The second term drops out} \\ (A - \lambda_{3}I)[\Sigma_{i\neq2} \alpha_{i}(\lambda_{i} - \lambda_{2})v_{i}] &= 0 \\ &= \Sigma_{i\neq2} \alpha_{i}(\lambda_{i} - \lambda_{2})(A - \lambda_{3}I)v_{i} \\ &= \Sigma_{i\neq2} \alpha_{i}(\lambda_{i} - \lambda_{2})(A - \lambda_{3}I)v_{i} \\ &= \Sigma_{i\neq2} \alpha_{i}(\lambda_{i} - \lambda_{2})(\lambda_{i} - \lambda_{3})v_{i} \\ &\sim \text{The third term drops out} \\ \text{Finally, } \alpha_{1}(\lambda_{1} - \lambda_{2})(\lambda_{1} - \lambda_{3}) \dots (\lambda_{1} - \lambda_{n})v_{1} = 0 \\ \text{Since } \lambda_{i} \neq \lambda_{j} \text{ for } i \neq j, \text{ the above implies } v_{1} = 0 \\ \sim \text{Contradiction} \Rightarrow \{v_{1}, v_{2}, ..., v_{n}\} \text{ are LI} \end{split}$$

• Let $Q=[v_1 \ v_2 \ \dots \ v_n]$, choose the new basis as

$$[\hat{e}_1, \hat{e}_2 \dots \hat{e}_n] = [e_1 \ e_2 \ \dots e_n] Q = Q$$

• What is the new rep. of A in terms of the new basis? What is $\overline{A}=Q^{-1}AQ$, or an \overline{A} such that $AQ = Q\overline{A}$?

Notice that
$$Av_i = \lambda_i v_i$$
 for all 1
 $AQ = A[v_1 \ v_2 \ \cdots \ v_n] = [Av_1 \ Av_2 \ \cdots \ Av_n] = [\lambda_i v_1 \ \lambda_2 v_2 \ \cdots \ \lambda_n v_n]$

$$AQ = \begin{bmatrix} v_1 \ v_2 \ \cdots \ v_n \end{bmatrix} \begin{bmatrix} \lambda_1 \ 0 \ \cdots \ 0 \\ 0 \ \lambda_2 \ \cdots \ 0 \\ \vdots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ \lambda_n \end{bmatrix} = Q \begin{bmatrix} \lambda_1 \ 0 \ \cdots \ 0 \\ 0 \ \lambda_2 \ \cdots \ 0 \\ \vdots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ \lambda_n \end{bmatrix}$$

$$AQ = \begin{bmatrix} v_1 \ v_2 \ \cdots \ v_n \end{bmatrix} \begin{bmatrix} \lambda_1 \ 0 \ \cdots \ 0 \\ 0 \ \lambda_2 \ \cdots \ 0 \\ \vdots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ \lambda_n \end{bmatrix} = Q \begin{bmatrix} \lambda_1 \ 0 \ \cdots \ 0 \\ 0 \ \lambda_2 \ \cdots \ 0 \\ \vdots \ \vdots \ \vdots \\ 0 \ 0 \ \cdots \ \lambda_n \end{bmatrix}$$

Example (Continued)

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}, \text{ find } \overline{A}$$

$$\Rightarrow \lambda_1 = -1, \lambda_2 = -3, \quad v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$- \text{ First by inspection: } \overline{A} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

$$- \text{ Then by similar transformation:}$$

$$Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix}, \quad Q^{-1} = \frac{-1}{2} \begin{bmatrix} -3 & -1 \\ 1 & 1 \end{bmatrix},$$

$$\overline{A} = Q^{-1}AQ = \frac{-1}{2} \begin{bmatrix} -3 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$$

$$\checkmark \textcircled{C}_{42}$$

Another way to understand the Example

 $A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}, \text{ Find a diagonal matrix } \bar{A} \text{ and a nonsingular matrix} \\ Q \text{ such that } \bar{A} = Q^{-1}AQ$ $\lambda_1 = -3; \lambda_2 = -1, \quad v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\text{Let } Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix} \text{ Must have } \bar{A} = \begin{bmatrix} -3 & 0 \\ 0 & -1 \end{bmatrix}$ $\text{To verify, check } AQ \stackrel{?}{=} Q\bar{A}$ $AQ = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 9 & 1 \end{bmatrix}$ $Q\bar{A} = \begin{bmatrix} 1 & 1 \\ -3 & -1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 9 & 1 \end{bmatrix}$ $\text{Indeed, } AQ = Q\bar{A}, \Rightarrow Q^{-1}AQ = \bar{A}$

43

Similarity transformation for a LTI system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$
 (*)

Let the new state be $z = Q^{-1}x$. Then x = Qz and $\dot{z} = Q^{-1}\dot{x} = Q^{-1}(Ax + Bu) = Q^{-1}AQz + Q^{-1}Bu$ y = Cx + Du = CQz + Du \overline{C} \overline{D} \overline{A} \overline{B} $\dot{z} = \overline{A}z + \overline{B}u;$ (**) $y = \overline{C}z + \overline{D}u$ If we pick Q=[$v_1 \ v_2 \dots v_n$], then \overline{A} has a diagonal form, making the analysis easy.

The similar transformation does not change the input-output relationship

Example. $\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{u}, \quad \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$

Find the matrix Q:

$$\Delta(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 2 & \lambda + 3 \end{vmatrix} = \lambda^2 + 3\lambda + 2$$

= $(\lambda + 1)(\lambda + 2) \implies \lambda_1 = -1, \lambda_2 = -2$
 $(\lambda_1 I - A)v_1 = 0, \qquad \begin{bmatrix} -1 & -1 \\ 2 & 2 \end{bmatrix} v_1 = 0, \qquad v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $(\lambda_2 I - A)v_2 = 0, \qquad \begin{bmatrix} -2 & -1 \\ 2 & 1 \end{bmatrix} v_2 = 0, \qquad v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
 $Q = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}, \qquad Q^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$

- What is the system dynamics in terms of
$$z=Q^{-1}x$$
?
 $z \equiv Q^{-1}x, \quad x = Qz$
 $\dot{z} = Q^{-1}\dot{x} = Q^{-1}(Ax + Bu)$
 $= Q^{-1}AQz + Q^{-1}Bu = \overline{A}z + \overline{B}u$
 $\overline{A} \equiv Q^{-1}AQ = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}, \quad \overline{B} \equiv Q^{-1}B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$
 $y = Cx = CQz = \overline{C}z, \quad \overline{C} = CQ = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$
 $\dot{z} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} z + \begin{bmatrix} 5 \\ -3 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} z$

- Two decoupled modes and can be easily analyzed

– The system is stable since $\text{Re}(\lambda_i) < 0 ~\forall~i$

Theorem. All similar matrices have the same eigenvalues

– How to prove this?

$$\begin{aligned} |\lambda I - \overline{A}| &= |\lambda I - Q^{-1}AQ| \\ &= |\lambda Q^{-1}Q - Q^{-1}AQ| \\ &= |Q^{-1}(\lambda I - A)Q| \\ &= |Q^{-1}| \cdot |(\lambda I - A)| \cdot |Q| \\ &= |\lambda I - A| \end{aligned}$$

 The two matrices have the same characteristic polynomial, and therefore have the same set of eigenvalues

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form
- Generalized eigenvectors, Jordan form

Case 2: Eigenvalues with Multiplicity > 1

- What may happen when the multiplicity of an eigenvalue is greater than 1?
 - The matrix may not be diagonalizable

Example.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

$$\Delta(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 1 & 0 & \lambda \end{vmatrix} = \lambda (\lambda - 1)^{2}$$

$$\Rightarrow \lambda_{1} = 0, \lambda_{2} = \lambda_{3} = 1$$

$$(\lambda_{1}I - A)v_{1} = 0, \quad \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & 0 \end{bmatrix} v_{1} = 0, \quad v_{1} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
49

$$(\lambda_2 I - A)v_2 = 0, \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} v_2 = 0, \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- What is v₃? Recall $\lambda_2 = \lambda_3$.
- v₃ = v₂
- {v₁, v₂, v₃} are not LI, and cannot be used as a basis
- Q formed by them is not invertible, and there is no
similar transformation to diagonalize A.
- Have to think something different for v₂ and v₃
- Let us find v₃ such that
(A - $\lambda_2 I$)²v₃ = 0, (A - $\lambda_2 I$)v₃ $\neq 0$ ~ Different from the
previous v₂
- Then {v₁, v₂, v₃} are LI.
- If we take Q=[v₁ v₂ v₃], what is \bar{A} =Q⁻¹AQ?

– We need to find \overline{A} such that AQ=Q \overline{A} . Observe that

$$Av_{1} = \lambda_{1}v_{1} = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} \begin{bmatrix} \lambda_{1} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$Av_{2} = \lambda_{2}v_{2} = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} \begin{bmatrix} 0 \\ \lambda_{2} \\ 0 \end{bmatrix}$$
From $(A - \lambda_{2}I)v_{2} = (A - \lambda_{2}I)^{2}v_{3} = 0$
We have $(A - \lambda_{2}I)v_{3} = v_{2}$

$$Av_{3} = v_{2} + \lambda_{2}v_{3} = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \lambda_{2} \end{bmatrix}$$

$$A[v_{1} v_{2} v_{3}] = \begin{bmatrix} v_{1} v_{2} v_{3} \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2} \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
Not diagonal, but close

Today: Linear algebra (continued)

- Linear algebraic equations, solutions
- Parameterization of all solutions
- Similarity transformation: companion form,
- Eigenvalues and eigenvectors, diagonal form

Next Time: More on linear algebra §3.5,3.6,3.8 State space solutions §4.1,4.2

- Generalized eigenvectors, Jordan form
- Some useful results, matrix norms
- Functions of a square matrix

Homework Set #5:

- 1. Find
 - 1) nullities,
 - 2) bases for the range spaces and
 - 3) bases for the null spaces

for the following matrices

$$A_{1} = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 2 & 0 & 1 & -1 \\ -1 & 1 & -3 & 0 \end{bmatrix},$$
$$A_{4} = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 1 & 0 \end{bmatrix}, \quad A_{5} = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{bmatrix}$$

2. Find the general solutions for the following equations

c $\begin{bmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix} r \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ d $\begin{bmatrix} 1 & 3 & 0 & -1 \\ 2 & 1 & 1 & 1 \end{bmatrix} r \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are the same as those in Problem 1.	a).[1	0 2] $x = 1$, b). $\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$,	Note: these matrices
$\begin{bmatrix} 2 & 1 & 1 \\ -2 & 1 & 0 \end{bmatrix}^{x} \begin{bmatrix} 2 \\ 3 \end{bmatrix}^{x} \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}^{x} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$c).\begin{bmatrix} -2\\0\\-2\end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, d) \begin{bmatrix} 1 & 3 & 0 & -1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	are the same as those in Problem 1.

3. Compute the eigenvalues, eigenvectors and diagonal forms for these matrices

	0	0	1			6	-2	-3
$A_2 =$	-1	3	1	,	$A_3 =$	4	0	-3
	2	0	3			8	-2	-5_

4. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 4 \\ 1 & 0 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Form Q=[A²b Ab b]. Compute M=Q⁻¹A Q. Observe how M is related to the polynomial det(λ I-A).