16.513 Control Systems
Lecture Note #5

Last time:

— The base of a linear space: Basis

Representations of a vector in terms of a basis
Relationship among representations for different bases
Generalization of the idea of length: Norms

A sense of orientation: Inner Product

The concept of perpendicularity: Orthogonality
Gram-Schmidt Process to obtain orthonormal vectors
Linear Operators and Representations

Representation of vectors w.r.t. different basis

= What is a basis for R®? What can be used as a basis?

— Aset of vectors {e,,e,,...,e,} which can be used to
represent every X € R" uniquely as:
X =a,e,;tae,t...tae,
Every set of n LI vectors can be used as a basis.

Givenanold basis (e, e, .. e,);
— Let the new basis be:

(E, €, .. En)z(e, €, . €,
— Equivalently,

e, e, .. e,)=( & .. &)Q"
— For x such that

x=(e, e, .. en):
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— We have -
x=(c & .. g )Q'p :



= How to obtain an orthonormalized basis?
— Gram-Schmidt process

= Linear operators and matrix representations
— A linear operator is completely determined
by how the basis are mapped
— A matrix defines a linear operator
— Any linear operator can be defined by a matrix
— Matrix rep. under different basis

Consider the map
x—y:[ee..ela —[ee,..c|]Aa
Let the new basisbe [é,¢,...6 ]=[e;e,..¢,] Q

» The new rep. for the operator is A= Q'AQ

Today: More discussions on linear algebra
(§3.3-3.5,3.8)

= Linear algebraic equations, solutions

= Parameterization of all solutions

* Similarity transformation: companion form,
= FEigenvalues and eigenvectors, diagonal form
= Generalized eigenvectors, Jordan form



Systems of Linear Algebraic Equations

= A system of linear equations:
ap Xy tapXy T tapX, Ty, n variables,
X, taX, t..+ta, X, =y, X1, X, -.05X, 10 satisfy
m equations

RS + AmpXo Tt AmnXn = ¥Ym
where a;;, y;€ R or C are given, x;’s are to be solved.

* In matrix form: Ax =y

a;; ap Ay X Yi

A=|3n an azzn . x= X:2 , y= y:z

Anp App ot Apy Xn Ym
mxn nxl mx1 5

Let the ith column of A be a,, i.e., A=[a, a, ... a_], then

X
X
Ax:[a1 a, - an] 2 [=aXx, +aX, +...+a.x,

X

n

A linear combination of {a,, a,, ..., a,}

The equation Ax=y has a solution if y is a linear
combination of the columns of A.



Example. 2x, - x, =0 and x, + 2x, =4. Find x, and x,.

Geometric interpretation: X,
* Each equation represents +2x,=4 2x,-X,=0

a straight line in the plane.
» The solution is the intersection | > %
* For this case, there is a unique

intersection: x=(0.8,1.6)T

* In general, there are 3 possibilities:

— Unique sol.; inf. number of sol.; and no sol.

For a system of linear equations:
ap Xy tapXy Tt apX, Ty,
aX1 T apXy T T3y X, T Y

amlxl + am2X2 .t aman - Ym

When n=3, each equation represents a plane; The
solution of Ax=y is the intersection of several planes

For general n, each equation represents a hyperplane;
The solution is the intersection of hyperplanes.



* How to analyze Ax =y systematically?

— We will examine from the viewpoint of a linear operator
A: R > R™ (or C*—(Cm) L .
All possible linear combination

— Range of a linear operator A iS  of the columns of A
R(A) = {Ax: xeR"}={y€ R™: 3xeR"s.t. y=Ax}
— Is ®(A) a space? If so, it is a subspace of what?
Theorem. ®(A) is a subspace of R™
Proof: = Clearly it is a subset of R™,
= Need to show that if y,, y, € R(A),
then oy, + a,y, € ®R(A) forall o, o, € R
— 31X, X, € R?sit y, = Ax, y, = AX,
oY)+ 0Ly, = 0 AX; + apAX, = Aoy X + 0,X))
= oy, T oY, € R(A), and R(A) 1s a subspace

9

» What is the dimension of ®R(A) ?

— Recall that the dim. 1s the maximum number of LI
vectors in R(A).

* Leta,,a,,...a,be the columns of A, i.e.,

A=[a, a, ... a,]. Then

— ®R(A) is a subspace spanned by a,’s:
R(A)={Ax: xeR"}={a;x,Ta,x,*...Ta,x,: xeR"}

— The dim.of ®(A) is the maximum number of
a;’s which are LI, <min{m,n}

— It also equals the rank of A : denoted p(A)

— If p(A)=m, then ®R(A)=R™



% (2) g g * How about a4, a, a3?

Example: A:{O 11 2} * a,, a, are independent;
a, a, a, a, * How about aq, a,, a,?
* a;=a,ta,; a,=2a,;
» If z=a x,+ta,x,tasx;+a,x,, then
7= a;x,ta,X,H(a,+a,)x;+ta,2x,
= a;(X Xy ay (X txat2x,)=ay Hayy,
» All ze R(A) can also be expressed as linear
combinations of a, and a,

> RA=R(a, a,]), dim=2

In general, consider C=[A B]; A=[a,...a], B=[b,...b,]
Every b; can be expressed as linear combination of a;s
if and only if R(C)=R(A); p(C)=p(A) !

Basis for the range space

* Leta,,a,,...a, be the columns of A, i.e.,

A=[a, a,...a,]. Then
— ®R(A) is a subspace of R™. It is spanned by a;’s:
R(A)={Ax: xeR"}={ax,Ta,x,+...+a,x,: xeR"}

» If rank(A)=n, then {a,,a,,...a, } are LI, and they form the
basis for the range space.

* If rank(A)=n;<n, {a,,a,,...a, } are LD. We can choose n,
columns of A that are LI. They form the basis of the range.

Meaning of the rank:

rank(A) = the maximal size of all square sub-matrices having
none-zero determinant

rank(A) = the maximal number of vectors in a LI set which is
formed by the columns of A.

rank(A) = the dimension of the range space. 12



Example. Find the rank and basis for the range space for
the following

10 2
A= L) ) 3}, rank(A,) = 2, R(A,)=?
Since m=2, R(A,) < R?,

Since rank(A,)=2, the dimension of R (A,) is 2.
= R(A,) =R2.

= Basis for the range space:

Lof)

Example. Find the rank and basis for the range space,
given

0
A, =0 1|=[a a] m=3 n=2
3

[\S I T

p(A,)=2=n, fullcolumnrank, {a a,} areLlI

Basis for the range space is {a,, a,}.

R(A2)={a1xl +a,X,: X;,X, eR}, < spanned by a, and a,



[a1 a, a3], m=n=3

S b~ O
S N =
Il

3
Example: A,=|0
0

P(As): 2,
{a;,a,} are LI; {aja;} areLI; {a,,a;} areLL
* Any pair of the columns can be used as a basis
for the range space.
Q{(A3)= {alx1 +a,X,: X, € R}= {ale +a5X,: X; € R}
= {alx1 +a5X,: X; € R}
3 0 3
What about A, =|0 4 4|7?
2 3

1
a

15

a, a

N

» More facts about the rank of a matrix ,
Rank (A) = Number of LI columns
= Number of LI rows < min (n, m)
— A is full rank if p(A) = min (n, m)
— p(A)=p(A)=p(A")
— A square matrix (nxn) has full rank (p(A) =n) iff |A| #
0, or equivalently A-! exists

* Question: Under what condition does y = Ax have a
solution for a specific y? for every y in R™?



Theorem.
y = Ax has a solution iff y € ®(A), or p(A) = p([A : ¥])
y = Ax has a solution V' y € R™ iff ® A) = R™ (p(A) =m)

Question: Under what condition will the solution be
not unique?
» We need to use null space to describe this.

Def. The null space of A, N(A), is defined as
N(A) = {x| x € R¥s.t. Ax =0}
— How can we see that N(A) is a subspace?

Theorem. N(A) is a subspace of R®
Proof: Need to show that if x,, x, € N(A), then
o X + X, e N(A) forall o, o, eR
Ax; =0, Ax, =0 = A(a,x; + 0,X,) = 0, AX; + a,Ax, =0
— Note that N(A) < R"(domain) and
R(A) < R™ (Codomain)

— The dimension of N(A) is called the nullity, notation v(A)
Theorem. p(A) + v(A)=n
Proof. Will not be covered

Corollary. The number of linearly independent
solutions of Ax =0 is V(A) (=n - p(A))



P(A) T v(A)=n
Example. Find the nullity and null space for the following

1 0 2
A] :|:0 1 3:| :[31 a, 33], N(Al) = {xlx c RS,S. t-Alx — 0}

rank(A,)=2, v(A)=n-rank(A,)=3-2=1
Note that a, can be expressed as a linear combination of a, and a,

a;=2a,+3a, m 2a, +3a,-a,=0

[a, a, a,] 3 |=0 = A|3|=0
-1 -1

2
h:{3} is a basis for the null space. = N(Al):{khi kER}

-1
19

0
Example: A= 1|=[a, a,]
3

|\ el

a, and a, are LI, rank(A)=2, n=2, v(A)=v —rank(A)=0
Dimension of the null space is 0

The only x such that Ax=0 is x=0.

301
Example: A=|0 4 2 :[al a, a3], n=m=3
00 0
rank(A)=2, v(A)=3-2=1 13
{aja,} are LI, a;=a,/3+a,2 = [ a %{1/2}0
-1

1/3
Let h= {1/2} m Ah-0 = N(A)={kh: keR}

10



Example:

30
A=0 4 =[a1 a, a3], n=m=3,
I 2

S O O

rank(A)=2, v(A)=3-2=1

{a,a,} are LI, a;=0a;+0a, =) [a, a, a,]0|=0

Leth=m = N(A)={kh: keR}

1

Practice: find the null space and range space for
1 0 11
A=
[—1 2 0 1}

21

» What is the implication of v(A) > 0 for equ. Ax =y?
— Suppose that x, is a solution to Ax =y (Ax=Yy),
and x, (# 0) € N(A). What can be said about x, + ax,?
Theorem. x, + ax, is also a solution to Ax =y
Proof:
Ax,=y,Ax,=0
Ax, + axy) = Ax, T 0AXx, =y + 0=y

» If v(A) >0, then Ax =y has infinite number of
solutions if it has one.

22
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Parameterization of all solutions

Theorem: Given mxn matrix A and a mx1 vector y.
— Let x, be a solution to Ax =Y.
— Let v(A)=k.
— Suppose k>0 and the null space is spanned by
{n,n,,...n, }
» The set of all solutions is given by
{x =x,tonta,nt+...toyn: o;€R}

23

Summary:

—If p(A) #p([A : y]) (1.e., y € R(A)), then the
equations are inconsistent, and there is no
solution

—If p(A) = p([A : y]), then 3 at least one solution

* I[f p(A) =p([A : y]) <n (i.e., V(A) > 0), then
there are infinite number of solutions
* I[f p(A) =p([A : y]) =n (i.e., V(A) = 0), then
there is a unique solution
— For an nxn matrix, Ax =y has a unique solution
V y eR™iff Al exists, or |A| # 0

24
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Example: 0112 -4
Ax=y; A=|1 2 3 4|, y=|-8
2020 0
a, a, a; a,
* n=4; p(A)=2; = v(A)=4-2=2. Two LI solutions for Ax=0.
* Observe that y=-4a,=0a,-4a,+0a,+0a,=[a, a, a5 a,][0 -4 0 0]’

» A particular solution: x,=[0 -4 00]
* Note that a;=a,+a, < a,ta,-a;+0a,=0 < A[ 1 1 -1 0]’=0
a,=2a, < 0a,+2a,+0a;-a,=0 < A[02 0 -1]’=0
» Two solutions for Ax=0: 1
st

-1/

0
2
0
0 -

—_

* All solutions:

x=x,+kn, +k,n, =

25

Exercise: 01 11 1| Find null space,
AX=y; A:[% (1) 01 %’ y:{ Solution,

a, a, a; a,

All solutions

Observe that a; and a, are LI, a;=a,— a,, a,=a,*a,,

pP(A)=2, v(A)=4-2=2, p[A y]=3 > p(A). = No solution
From a;=a,-a,, = a,;-a,+a;+0a,=0, [a, a, a; a,][1-110]’=0
From a,=a,+a,, = a,+a,*+0a;-a,=0, [a, a, a, a;][1 1 0 -1]"=0

1 1
-1 |1
1] ™% o
0 -1

What if y=[1 3 2]’? Then y=a,+a,=[a, a, a; a,][1 00 1],
Hence a particular solution is x,=[1 0 0 1]’
1+k, +k,

-k , k,k,eR
kl

1-k, 26

» Two solutions for Ax=0
n, =

All solutions:  x=x_ +kn, +k,n, =

13



Solution for xA=y:
* A: mxn; y: 1xn row vector;
x: 1xm unknown row vector.
* Notice xA=y < Alx'=yT
AT nxm; y': nx1 column vector;
x': mx1 unknown column vector.
Transformed into the former systems of equations.

27

Today: Linear algebra (continued)

= Linear algebraic equations, solutions

= Parameterization of all solutions

» Similarity transformation: companion form
= Eigenvalues and eigenvectors, diagonal form
= Generalized eigenvectors, Jordan form

28

14



Similarity transformation: Companion form

Review: Let A be a nxn matrix and x the representation

of a vector w.r.t the basis {e,,e,,...,e,}, where
e.=[0--1 0---0]"

-th
1 element

=) [€) € ... ] =1
* The linear operator L w.r.t the basis is: x— Ax
* Let the new basis be [é1,é; ...é,] =[e; e; ..,]Q=Q

> Then the operator w.r.t the new basis is: z —A z

A=Q'AQ <= Similarity transformation

Question: How to choose Q so that A has a desired

form? Which forms are desired?
29

The companion form

10 - 0 0%—[3'
o 0 0 —-a PR
Al{l 0 —b} I
0 1 -c 00 « 10 —p,,
0 0 01 -B,
What are detA |, detA,?
detA, =—a, detA, =(-1)"B,,
_ A 0 a
dethI-A)=[-1 L b |[=A+ch’+br+a
0 -1 A+c

deth I—A,)=A" +B A" +B. A 2 +---+B,

= Clean structures, easy for analysis.
= How to get them? 20

15



Transformation to companion form
3 2 -1

0
Example: A:{_z 1 O:I Let b:{O}
4 3 1 1

We have: Ap-= [_01] ,A%b= [_24} ,A% = { IOS ,

1 -3 -13
It can be verified that A°b=17b—-15Ab+5A%b
Also, b, Ab, A?b are linearly independent. We can choose

[é; &, é3]=[b Ab A%b] =:Q

The new rep. for the linear operator is A=Q'AQ = AQ= QK‘
Observe that:

}, A

0

0 17
Ab=[b Ab AZb]{l b =[b Ab AZb]M, A’b=[b Ab AZb]{—w],
0 1 5

AbAsz3b—bAbA2b(1) 8 1175 0 0 17
[ 1=l ]0 1__5 ‘A:{(l) (1) _515l
AQ = Q A

—

In general: consider nxn matrix A. Choose b such that
b, Ab, A’b,---A™'b are linearly independent

Then A"b=—-B,b—p,Ab—---—B.A"'b

If we choose Q=[b AbA’b--- A"'b],

0 0 - 0 0 -B, |
1 0 -0 0 -p,
A=Qlag=Y ;0D Th
00 - 10 -,
00 - 01 -B, |

= A and A are said similar to each other
= The transformation A — Q~'AQ similar transformatien

16



The dual case: consider nxn matrix A. Choose ¢ such that

c
Q= Cé is nonsingular, i.e., {c',A'c',..A™"¢c'} LI
CAn_l

Then cA" =—B,c—B,cA—--—B cA""

0 1 0 0 0
0 0 0 0
A — S U e B :
A=QAQ = o o ¢ 10
0 0O 0 - 0o 1
_Bl _Bz _B3 Bnl _Bn

33

= We next discuss how to transform A into a diagonal
matrix. i.e., find a matrix Q such that

A 0 0 0

) 0 & 0 0
AQ= 2

QA= 5

0 0 0 A,

% Why this form?

« Stability of the system x = Ax
1s reflected by these diagonal elements A.’s

o |Al =M, A,
c IsI=Al=(-A)E—L1y)... (8N
» These A;’s are called eigenvalues of A “

17



Today: Linear algebra (continued)

= Linear algebraic equations, solutions

= Parameterization of all solutions

* Similarity transformation: companion form,
» Eigenvalues and eigenvectors, diagonal form
= Generalized eigenvectors, Jordan form

35

Eigenvalues and Eigenvectors

Definition. Let A be a linear operator from C" to C".
— A scalar A is called an eigenvalue of A if 3 a nonzero
x € C" such that Ax = Ax <& (M-A)x = 0.
— (Al - A)x =0 has a non-zero sol. iff A(L) = [Al - A|=0
~ Characteristic polynomial of A with degree n
— A must be a root of A(L).

— A has n eigenvalues, not necessarily distinct, and some of
them could be complex ~ So we consider C" instead of R™.

— x 1s the eigenvector associated with A. What can be said?
—(AM[-A)x=0 & xe N(AL-A)
— The set of eigenvalues of A, or, the set of the roots

of A(L), is called the spectrum and denoted eig(A)

36

18



Example

A -1

_ 92
3 ﬂ,+4_’1 +44+3

A(2)=|21 - A=

=(A+1)(A+3) =i =-1LA,=-3

-1 -1
(klI—A)Xl =0 j|x1 = O’ X1 :(

(-3 -1 1
(7\.21—A)X2 =0, :|X2 ZO, X2 Z( j

= We will see later that

37

— Eigenvalues are associated with system stability

— Eigenvectors form a convenient set of basis

— Will examine two cases of eigenvalues and

eigenvectors
 Case 1: All eigenvalues are distinct

* Case 2: Eigenvalues with multiplicity > 1

38

19



Case 1: All Eigenvalues are Distinct

= Consider first the case where all the eigenvalues of A
are distinct, i.e., A(A) = (A—A))(A-L,). . . (A1),
A # A fori=].
Let v, be the associated eigenvector for A,
— What can we say about {v,, v,, .., v }?
Theorem. {v,, v,, .., v,} are linearly independent
How to proof this theorem?
Proof. By contradiction
Suppose that they are linearly dependent, then assume
without loss of generality that

39

2.o,v; = 0. At least one o, nonzero. Assume o, # 0

(A - ,D(E04v) =0
= Zio4(A - LDv; = Ziou(Av; - Lv)= Ziay (A - Avy)
= Zioy(A; - L)V,
= 2. ,a(A; - A,)v, ~ The second term drops out

(A - D204 - A)vi] =0

= Zin0i(A - M)A - A1),

= 2 0i(h - M)A - Ay,

= Zin304(A - A (A - Aa)V;

~ The third term drops out
Finally, o,,(A; - 2)(A; - A3) .. (A -A)v, =0
Since A; # A, for i # j, the above implies v, =0
~ Contradiction = {v, v,, .., v, } are LI

40

20



= Let Q=[v, v, ... v,], choose the new basis as
[é1,6; ...éy] =[e1 e ...ey]Q=Q
= What is the new rep. of A in terms of the new basis?
What is A=Q!'AQ , oran A such that AQ = QA?
Notice that Av;=A,v; forall i
AQ=Av, v, - v ]=[Av Ay, - Av]=[Av, Ay, - AV,]

A0
AQ_[VI A Vn] 0 b
0 0

Example (Continued)

0 1 -
A{_3 _4} find A

=k =-Liy=-3, v, = (—llj v, = (_13)

. . . _ |-1 0
— First by inspection: A = { 0 3}

— Then by similar transformation:

- 1o Lo-1-3 -l
Q=1[v Vz]—{_l _3} Q —2[1 1}

A=Q'AQ- _21{_13 _11} {_03 _14} {_1 I —13} ) [_01 —03}
vO,

21



Another way to understand the Example

Ao 0 1 Find a diagonal matrix A and a nonsingular matrix
“|=3 —4[ Q suchthatA = Q '4Q

M==31=-1 v = [_13]’ V2 = [—11]
LetQ = [v, vy] = [_13 _11] Must have A = [_03 _01]
To verify, check AQ 2 QA

=% LY M=[F Y

QA = [—13 —11] [_03 —01] - [_93 _11]
Indeed, AQ = QA,> Q" 1AQ = A

43

Similarity transformation for a LTI system:

X =Ax+Bu (%)
y=Cx+Du

Let the new state be z= Q!x. Then x = Qz and
z=Q'% =Q'(Ax+Bu) =[Q'AQz+Q 'Bu
y:Cx+Du:@]z+@u x B

B C D
zZ= 52 + Eu; (%)
y=Cz+Du

If we pick Q=[v; v, ... v,], then A has a diagonal
form, making the analysis easy.

The similar transformation does not change the
input-output relationship 44

22



[0 1 2 ~
Example. x{_z _3}X+[Ju, y=[1 0]

Find the matrix Q:

A -1

_ 12
5 /1+3_/1 +34A+2

A =21 —A|=‘

= +1)(A+2) =2 =-1Lr=-2

(AI-A)v; =0, [_1 —1}1:0, vlz(lJ

2 2

(AyI—A)vy =0, {_2 —1}2:0’ vzz(lj

2 1

R

45

— What is the system dynamics in terms of z=Q-'x?
zZ= Qflx, x=Qz
7=Q'x =Q '(Ax+Bu)
=Q'AQz+Q 'Bu=Az+Bu

a=anat[, "] B ]
y=Cx=CQz=Cz, [C=cq-I 0]{—11 _12}2[1 1
z= [_01 _02}2 + [_%}u, y=[ 1]z

— Two decoupled modes and can be easily analyzed
— The system is stable since Re(A,) <0 V 1

46
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Theorem. All similar matrices have the same eigenvalues

— How to prove this?

M-Al=p1-Q'AQ

1Q'Q- Q1AQ)
[Q'(AI-A)Q|
= [Q (AL A)Q]
=|AL- A
— The two matrices have the same characteristic
polynomial, and therefore have the same set of
eigenvalues

Today: Linear algebra (continued)

= Linear algebraic equations, solutions
= Parameterization of all solutions
= Similarity transformation: companion form,

= Eigenvalues and eigenvectors, diagonal form

» Generalized eigenvectors, Jordan form

47

48
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Case 2: Eigenvalues with Multiplicity > 1

* What may happen when the multiplicity of an
eigenvalue is greater than 1?

— The matrix may not be diagonalizable

Example. 1 00
A=[0 1 1
-1.0 0
A-1 0 0 ,
A =[A1-A=| 0 -1 -1|=4(2-1)
10 2
:>7\,1=O,7\,2=7\,3=1
-1 0 0 0
(MI=A)vy =0, 0 -1 —1fvy=0, wvy=|1
1 0 0 -1

49

(A l=A)v, =0,

(=R -]

0
-1 VZZO, Vo = 1
1 0

S = O O

— What is v;? Recall

= A3

— {v,, V5, v4} are not LI, and cannot be used as a basis

— Q formed by them is not invertible, and there is no
similar transformation to diagonalize A. ®

— Have to think something different for v, and v,
— Let us find v, such that

(A=2,0)v3=0, (A=2yI)v3#0 ~ Different from the
previous v,
— Then {v,, v,, v;} are L1

— If we take Q=[v, v, v;], what is A=Q'AQ?

50
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— We need to find A such that AQ=QA. Observe that

>\‘1
AV1=7\.1V1=[V1 v, V]| 0
0

Avy=hovy =[vi vy V3]

From (A—kQI)V2 =(A-2,1) v,;=0

We have (A—XZI)V3 =V, 0

AV3 =Vy +}\,2V3 = [Vl \5) V3] 1

A 0 0 %)

A[[vl v, V3]J=(V1 v, V3] 0 x, 1
Q 0 0 A, M 0 0 0 00
A=l0 A 1 |=[0 11
[0 0 2| [0 O 1
Not diagonal, but close 31

Today: Linear algebra (continued)

= Linear algebraic equations, solutions

= Parameterization of all solutions

* Similarity transformation: companion form,
= FEigenvalues and eigenvectors, diagonal form

Next Time: More on linear algebra §3.5,3.6,3.8
State space solutions §4.1,4.2

= Generalized eigenvectors, Jordan form
= Some useful results, matrix norms
= Functions of a square matrix

52
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Homework Set #5:

1. Find
1) nullities,
2) bases for the range spaces and
3) bases for the null spaces
for the following matrices

=[1 0 2] P b
- ’ 110 3— 3 0l
0
1
1

-2 0 1 1 3 -1
A,=10 1 -1|, A;=|2 1
-2 1 0 2 1

2. Find the general solutions for the following equations

a).[l 0 2]x=1, b) b 1x—2
‘ a1 o) |3 Note: these matrices

20 1 1 130 -1 1 are the same as those in
¢)n| 0 1 =t{x=[2], d./2 1 1 1|x=
-2 1 0 3 2 1 1 1

—_— -

1 Problem 1.

1
53

3. Compute the eigenvalues, eigenvectors and diagonal forms
for these matrices

0 0 1 6 -2 -3
A,=|-1 3 1|, A,=4 0 -3
-2 0 3 8 -2 -5
4. Let
{010 H
A=|1 -1 4|, b=[0
10 3 1

Form Q=[A%b Ab b]. Compute M=Q'A Q.
Observe how M is related to the polynomial det(AI-A).
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