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16.513  Control Systems 
Lecture Note #5

Last time:
 The base of a linear space: Basis

– Representations of a vector in terms of a basis

– Relationship among representations for different bases

– Generalization of the idea of length: Norms

– A sense of orientation: Inner Product

– The concept of perpendicularity: Orthogonality

– Gram-Schmidt Process to obtain orthonormal vectors 

– Linear Operators and Representations
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Representation of vectors w.r.t. different basis

  ;e...ee n21 Given an old  basis

─ Let the new basis be:
   Qe...eee...ee n21n21 

─ For x such that 

 βe...eex n21

  βQe...eex 1
n21

-
─ We have

    -1
n21n21 Qe...eee...ee 

─ Equivalently,

 What is a basis for Rn?  What can be used as a basis? 
 A set of vectors {e1,e2,…,en} which can be used to 

represent every x  Rn uniquely as:  
x =a1e1+a2e2+…+anen

 Every set of  n  LI vectors can be used as a basis.

Different representations
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 How to obtain an orthonormalized basis? 
─ Gram-Schmidt process

 Linear operators and matrix representations
─ A linear operator is completely determined

by how the basis are mapped
─ A matrix defines a linear operator
─ Any linear operator can be defined by a matrix
─ Matrix rep. under different basis

Consider the map

x → y: [e1 e2 .. en]  → [e1 e2 …en] A

Let the new basis be [ê1 ê2…ên]= [e1 e2 .. en] Q

 The new rep. for the operator is Ā= Q-1AQ
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Today: More discussions on linear algebra
(§3.3-3.5, 3.8)

 Linear algebraic equations, solutions
 Parameterization of all solutions
 Similarity transformation: companion form, 
 Eigenvalues and eigenvectors, diagonal form
 Generalized eigenvectors, Jordan form
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Systems of Linear Algebraic Equations

 A system of linear equations:

a11x1 + a12x2 + .. + a1nxn = y1

a21x1 + a22x2 + .. + a2nxn = y2

: :

am1x1 + am2x2 + .. + amnxn = ym

where aij, yi R or C are given, xi’s are to be solved. 

 In matrix form: Ax = y

1m           1n               n         m                  
                

y

y
y

y,

x

x
x

x,
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
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
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







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
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


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
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

n variables, 
x1, x2, …,xn, to satisfy
m equations
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 

              

xa...xaxa

x

x
x

aaaAx nn2211

n

2

1

n21 





















Let the ith column of A be ai, i.e., A=[a1 a2 … an], then

A linear combination of {a1, a2, …, an}

The equation Ax=y has a solution if y is a linear 
combination of the columns of A.
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Example. 2x1 - x2 = 0 and x1 + 2x2 = 4.  Find x1 and x2.

• In general, there are 3 possibilities:

– Unique sol.; inf. number of sol.; and no sol.

Geometric interpretation:
• Each equation represents

a straight line in the plane.
• The solution is the intersection
• For this case, there is a unique

intersection: x=(0.8,1.6)T

x1

2x1-x2=0x1+2x2=4

x2

x1

x2

x1

x2

8

• For a system of linear equations:

a11x1 + a12x2 + .. + a1nxn = y1

a21x1 + a22x2 + .. + a2nxn = y2

: :

am1x1 + am2x2 + .. + amnxn = ym

• When n=3, each equation represents a plane; The 
solution of Ax=y is the intersection of several planes

• For general n, each equation represents a hyperplane;

The solution is the intersection of hyperplanes.
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• How to analyze Ax = y systematically?
– We will examine from the viewpoint of a linear operator 

A: Rn  Rm   (or Cn→Cm)

– Range of a linear operator A is
R(A)  {Ax:  xRn}={y∈ ܴ௠: xRn s.t. y=Ax} 

– Is R(A) a space?  If so, it is a subspace of what?

Theorem. R(A) is a subspace of  Rm

Proof: ▪ Clearly it is a subset of Rm.
▪ Need to show that if y1, y2  R(A),

then 1y1 + 2y2  R(A) for all 1, 2  R 

─  x1, x2  Rn s.t. y1 = Ax1, y2 = Ax2

1y1 + 2y2 = 1Ax1 + 2Ax2 = A(1x1 + 2x2)
 1y1 + 2y2  R(A), and R(A) is a subspace

All possible linear combination
of the columns of A
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 What is the dimension of R(A) ?

─ Recall that the dim. is the maximum number of LI
vectors in R(A). 

 Let a1,a2,…an be the columns of A, i.e.,
A=[a1 a2 … an].  Then
─ R(A)  is a subspace spanned by ai’s:

R(A)={Ax: xRn}={a1x1+a2x2+…+anxn:  xRn}
─ The dim.of  R(A) is the maximum  number of 

ai’s  which are LI,   min{m,n}
─ It also equals the rank of A : denoted (A)
─ If  (A)=m,  then R(A)=Rm
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Example: 

 a  a  a a        
0202
4321
2110

A

432  1














• a3 =a1+a2;   a4=2a2; 
 If  z=a1x1+a2x2+a3x3+a4x4,  then 

z= a1x1+a2x2+(a1+a2)x3+a22x4

= a1(x1+x3)+a2(x2+x3+2x4)=a1y1+a2y2
 All zR(A)  can also be expressed as linear 

combinations  of a1 and a2 
 R(A)=R([a1 a2]), dim.=2

In general, consider C=[A B];  A=[a1…an1], B=[b1…bn2]
Every bi can be expressed as linear combination of aj’s
if and only if  R(C)=R(A); (C)=(A)

• ܽ1, ܽ2 are independent;
• How about ܽଵ, ܽଶ, ܽଷ?
• How about ܽଵ, ܽଶ, ܽସ?

12

Basis for the range space
 Let a1,a2,…an be the columns of A, i.e.,

A=[a1 a2 … an].  Then
─ R(A)  is a subspace of Rm. It is spanned by ai’s:

R(A)={Ax: xRn}={a1x1+a2x2+…+anxn:  xRn}

 If  rank(A)=n,  then {a1,a2,…an } are LI,  and they form the 
basis for the range space. 

 If  rank(A)=n1<n,  {a1,a2,…an } are LD. We can choose n1

columns of  A that are LI. They form the basis of the range.  

Meaning of the rank: 
rank(A) =  the maximal size of all square sub-matrices having 

none-zero determinant
rank(A) =  the maximal number of  vectors in a LI set which is 

formed by the columns of  A.
rank(A) =  the dimension of the range space.
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Example. Find the rank and basis for the range space for 
the following 

,
310

201
A1 




 rank(A1) = 2, R(A1)=?

Since m=2, R (A1)  R2, 
Since rank(A1)=2, the dimension of R (A1) is 2.
 R(A1) =R2.  
 Basis for the range space:  

























1

0
,

0

1
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Example. Find the rank and basis for the range space,
given 

  2n  3,m    ,

32

10

01

A 212 















 aa

    212122112 a  and   aby    spanned      ,Rx,  x:xaxaA R

  LI are  }a,{a  rank,column  full   n,2Aρ 212 

Basis for the range space is {a1, a2}. 
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  3nm     ,aaa

000

240

103

A 3213 

















     
 R   x:xaxa           

R   x:xaxaR   x:xaxaA

i2311

i2312i22113


R

  2,Aρ 3 

{a1, a2}  are  LI;   {a1,a3}  are LI;   {a2,a3}  are LI.

• Any pair of the columns can be used as a basis 
for the range space.

  ?  

321

440

303

Aabout  What  4


















Example:

1 2 3a a a
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• More facts about the rank of a matrix ,
Rank (A) = Number of LI columns

= Number of LI rows   min (n, m)

– A is full rank if (A) = min (n, m)

– A’)=(A*)

– A square matrix (nn) has full rank ((A) = n) iff |A| 
0, or equivalently A-1 exists

• Question:  Under what condition does y = Ax have a 
solution for a specific y?  for every y in Rm?
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Theorem.
y = Ax has a solution iff y  R(A), or (A) = ([A : y])

y = Ax has a solution  y  Rm iff R(A) = Rm ((A) =m)

Def. The null space of A, N(A), is defined as
N(A)  {x| x  Rn s.t. Ax = 0}

– How can we see that N(A) is a subspace?

Question: Under what condition will the solution be
not unique?

 We need to use null space to describe this.
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Theorem. N(A) is a subspace of Rn

Proof: Need to show that if x1, x2  N(A), then

1x1 + 2x2  N(A)  for all 1, 2  R 

Ax1 = 0, Ax2 = 0  A(1x1 + 2x2) = 1Ax1 + 2Ax2 = 0 

– Note that N(A)  Rn (domain) and 
R(A)  Rm (Codomain)

– The dimension of N(A) is called the nullity, notation (A)

Theorem.  (A) + (A) = n

Proof. Will not be covered

Corollary.  The number of linearly independent 

solutions of Ax = 0 is (A) (= n - (A))
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    ],a  a  a[
310

201
3211 








A

   1 k h :    k RN A  

Example. Find the nullity and null space for the following 

(A) + (A) = n

123)rank(An)(   ,2)rank(A 111  A

Note that  a3 can be expressed as a linear combination of a1 and  a2

  3a2aa 213  0 a- 3a2a 321 

0 

1-

3

2

]a  a  [a 321 















0 

1-

3

2

A 
















2
h 3    is  a  basis for the null space.

-1

 
  
  

ܰ ଵܣ ൌ ሼݔ|ݔ ∈ ܴଷ, .ݏ .ݐ ݔଵܣ ൌ 0ሽ

20

 ,aa

32

10

01

A    : Example 21

















a1 and a2 are LI,   rank(A)=2,  n=2,   rank

Dimension of the null space is 0

The only x such that Ax=0  is x=0.

  3mn    ,aaa

000

240

103

A   : Example 321 

















{a1,a2} are LI,   a3=a1/3 + a2/2   0

1

2/1

3/1

aaa 321 


















rank(A)=2, (A)=3-2=1

1/ 3
Let   h  1/ 2

1

 
  

  
A h 0    N A k h :    k R 
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   3,mn   ,aaa

021

040

003

A 321 

















Example:

{a1,a2} are LI,   a3=0 a1+0 a2   0

1

0

0

aaa 321 















rank(A)=2, (A)=3-2=1

0
Let   h  0

1

 
  

  
   1 k h :    k RN A  

Practice: find the null space and range space for 












1021

1101
A

1 2 3 4a a a a
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• What is the implication of (A) > 0 for equ. Ax = y?
– Suppose that xs is a solution to Ax = y (Axs= y), 

and x0 ( 0)  N(A).  What can be said about xs + x0?

Theorem. xs + x0 is also a solution to Ax = y

Proof:
Axs = y, Ax0 = 0

A(xs + x0) = Axs + Ax0 = y + 0 = y

 If (A) > 0, then Ax = y has infinite number of    
solutions if it has one.
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Parameterization of all solutions

Theorem: Given mn matrix A and a m1 vector y.
─ Let xp be a solution to Ax = y.  
─ Let (A)=k.
─ Suppose  k>0 and the null space is spanned by 

{n1,n2,…nk}

 The set of all solutions is given by 
{x = xp+1n1+2n2+…+knk:  iR}

24

– If (A)  ([A : y]) (i.e., y  R(A)), then the 
equations are inconsistent, and there is no 
solution

– If (A) = ([A : y]), then  at least one solution

• If (A) = ([A : y]) < n (i.e., (A) > 0), then 
there are infinite number of solutions

• If (A) = ([A : y]) = n (i.e., (A) = 0), then 
there is a unique solution

─ For an nn matrix, Ax = y has a unique solution 
 y Rm iff A-1 exists, or |A|  0

Summary:
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Example: 

 a  a  a a                       
0
8
4

y,
0202
4321
2110

A   y;Ax

432  1





























• n=4; (A)=2;  (A)=4-2=2. Two LI solutions for Ax=0. 

 A particular solution:  xp=[0  -4  0 0]’
• Note that a3=a1+a2  a1+a2-a3+0a4=0 A[ 1 1 -1 0]’=0

a4=2a2   0a1+2a2+0a3-a4=0 A[0 2 0 -1]’=0
 Two solutions for Ax=0:  





































1

0
2
0

n,

0
1

1
1

n 21

• All solutions:

Rk,k ,

k
k

2kk4
k

nknkxx 21

2

1

21

1

2211p 





















0   4   0    0

• Observe that y=-4a2=0a1-4a2+0a3+0a4=[a1 a2 a3 a4][0 -4 0 0]’
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Exercise: 

 a   a   a  a                       
1
1
1

y,
11-01
2011
1110

A   y;Ax

432  1































































1
0
1
1

n,

0
1
1

1

n 21

All solutions: Rk ,k   ,

k1
k

kk-
kk1

nknkxx 21

2

1

21

21

2211p 























Observe that a1 and a2 are LI, a3=a2 a1, a4=a1+a2,
(A)=2, (A)=4-2=2, [A y]=3 > (A).

Find null space,
Solution,
All solutions

 Two solutions for Ax=0

What if y=[1  3  2]’? Then y=a1+a4=[a1 a2 a3 a4][1 0 0 1]’,
Hence a particular solution is xp=[1 0 0 1]’ 

 No solution
From a3=a2-a1,  a1-a2+a3+0a4=0,  [a1 a2 a3 a4][1 -1 1 0]’=0
From a4=a1+a2,  a1+a2+0a3-a4=0, [a1 a2 a2 a3][1 1 0 -1]’=0
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Solution for xA=y:
• A: mn;  y: 1n row vector; 

x: 1m unknown row vector.
• Notice  xA=y  ATxT=yT

AT: nm;  yT: n1 column vector; 
xT: m1 unknown column vector.

• Transformed into the former systems of equations.

28

Today:  Linear algebra (continued)

 Linear algebraic equations, solutions
 Parameterization of all solutions
 Similarity transformation: companion form 
 Eigenvalues and eigenvectors, diagonal form
 Generalized eigenvectors, Jordan form
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Similarity transformation: Companion form

Review: Let A be a nn matrix and  x the representation
of a vector w.r.t the basis {e1,e2,…,en}, where  

element  i                
0]  0  1   [0e

th

T
i 

• The linear operator L w.r.t the basis is:  x→ Ax

• Let the new basis be  

 Then the operator w.r.t the new basis is: z →Ā z 

Ā=Q-1AQ Similarity transformation

Question: How to choose Q so that Ā  has a desired 
form? Which forms are desired? 

[e1 e2 … en] = I

ሾ݁̂ଵ, ݁̂ଶ 	… ݁̂௡ሿ ൌ ሾ݁ଵ	݁ଶ 	… ݁௡ሿQ ൌ Q

30

The companion form


































n

1n

3

2

1

2

β1    000
β0    100

     
β0    010
β0    001
β0    000

A


























c10
b01
a00

A1

What are detĀ1, detĀ2?

1 2 1detA a, detA ( 1) β ,n   

3 2
1

n n 1 n 2
2 n n 1 1

λ 0 a
det(λ I A ) -1 λ b λ cλ bλ a

0 -1 λ c

det(λ I A ) λ β λ β λ β 


     


     

 Clean structures,  easy for analysis.
 How to get them?
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Transformation to companion form

Example:  
















134
012
123

A Let













1
0
0

b

We have: ,
13

10
5

bA,
3

2
4

bA,
1
0
1

Ab 32
















































It can be verified that b5A15Ab17bbA 23 

Also, b, Ab, A2b are linearly independent.  We can choose

The new rep. for the linear operator is AQAQAQQA 1  

Observe that:

,
5
15

17
b]AAb[bbA,

1
0
0

b]AAb[bbA,
0
1
0

b]AAb[bAb 23222





















































510
1501

1700
b]AAb[bb]AbAAb[ 232

AQ       =   Q Ā 












510
1501

1700
A

݁̂ଵ		݁̂ଶ		݁̂ଷ ൌ ଶܾܣ		ܾܣ		ܾ ൌ: ܳ

32

In general: consider nn matrix A. Choose b such that

tindependen linearly    are   bAb,A  Ab,  b, 1n2 

bAβAbβbβbAThen  1n
n21

n  

b],AbAAb[bQ  choose    weIf 1n2  




































n

1n

3

2

1

1

β1    000
β0    100

     
β0    010
β0    001
β0    000

AQQA









 A  and  Ā are said similar to each other
 The transformation A → QQ similar transformation
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The dual case: consider nn matrix A. Choose c such that

LI   }',...A'c'A',{c'  i.e.,  r,nonsingula is 

cA

cA
c

:Q 1-n

1n

c





















1n
n21

n cAβcAβcβcAThen   























 

n1-n321

1

ββ   βββ
1 0      000
0  1       000

       
00       100
00       010

QAQA









34

 We next discuss how to transform A into a diagonal 
matrix. i.e., find a matrix Q such that  



















n

2

1

1

λ000
000
00λ0
000λ

AQQ


 Why this form?

• Stability of  the  system
is reflected by these diagonal elements  i’s  

Axx 

• |…n

• |s I  A| = (s  s  s n
 These i’s are called eigenvalues of A
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Today:  Linear algebra (continued)

 Linear algebraic equations, solutions
 Parameterization of all solutions
 Similarity transformation: companion form, 
 Eigenvalues and eigenvectors, diagonal form
 Generalized eigenvectors, Jordan form

36

Eigenvalues and Eigenvectors
Definition. Let A be a linear operator from Cn to Cn.  

– A scalar  is called an eigenvalue of A if  a nonzero

x  Cn, such that Ax = x  (I-A)x = 0.
– (I - A)x = 0 has a non-zero sol. iff () = |I - A| = 0

~ Characteristic polynomial of A with degree n
–  must be a root of 
– A has n eigenvalues, not necessarily distinct, and some of 

them could be complex ~ So we consider Cn instead of  Rn. 
– x is the eigenvector associated with .  What can be said?
– (I - A)x = 0  x  N(I - A)
– The set of eigenvalues of A, or, the set of the roots 

of    is called the spectrum and denoted eig(A)
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Example

,
43

10
A 







 find 1, 2, x1, and x2

21( ) 4 33 4I A    
      

   31  3,1 21 

  0xAI 11  ,0x
33

11
1 




 











1

1
x1

  ,0xAI 22  ,0x
13

13
2 




 











3

1
x2

38

 We will see later that
– Eigenvalues are associated with system stability  

– Eigenvectors form a convenient set of basis 

– Will examine two cases of eigenvalues and 
eigenvectors 

• Case 1: All eigenvalues are distinct

• Case 2: Eigenvalues with multiplicity > 1
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Case 1: All Eigenvalues are Distinct

 Consider first the case where all the eigenvalues of A 
are distinct, i.e., n
i  j for i  j.  

Let vi be the associated eigenvector for i

– What can we say about {v1, v2, .., vn}?  

Theorem. {v1, v2, .., vn} are linearly independent

How to proof this theorem?

Proof. By contradiction 

Suppose that they are linearly dependent, then assume 
without loss of generality that

40

iivi = 0.  At least one i nonzero. Assume 1  0
(A - 2I)(iivi) = 0

= ii(A - 2I)vi = ii(Avi - 2vi)= iivi - 2vi)
= ii(i - 2)vi

= i2i(i - 2)vi ~ The second term drops out

(A - 3I)[i2i(i - 2)vi] = 0
= i2i(i - 2)(A - 3I)vi

= i2i(i - 2)(i - 3)vi

= i2,3i(i - 2)(i - 3)vi

~ The third term drops out
Finally, 1(1 - 2)(1 - 3) ..  (1 - n)v1 = 0
Since i  j for i  j, the above implies v1 = 0

~ Contradiction  {v1, v2, .., vn} are LI
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 Let Q=[v1 v2 … vn],  choose the new basis as

 What is the new rep. of A in terms of  the new basis?

What is Ā=Q-1AQ , or an  Ā  such that AQ = QĀ?

Notice that  Avi=ivi   for all i 

     nnnn vvvAvAvAvvvvAAQ   22112121 

 



































n

2

1

n

2

1

n21

λ..00
:::
0..λ0
0..0λ

Q

λ..00
:::
0..λ0
0..0λ

vvvAQ 

A

ሾ݁̂ଵ, ݁̂ଶ 	… ݁̂௡ሿ ൌ ሾ݁ଵ	݁ଶ 	… ݁௡ሿQ ൌ Q

42

Example (Continued)

,
43

10
A 




















30

01
A

,3,1 21  ,1
1v1 





 






 3
1v2

findA

– First by inspection: 

– Then by similar transformation:

  ,
31

11
vv 21 







 ,
11

13

2
1

Q 1





 


















 
31

11

43

10

11

13

2
1AQQA 1 










30

01

Q =


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Another way to understand the Example

,
43

10
A 








Find a diagonal matrix ̅ܣ and a nonsingular matrix
ܳ such that ̅ܣ ൌ ܳିଵܳܣ

ଵߣ ൌ െ3; ଶߣ ൌ െ1,	 ଵݒ ൌ
1
െ3

ଶݒ  , ൌ
1
െ1

Let ܳ ൌ ଶݒ		ଵݒ ൌ 	 1 1
െ3 െ1	

Must have ̅ܣ ൌ െ3 0
0 െ1

To verify,  check ܳܣ ൌ ?ܣ̅ܳ

ܳܣ ൌ 0 1
െ3 െ4

1 1
െ3 െ1

ൌ െ3 െ1
9 1

ܣ̅ܳ ൌ 1 1
െ3 െ1

െ3 0
0 െ1

ൌ െ3 െ1
9 1

Indeed, ܳܣ ൌ ⇒,ܣ̅ܳ ܳିଵܳܣ ൌ ܣ̅

44

Similarity transformation for a LTI system:

DuCxy
BuAxx




Let the new state be  z = Qx. Then x = Qz and
xQz 1  

A B
C D

u DzCy
u;BzAz




If we pick Q=[v1 v2 … vn],  then Ā has a diagonal
form, making the analysis easy.

(*)

(**)

The similar transformation does not change the
input-output relationship 

Bu)(AxQ 1   BuQAQzQ 11  
DuCxy  DuCQz 
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Example.  x01y,u
1

2
x

32

10
x 















21( ) 3 22 3I A    
      

   21  2,1 21 

  ,0vAI 11  ,0v
22

11
1 




 











1

1
v1

  ,0vAI 22  ,0v
12

12
2 




 











2

1
v2

Find the matrix Q:

  ,
21

11
vvQ 21 







 








11

12
Q 1

46

– What is the system dynamics in terms of z=Q-1x? 

,xQz 1 Qzx 

xQz 1    BuAxQ 1  

BuQAQzQ 11   uBzA 


















 

3

5
BQB,

20

01
AQQA 11

z,CCQzCxy     11
21

11
01CQC 









 z11yu,3
5z20

01z 













– Two decoupled modes and can be easily analyzed

– The system is stable since Re(i) < 0  i
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= |Q-1Q - Q-1AQ|

= |Q-1(I - A)Q|

= |Q-1||(I - A)||Q|

= |I - A|

– The two matrices have the same characteristic 
polynomial, and therefore have the same set of 
eigenvalues

AQQIAI 1

Theorem. All similar matrices have the same eigenvalues

– How to prove this?

48

Today:  Linear algebra (continued)

 Linear algebraic equations, solutions
 Parameterization of all solutions
 Similarity transformation: companion form, 
 Eigenvalues and eigenvectors, diagonal form
 Generalized eigenvectors, Jordan form
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Case 2: Eigenvalues with Multiplicity > 1
• What may happen when the multiplicity of an 

eigenvalue is greater than 1?
– The matrix may not be diagonalizable 

Example.




















001

110

001

A

 2
1 0 0

( ) 0 1 1 1
1 0

I A


    



       

1,0 321 

,0v

001

110

001

1 







































1

1

0

v1  ,0vAI 11 

50

– What is v3?  Recall 2= 
– v3 = v2

– {v1, v2, v3} are not LI, and cannot be used as a basis

– Q formed by them is not invertible, and there is no 
similar transformation to diagonalize A. 

– Have to think something different for v2 and v3

– Let us find v3 such that

,0v

101

100

000

2 



































0

1

0

v2  ,0vAI 22 

  ,0vIA 3
2

2    0vIA 32  ~ Different from the
previous v2

– Then {v1, v2, v3} are LI.  

– If we take Q=[v1 v2 v3],  what is Ā=Q-1AQ?
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 



















2

3213223 1

0

vvvvvAv

– We need to find Ā such that AQ=QĀ. Observe that

 















0
0
λ

vvvvλAv
1

321111

   22 vIλA   From

 
















0

0

vvvvAv 2321222

  232 vvIλA  have  We 

  0vIλA 3
2

2 








































100

110

000

00

10

00

A

2

2

1















2

2

1

321321

λ00
1λ0
00λ

]vv[v]vvA[v

Q

Not diagonal, but close

52

Today:  Linear algebra (continued)
 Linear algebraic equations, solutions
 Parameterization of all solutions
 Similarity transformation: companion form, 
 Eigenvalues and eigenvectors, diagonal form

 Generalized eigenvectors, Jordan form
 Some useful results, matrix norms 
 Functions of a square matrix

Next Time:  More on linear algebra §3.5,3.6,3.8
State space solutions §4.1,4.2
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Homework Set #5:

1. Find 
1) nullities, 
2) bases for the range spaces and 
3) bases for the null spaces 

for the following matrices

 1 2 3

1 1 1 2 0 1 1
A 1   0    2 ,    A ,     A ,

1 1 0 1 1 3 0

   
          

4 5

2 0 1 1 3 0 1

A 0 1 1 ,      A 2 1 1 1

2 1 0 2 1 1 1

    
        
      

2.  Find the general solutions for the following equations

  1 1 1 2
). 1   0    2 1,    b). ,    

1 1 0 3
a x x

   
       

2 0 1 1 1 3 0 1 1

). 0 1 1 2 ,      d). 2 1 1 1 1

2 1 0 3 2 1 1 1 1

c x x

        
                
              

Note:  these matrices
are the same as those in 
Problem 1.

54

3. Compute the eigenvalues, eigenvectors and diagonal forms
for these matrices

2 3

0 0 1 6 2 3

   A 1 3 1 ,     A 4 0 3

2 0 3 8 2 5

    
         
        

Form Q=[A2b  Ab  b].  Compute  M=Q-1 A Q. 

Observe how M is related to the polynomial det(I-A).

0 1 0 0

A 1 -1 4 ,      b 0

1 0 3 1

   
       
      

4.  Let 


