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16.513   Control Systems (Lecture note #6)

• Last Time: Linear algebra review
– Linear algebraic equations, solutions

– Parameterization of all solutions

– Similarity transformation: companion form 

– Eigenvalues and eigenvectors, diagonal form

A big picture: one branch of the course

There are more branches, mainly derived from linear algebra. 

Vector spaces
matrices

Algebraic 
equations

Eigenvalues
Eigenvectors

Diagonal form
Canonical form

Matrix functions,
such as eAtDuCxy Bu;Axx

:   toSolutions


Modeling 
(A,B,C,D)
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Review: A system of equations:   Ax = y

Let the ith column of A be ai, i.e., A=[a1 a2 … an], then
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The existence of solution depends on the relationship 
between (A) and ([A y]) 
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– If (A)  ([A : y]) (i.e., y  R(A)), then the 
equations are inconsistent, and there is no 
solution

– If (A) = ([A : y]), then  at least one solution

• If (A) = ([A : y]) < n (i.e., (A) > 0), then 
there are infinite number of solutions

• If (A) = ([A : y]) = n (i.e., (A) = 0), then 
there is a unique solution

─ For an nn matrix, Ax = y has a unique solution 
 y Rm iff A-1 exists, or |A|  0

Summary:

The ranks of matrices play an important role. 
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Eigenvalues, eigenvectors and diagonal form

Case 1: All eigenvalues are distinct

A scalar  is called an eigenvalue of ACnn if   
a nonzero  x  Cn, such that Ax = x and x is the 
eigenvector associated with .  

Theorem: the eigenvectors {v1,v2,….,vn} are LI.
Let Q=[v1 v2 … vn], then 
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 However, there are situations where there exists no
such Q to make Q-1AQ a diagonal matrix. 

 This case will be covered today.

On the other hand, if there exist a nonsingular Q and 
a diagonal matrix  

such that Q-1 AQ = ,  then i’s are the eigenvalues
of A and the columns of Q are the eigenvectors: 

Q-1 AQ =   Q=Q Avi=i vi
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Today: We are going to study

 Generalized eigenvectors, Jordan form
 Polynomial functions of a square matrix
 More general functions such as eAt,  (sI-A)-1

Tools for solving a state-space equation

DuCxyBu;Axx 

Given x(0) and u(t), for t ≥0, what is x(t) and y(t)?

• Next time, we will be able to do this.
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Case 2: Eigenvalues with Multiplicity > 1
• What may happen when the multiplicity of an 

eigenvalue is greater than 1?
– The matrix may not be diagonalizable 

Example.
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– What is v3?  Recall 2= 
– We expect to have {v1, v2, v3} LI  {v2, v3} LI

– However,  from (2I-A)=2   (2I-A)=3-2=1.  

– What does this mean? 

– The null space of  I-A has dimension 1;

There doesn’t exist LI {v2, v3} s.t. 

(2I-A)v2= (2I-A)v3=0

– If we take v3=kv2, {v1, v2, v3} are not LI, and cannot   

be used as a basis
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– Have to think something different for v2 and v3

– We still choose v2 as the solution to (A-2I)v2=0

– For v3, suppose that it satisfies

  ,0vIA 3
2

2    0vIA 32  ~ Different from the
previous v2

– Then (A-2I)(A-2I)v3=0  (A-2I)v3=kv2 for some k

– And we can just choose v2 = (A-2I)v3

– Then {v1, v2, v3} are LI (we just accept this).  

– If we take Q=[v1 v2 v3],  then Ā=Q-1AQ can’t be 
diagonal. But what does it look like?
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– We need to find Ā such that AQ=QĀ. Observe that
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• For this particular example, how to get  v3 such that  
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 This example just show the complexity that may
arise when we have repeated eigenvalues.

 To handle such a situation systematically, we need 
to define the generalized eigenvectors.
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Definition. A vector v is a generalized eigenvector
of grade k associated with  if

  ,0vIA k 

– What is the new representation 
w.r.t. {v1, v2, ., vk}? i.e.,

A[v1 v2 … vk] = [v1 v2 … vk]Ā

  0vIAbut 1k  

v,   vDenote k 
    ,vIAvIAv k1k 

    ,vIAvIAv 1k
2

2k  

    ,vIAvIAv 2
1k

1  

    ,0vIAvIA k
1  11 vAv 

212 vvAv 

1k2k1k vvAv  

k1kk vvAv  

A Jordan block
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Example:  
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v2 can be anything but (A-I)v20!









 3

2I)vλ(A  then v,1
1Pick  v 2112

  










 

23
11Q,13

12vvQ 1
21




















 

13
12

69
46

23
11AQQA 1











1

1

0
1

00
10






Only one LI v
s.t.  Av =1v
Have to use
generalized 
eigenvectors.
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11-2I)-(A 1,I)-(A  ,6-9
4-6 Iλ-A 111 



 

Need to find v1,  v2 such that (A-I)v1=0 and (A-I)v2=v1

1 2 1 2 2

6 -4 2
From  (A λ I)v v v , v   not unique

9 -6 3

   
      

   

1 0 1
A Q AQ    for any of the above Q

0 0
  

   
 

An alternative approach:

You can also fine v1 first, then solve (A-v2=v1 to get v2.

1 1 1 1

6 -4 2
(A-λ I)v  v =0 ,   v =    

9 -6 3

   
    

   

2

1/ 3 0 1
v , or    ,     or   

0 -1/2 1

     
      
     

2 1/ 3 2 0 2 1
,    or   ,     or   

3 0 3 1/2 3 1
Q
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Example: Find Jordan form for 

It is easy to see that the eigenvalues of are 
1, 0

1 1 0
0 0 1
0 0 1

Does the matrix have generalized eigenvector for , ?  

Let us check the nullity of  	
0 1 0
0 1 1
0 0 0

, 2,	

3 2 1

Cannot find two LI eigenvectors for  ,

Must have generalized eigenvectors for ,
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1, 0

1 1 0
0 0 1
0 0 1

Approach 1: Find first, then let 

Need to find , ,	such that 

0,

	should satisfy 0, 0

∈ , ∉

0 1 0
0 1 1
0 0 0

, 

0 1 1
0 1 1
0 0 0

, 

Basis for the null space:
1
0
0

1
0
0

,
0
1
1

Basis for the null space:

Pick 
0
1
1

, Then 
1	
0	
0

For , 0, 1
1
0

=
1 0 1
0 1 1
0 1 0
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1, 0
1 1 0
0 0 1
0 0 1

=
1 0 1
0 1 1
0 1 0

What is ̅ ?	
Based on the property of generalized eigenvalue, must have 

̅
1 0

0 0
0 0

	
1 1 0
0 1 0
0 0 0

Did I get everything right? Check if ̅ ?

1 1 0
0 0 1
0 0 1

1 0 1
0 1 1
0 1 0

̅
1 0 1
0 1 1
0 1 0

1 1 0
0 1 0
0 0 0

1 1 0
0 1 0
0 1 0
1 1 0
0 1 0
0 1 0
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1, 0
1 1 0
0 0 1
0 0 1

Approach 2: Find first, then solve 	for . 

Need to find , ,	such that 

0,

	should satisfy 0

0 1 0
0 1 1
0 0 0

, Basis for the null space:
1
0
0

1
1
0

=
1 1
0 1 1
0 1 0

Let 
1
0
0

. needs to satisfy 

0 1 0
0 1 1
0 0 0

1
0
0

, 
0
1
1

or 1
1

for any 

1 1 0
0 0 1
0 0 1

1 1
0 1 1
0 1 0

̅
1 1
0 1 1
0 1 0

1 1 0
0 1 0
0 0 0

1 1	 0
0 1 0
0 1 0 
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Theorem. The generalized eigenvectors associated with 
a particular eigenvalue are LI 

Theorem. The generalized eigenvectors associated with 
different eigenvalues are LI 
– The eigenvectors and generalized eigenvectors span Cn

– A good basis ~A is the Jordan Canonical Form
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– A matrix with repeated eigenvalues could still be 
diagonalizable 

• Another case: 

For the same eigenvalue 1,  it may have more than 
one Jordan blocks such as
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Example.
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~ 2 LI eigenvectors! 

– A is diagonalizable even with repeated eigenvalues.
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In summary, we have the following cases:

 All eigenvalues of A are distinct  diagonalizable
 There are repeated eigenvalues, 

e.gi  with multiplicity k.
• If  (A-i I)= n - (A-i I)=k,  

there exist  k LI solutions to (A-i I)v=0 and they
are all eigenvectors. 
If this is the case for all repeated eigenvalues 
 diagonalizable

• If  (A-i I)=n - (A-i I) < k,
there exist generalized eigenvectors, 
 not diagonalizable, there exist Jordan blocks
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Today:  Linear algebra (continued)

 Generalized eigenvectors, Jordan form
 Polynomial functions of a square matrix
 Exponential function of a square matrix

Vector spaces
matrices

Algebraic 
equations

Eigenvalues
Eigenvectors

Diagonal form
Canonical form

Matrix functions,
such as eAtDuCxy Bu;Axx

:   toSolutions


Modeling 
(A,B,C,D)
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Functions of a Square Matrix

What is A1? A2? A3? A0?

Example.
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Polynomials of a Square Matrix
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– In general, suppose A: Cn  Cn

• A1 = A, A2 = AA, A3 = AAA
• Ak = AAA , k terms, k  1

• A0 = I

– Let f() be a polynomial, e.g.,

f() = 53 + 42 + 7 - 2

What is f(A)?

– f(A) = 5A3 + 4A2 + 7A - 2A0

I2
43
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1312

43
4

4039
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5 












 



















178168

5646



14

27

– Is there an easier way to compute f(A)?

– Would the process be easier for a diagonal or block 
diagonal matrix?  How to proceed?

,QAQA 1

f(A) = 5A3 + 4A2 + 7A - 2A0

2A    11 QAQQAQ 12QAQ 

3A     121 QAQQAQ    112 QAQQAQ 13QAQ 

1kk QAQA 

I2QAQ7QAQ4QAQ5 11213  

   123 Q2IA7A4A5Q   1QAfQ 
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Example (Continued) 
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• In general, 
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– Advantages to use diagonal or Jordan canonical form?
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Cayley Hamilton Theorem

– There is something special about (A).

– First consider a diagonalizable A. 

  in n n 1
i 1 n

1

Δ(λ) λI A λ λ λ λ
m

i
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 0

This is true even if A has Jordan blocks.  

Cayley-Hamilton Theorem:  (A) = 0
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We only need to consider a Jordan block.  For example,
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For a ni ×ni Jordan block Āi, (ĀiiI)ni = 0

    ij n
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Conclusion:  (A)=0

      ,IλAΠΔ(A)   ,λλΠAλIΔ(λ)Let   ii n
i

i

n
i

i


 I,α ...AαAαA Δ(A)           
   ,α ...λαλαλΔ(λ)   Have

n
2-n

2
1-n

1
n

n
2-n

2
1-n

1
n




Implication: 

 I,α ...AαAα A      n
2-n

2
1-n

1
n 

 An can be expressed as linear combination of  I, A,A2,
…An-1.   
 Inductively, Ak can be expressed as linear combination

of these terms for all integer k
 Furthermore, all polynomials of A can be expressed so.

In summary:
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– Any polynomial of a square matrix can be expressed as a 
polynomial of the same matrix of degree n-1

– If there is a polynomial () of degree m < n such that 
(A) = 0, then any polynomial can be expressed as a 
polynomial of degree m-1

– The minimal polynomial () of A is the monic
polynomial (with highest power coefficient = 1) of least 
degree such that (A) = 0
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Example: Motivation  for a general problem.

8585 A)A(fFind.)(f,
10

32
A 







   12
10

32
)( 










– How to solve this problem?

– We should be able to represent f(A) as

A85 = 0I + 1A = g(A)
~ Much easier to compute

– What is 0?  1?  How to obtain them?

– A general problem: Find g(A) that is equivalent to f(A) 
but simpler to evaluate
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Theorem. Given ACnn and a polynomial f) Let the 

distinct eigenvalues of A be i, i=1,2,...,m, each with 

multiplicity ni, (n1+n2+…+nm= n). Let

   
   

i

(0)
i i i

λ λ

d f λ
where f λ ,    f (λ ) f(λ )

dλ

l
l

l



 

1n
1n10 λβλββ)g( 
 λ

f(l)(i) = g(l) (i), l = 0, 1, ..,ni -1, i = 1, .., m

–Under what conditions would f(A) = g(A)?

Then f(A)=g(A) iff 

Under the above condition, the coefficients i’s can 
be determined 
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Definition. {f(l)(i), l = 0, 1, .., ni -1, i = 1, .., m} are 
called the values of  f on the spectrum of A
– Any two polynomials having the same values on the 

spectrum of A define the same matrix function
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Example (continued)
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,2)(f 8585
11

)0(  11)(f 8585
22

)0( 

– What is a good g() = 0 + 1 ?

g(0)(1) = 0 + 11 = 0 + 21

g(0)(2) = 0 + 12 = 0 + 1

f and g having the same values on the spectrum of A requires

g(0)(1) =f(0)(1)  0 + 21 = 285

g(0)(2) =f(0)(2)  0 + 1 = 1 

1 = 285 -1, 0 = 2 - 285  g() = (2 - 285) + (285 -1)
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g(A) = (2 - 285)I + (285 -1)A 
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– One way to compute f(A):
• Form () , and find {i} and {f(l)(i)}

• Construct an (n - 1)th order polynomial

g() = 0 + 1 + 22 + .. + n-1n-1

s.t. f and g have the same values on the spectrum of A:

,		for all		 ,
• f(A) = g(A)
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Example: Compute A100  for  





 21
10A

In other words: Given f()=100, find  f(A).  
First, ()=(+1)2

A has one distinct eigenvalue = -1 with multiplicity 2. 
Let g()=0+1on the spectrum of A, have 

100
0 1

99
1

f( 1) g( 1) ( 1) β β ;

f '( 1) g'( 1) 100( 1) β

      

     

100λ99)g(99β1β100,β 101  λ

AβIβg(A)f(A)A 10
100 
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01βA 10
100

Note:	
100
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Example: Compute  Ak, k ≥ 3 for  
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11.5k0.5kβ

;k2k
2

1)-k(k
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1)-k(k
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λ

A has eigenvalue with multiplicity 3. 
Consider f() = k,  g()=0+1+22
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Example: Compute Ak for 
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General Functions of a Square Matrix

• Polynomials of a square matrix are naturally defined.  
How about non-polynomial functions?

• Suppose f() = e, sin , or 1/(s - ).  What is f(A)?
• Two definitions

– By means of a polynomial g() having the same 
values on the spectrum of A

– By Taylor expansion
• These two turn out to be equivalent.
• We will have a lot of discussions on f(A)=eAt.

The solution of a LTI system relies on this function.
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Definition: Given ACnn . Let the distinct eigenvalues of A 

be i, i=1,2,...,m, each with multiplicity ni, (n1+n2+…+nm= n). 

Let f() be a general function with  {f(l)(i)} well defined. 

Suppose that g() is a polynomial satisfying

f(l)(i) = g(l) (i), l = 0, 1, ..,ni -1, i = 1, .., m

Then f(A)  g(A).





  41

21Awithef(A)Find.e)f( Atλtλ

   3265
41

21
)( 2 










1 = 2, 2 = 3

f(0)(1) = e2t, f(0)(2) = e3t

Example:

Generally, g is a polynomial of degree n-1. 
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t3t2t3t2t3t2

t3t2t3t2t3t2

ee4e2e3ee

ee2eee2e3

– Now let g() = 0 + 1

g(0)(1) = 0 + 21 = e2t (=f(0)(
g(0)(2) = 0 + 31 = e3t     (=f(0)(
1 = e3t - e2t, 0 = e2t - 21 = 3e2t - 2e3t

– g() = (3e2t - 2e3t) + (- e2t + e3t)

f(A) = g(A) = (3e2t - 2e3t)I + (- e2t + e3t)A













t3t2t3t2

t3t2t3t2

e2eee

e2e2ee2 Ate
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• Steps to calculate f(A) given f() and A:
– Form () , and find {i} and f(l)(i)

– Construct an (n - 1)th order polynomial

g() such that g(l)(i) = f(l)(i) for all i and l

– f(A) = g(A)

Definition 2. Let f()  i=1
 ii with the radius of 

convergence .  Then

f(A)  i=1 
iAi

if |j| <  for all j.

• It can be shown that Definitions 1 and 2 are equivalent
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Example. Find eAt for a diagonal A and for A in 
Jordan canonical form

 te)(f 
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• Now suppose that A is a Jordan block.  Find eAt
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1

1
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001

A

– () = ( - 1)4 , with 1 of multiplicity 4
f(0)(1) = e1t,         f(1)(1) = te1t

f(2)(1) = t2e1t,       f(3)(1) = t3e1t

– g() = 0 + 1( - 1) + 2( - 1)2 + 3( - 1)3

g(0)(1) = 0 = e1t   (= f(0
g(1)(1) = 1 = te1t (=f(1)(
g(2)(1) = 22 = t2e1t     (=f(2
g(3)(1) = 63 = t3e1t (=f(3)(

.et)(λf   ,et)(λf

,te)(λf   ,e)(λf

,e) f(λ

λt3(3)λt2(2)

λt(1)λt(0)

λt






Derivative with
respect to , not t.



25

49

0 = e1t, 1 = te1t, 2 = t2e1t/2, 3 = t3e1t/6 

– g() = e1t + te1t( - 1) + t2e1t( - 1)2/2 + t3e1t(-1)3/6

– f(A) = g(A) = e1t I + te1t(A - 1 I) + t2e1t(A - 1 I)2/2 + 
t3e1t(A - 1 I)3 /6

,
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At
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2!ettee0

3!et2!ettee
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Components: tke1t, 0  k  n-1
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• For lower order submatrices of

• For higher order matrices, you can extend from the 
pattern
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• For matrices in Jordan canonical form
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0A
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• For a general  matrix A: 

1QAQA 

11 Q)A(Qf)QAQ(f)A(f  

1tAAt QQee 

 The similar transformation makes things easier.
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Example:  Compute  eAt for 
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Approach 1: through the diagonal form.  
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Approach 2: through the values of  f() = et  at the spectrum of  A.  

2,0,1),1)(2()( 321  
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Let g()=a2+b+c, 

2ttλ2
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ttλ2
1

ec2b4aeca(2))2()g(λ

1cecb(0))0()g(λ

ecbae)1(a(-1))g(λ
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• Properties of eAt;
• Solution to a continuous-time system

DuCxyBu;Axx 

Next Time:  

Du[k]Cx[k]y[k]Bu[k];A[k]1]x[k 

• Solution to the discrete-time system

• Equivalent state equations
• Dealing with complex eigenvalues
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Homework set  #6

1. Find Jordan-form representations Ā  and  transformation  
matrix  Q  for the following matrices:

1 2 3

-1 5 1 1 2 2 1 1 -1

A 0 -3 0 ,   A -1 -3 0 ,   A 2 0 -1 .

-1 2 1 -1 -1 -2 2 -1 0

     
            
          

2. Consider  the matrices in Problem 1.  Find , , , 1,2,3		
such that  

3.   Let f(A) be a polynomial. Suppose that v is an eigenvector
of A with corresponding  eigenvalue ,  show that v is also 
an eigenvector of f(A) with corresponding eigenvalue f().

Note: Show the detailed procedure.
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4.  Compute eAt for the following matrices: 

1 2 3

2 0 2
4 0 3 1

A ;          A ;         A 2 2 1
3 2 1 5

2 0 3

  
                   


