16.513 Control Systems (Lecture note #7)
* Last Time:

— Generalized eigenvectors, Jordan form

— Polynomial functions of a square matrix, eA!

A big picture: one branch of the course

Vector spaces Algebraic Eigenvalues Diagonal form
matrices equations Eigenvectors

Canonical form

Solutions to:

. Matrix functions,
X =Ax+Bu;y=Cx+Du N
such as eAt

The linear algebra tools will also be useful for other objectives.
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Review: diagonal form and Jordan form

= All eigenvalues of A are distinct = diagonalizable
= There are repeated eigenvalues,

e.g., A; with multiplicity k.
« If v(A-A; D=n - p(A-A; )=k,

there exist k LI solutions to (A-A, I[)v=0 and they
are all eigenvectors.

If this is the case for all repeated eigenvalues
— diagonalizable

o If v(A-A, D=n- p(A-A; ) <k,
there exist generalized eigenvectors,
= not diagonalizable, there exist Jordan blocks



Definition. A vector v is a generalized eigenvector
of grade k associated with A if

(A=A)<v=0, but(A-AD)vz0
Denote v, =v,

Vi1 =(A=Al)v=(A-Al)vy, Avy = Vi) +Avg
Vi =(A- M)zv =(A-A)vy_q, AV =Vi_o + AV
vi=(A- M)k_lv =(A-Al)v,, Avy =vi+Avy
(A=A)vy =(A-AD)¥v =0, Avy =Av,

— What is the new representation 0
w.rt. {v,, v, ., Vi }? 1€, 1o » . o0
AV Vy ... Vi]= [V, Vs ... V{]A AT 1

0 0 A
A Jordan block

Polynomial functions of a square matrix

= Let f(A)=Z_,*o;A! be a polynomial function of A.
If A=QAQ’!, then f(A)=Qf(A)Q".
= Let A(L) be the characteristic polynomial of A.

Cayley-Hamilton Theorem: A(A) =0
! |

» Any polynomial can be expressed as a polynomial of
degree n-1




Theorem. Given AeC™ and a polynomial f(A). Let the
distinct eigenvalues of A be A, i=1,2,...,m, each with
multiplicity n;, (n;+n,+...#n,=n). Let

g(/l) = Bo + Bl}\’ oot Bn—17‘n_1
Then f(A)=g(A) iff

fO) =g® (\), [=0,1,..,n,-1,i=1,..,m
d"f(n)

[

where (), )= , FOMN)=10)
=
Under the above condition, the coefficients 3,’s can

be determined .

General functions of a square matrix:

Definition: Given AeC™ . Let the distinct eigenvalues of A

be A, i=1,2,...,m, each with multiplicity n,, (n,+n,+...#n_ = n).

Let f(A) be a general function with {fO(X,)} well defined.
Suppose that g(A) is a polynomial satisfying

o) =gd ), [=0,1,..n,-1,i=1,..,m
Then f(A) = g(A).

Generally, g is a polynomial of degree n-1.



Today:

» Some properties of eAl;
Solution to a continuous-time system

x=Ax+Bu; y=Cx+Du

Solution to the discrete-time system

x[k+1]= A[k]+Bu[k]; y[k]=Cx[k]+ Du[k]

Equivalent state equations

Some properties for eAt

From the definition,

0 ki k A2t2 A3t3
e™ =ZA Lo rAtt
o k! 2 3!

The following can be verified
e’ =1;

Aty +t At, _At,
e(l z): 1 2

e e

- -
oAt :(eAt) ;

Caution: eA*Busually does not equal to eAeB.
We only have eA™B=¢AeB when AB=BA




More properties:

More properties:

k,k ;
At ~ Assuming
that A! exists

[e""Bdr= U eATdtJB =" -DA'B

0 0

» This will be used to compute the output response
under constant inputs.
10



Example. Laplace Transform of eAt

k K K
At 0 L k_ o [ A _ 1 ) é
L{e }_ kgoL{k!}A kgo[sk“J Slzo(sj

0 0 k -1
sk L o % (A) =(1—Aj = ssI-A)!
k=0 =X k=0\ S s

~ Assuming [A| <1 ~ Assuming s is sufficiently large

{eAt } SI A oreM =11 {(SI - A)_1 Jl

L{em}=$ - L{eA’}:(S] —A)_1

« How to compute (sI - A)!?

Example. f(A) = (s - L)"l. Compute f(A) = (sI - A)!,

A 100
A=l0 2 1|
0 0 X

— A(A) = (A - Ay)*, with &, of multiplicity 3
— fO) = (s - 1) fOR) = (5 - )2 fD(R) = 2(s - 1))
=g =By + Br(A - X))+ Ba(A - Ay

gOM) = By=(s- A", gD =B, = (s - A)?

gAM) =2B,=2(s - 1))
—gM) = (=MD (- AP -A) F (s -2 )P - Ay
—g(A)=(s-A) T+ (s-A)HA-L)+(s-A)3(A- L)

12



01 0 00 1
A-AI=|0 0 1|, (A-AD2=|0 0 0
000 0 0

1 00 01 0 00 1
g(A)=(s=2)"0 1 0]|+(-2)20 0 1|+3s=%)70 0 0
00 1 000 00 0

s=h (5-n) (-n) ettt tleM2
_ 1 1
(I-A) ' =g(A)=| 0 el e =LEe™)=L|| 0 " te™
1
. . 11 0 eklt

Today:

* We will compute et
* Some of its properties;
» Solution to a continuous-time system

x=Ax+Bu; y=Cx+Du
* Solution to the discrete-time system
x[k+1]= A[k]+Bu[k]; y[k]=Cx[k]+ Dul[k]

» Equivalent state equations



State-Space Solutions and Realizations
Solutions of Dynamic Equations

:’.

x:nxl =——»
u: px1 y:gx1

* Consider a linear system:
x=Ax+Bu; y=Cx+Du

— A: nxn real matrix; B: nxp real matrix
— C: gxn real matrix; D: gxp real matrix

— Given x(t,) = X, and u(-) = A unique solution x(-), y(-)
— What is the solution?

» Recall that earlier we derived the solution for the
input/output description based on superposition:

gu(t-1 g,t-1) g,(t-7)
y(t)= j.G(t—r)u(r)dt, Git—r)=| 8D 8x(t-D) gy (t-T)
§ ga(t-0 got-1 g, -1
Questions:
— Given system matrices, A,B,C,D, what is G(t)?
— What is the response due to initial state?
* Another approach is by using Laplace transform:
9(s) = C(sI- A) 'x(0)+[C(sI- A) 'B+D]i(s)

— A downside: the Laplace transform of u(t) may be
not available, you may need to approximate it. ¢



State-Space Solutions

The system: % =Ax+Bu; y=Cx+Du
Given x(0) and u(t) for t > 0. The solution for x and y is

x(t) = e™x(0) + J.Ot e PBu(r)dr;

y(t) = Ce"'x(0) + [ Ce ™ Bu(r)d 7 + Du()

G(t-1)=CeAt-)B

— Clearly two parts: zero-input resp. + zero-state resp.

— Linearity also obvious.

— We know how to compute e*t. The integration can
be done numerically through discretization.

k k-1 .
_[OAeA(t_T)Bu(r)dr ~ > " BuiA) A 17
i=0

We first consider the state x:

x(t) = Ax(t)+ Bu(t); (™)
Recall that LieAt _ At = oM 4 The key part
dt
Mx=e Mk +—(eM)x=e Mk —eMAX (*%)

—e
dt
Plug (*) into (**) %eAtx —e MAx+e MBu—eMAx=¢ “Bu
=) de “'x(t) = e MBu(t) dt
Integrate from 0 to t; -Ar N RV
g [e X(T)]O IO e "Bu(r)dr
e Vx(f)—x(0) = JZ e *"Bu(r)dr
Premultiplying eA! to both sides, noting eAteAt=1

x(1) = e""x(0) + Iot e Bu(r)dr 8




We verify that the solution

x(¢) = e*x(0) + I; e “Bu(r)dr

satisfies  x(t) = Ax(t)+ Bu(t);
X(t) = %[eA‘X(O)I + jo eA(I'T)Bu(T)er
= Ae™x(0) + jo Ae*““Bu(r)dt+e*““Bu(r) |._,
= A(eAt x(0)+ J:)t eA(t'T)Bu(T)d‘c) +Bu(?)
= Ax(t)+Bu(t) /

Also, it is clear that the initial condition is satisfied.

Finally, |y(f)=Cx(t)+Du(t)

= Ce"x(0) + jo Ce " Bu(r)dz + Du(t)

Different ways to compute eAt:

* From Definition 1:
— Form A()L), and find {A.} and (e")Y],_,.
— Construct an (n - 1)* order polynomial such that
g\ = ()], _,; foralliand/
- M= g(A) )
* From Definition 2: ¢ ="
k=0

ARt
T suitable for computer

+ Use Jordan form A=QAQ!, eAt=QerQ-!

« Use the inverse Laplace transform of (sI-A).

eA=L1 (SI'A)-I 20



Example: An LTI system:

X(t):[_oz _13}x(t)+[ﬂu(t); y=[1 0]x

Given x(0)=0; u(t)=1, for t > 0. Compute y(t), t > 0.

Step 1: Compute e*t. Eigenvalues of A are A,=—1; A,=—2.
Let g(A) = aA+b; f(L)=eM

From g(-1)=-atb=¢*; g(-2)=-2at+b=¢?!. =a=e"'-e¢?2!; b=2¢"-e2t

_ _ 0 1 - oy 10
eAtzaAerlz(e‘—ez‘)[_2 _3}+(2et—e2t)[0 1}

_ Dot e et —e 2t
—2et42e® —e'42e™

Step 2: From y(t) = CeAtx(O) + J.(: CeA(t'T)Bu(T)d‘[
y(®) = .[0‘ [1 O]CA(PT) |:(1):|u(z')d‘r = J.O‘ (e’("f) —e 29 dr

ro 1 . 1 P
=¢'[e ]})—Ee e’ ]5=5—e‘+5e * 21

Some properties about the zero-input response

X(t) = eAtXO M el tzem/2! t3e)”t/3!
At Mo 2 0
: At 0 e te t7e™ /2!
Consider a Jordan block ™ = 0 At t M/
€ €
0 0 0 M
For a general A, the terms of eA! are linear combinations of
et tel, ettt e, i=1,2,-,m

= Re(;) <0, forall .1, then as t — oo, all terms converges to 0,
eAl— 0, x(t) always converges to 0. — Stable system.

= Re();) >0, for some .1, then as t — oo, some terms diverge.
There exist x,, such that x(t) grows unbounded. Unstable

= Re();) <0 forall .1, all eigenvalues with 0 real parts are
simple, eAtis bounded for all t but not converge to 0. critical case

® Re(A) <0 for all .i, some eigenvalues with 0 real parts are
repeated, eA' unbounded; x(t) unbounded for some x,,. unstablzg
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Today:

* We will compute et
* Some of its properties;
 Solution to a continuous-time system

x=Ax+Bu; y=Cx+Du

» Solution to the discrete-time system
x[k +1]= A[k]+ Bu[k]; y[k]= Cx[k]+ Du[k]

« Equivalent state equations

23

Discretization | x(t) = x(T), x(2T), ... x(kT), ...

A continuous-time system X =Ax+Bu; y=Cx+Du

We use discretization for
 Digital simulation with computer;
* Implementation through a digital controller
Approach 1: Suppose we know x(kT). If T is small enough,
x(kT + T) — x(kT) ~ x(kT)T = (Ax(kT) + Bu(kT))T
x((k +1)T) = x(kT) + ATx(kT) + BTu(kT) = (I + AT)x(kT) + BTu(kT)
y(kT) = Cx(kT) + Dy(kT)
x[k] = x(kT); x[k +1]= (I+ AT)x[k] + BTu(k)
u[k]:=u(kT) y[k]= Cx[k]+ Du[k]
Simple but not accurate.



Approach 2:

Real situation: control u implemented by computer and
a digital-analog converter. During a holding period,

u(t) = u(kT) for all te [KT, (k+1)T), k=0,1,2,...
Solution at kT and (k+1)T,
x[k] = x(KT) =e*Tx(0) + [ e"*""Bu(z)dv

(k+1)T
x[k+1]=*DTx(0)+ [ e** T Bu(z)dr

k+
— AT [eAka(O) + _[0( . e T IBuy(r)dr

kT T+T
_ eAT|:eAkTX(0)+J.O eA(kT—t)Bu(T)dT:l_i_J‘ eA((k+l)T—t)Bu(z-)dT

K
kT
T
=e*x[k] + J.O e*TYBu[kldt

= e x[k]+ UOT eA(T")dr)Bu[k] = A x[k]+B,u[k] 25

The discretized system:
x[k +1]= A x[k]+ B u[k]
ylk]=Cx[k]+D,u[k]

where A, =¢"*', B, = UOT eA(T")dt)B, C,=C, D,=D

» This exactly describes the input-state, input-output
relationship at instants T, 2T, ... , kT, ...
For By, notice that
J;)T e*Tdr=e"" J;)T e NMdr=—e"4" _[OT (-Ae )t
AT [T oA AT ] —ac]T
—eAjode —eA[e ]O

=" A |e AT -1|=AT[A, 1] m® B, =A"'[A,-1]B

26
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From CT sys. to DT sys.
X = Ax+ Bu x[k +1]= A x[k]+ B u[k]
y=Cx+Du y[k]=C x[k]+D,u[k]

Let the sampling period be T. Then

A, =e*, B,=A'[A,~I|B, C,=C, D,=D

Example: 0 1 0 0
A= 0 O 1|, B=|0|, T=0.1
-1 -2 -3 1

Use matlab: Ad=expm(A*T); Bd=inv(A)*(Ad-eye(3))*B;

Ad Bd
0.9998 0.0997 0.0045 0.0002
-0.0045 0.9908 0.0861 0.0045
-0.0861 -0.1767 0.7325 0.0861

Solution of Discrete-time Equations

The DT system:

x[k +1]= Ax[k]+ Bu[k]
y[k] = Cx[k]+ Du[k]

The solution is derived in a straightforward way:

x[1]=Ax[0]+Bu[0]
x[2]=Ax[1]+Bu[1]=A(Ax[0]+Bu[0])+Bu[ 1]
=A2x[0]+ABu[0]+Bu[1]

x[3]=Ax[2]+Bu[2]=A3x[0]+A2Bu[0]+ABu[1]+Bu[2]

x[k] = A*x[0] + kzi A" 'Bu[m]

m=0

y[k] = CA*x[0] + kzi CA“ ™ 'Bu[m] + Du[k]

27

28
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Some properties about the zero-input response

x[k] = Akxo A KA k(k =AY /2! k(k —1)(k —2)Ak /3!
. « |0 Ak kA k(k —1)1* /2!

Consider a A= o o Ak 1O

Jordan block 0 0 0 2k

For a general A, the terms of A¥ are linear combinations of
A kk-DAS e, i=12,m
* |A] <1, forall .i, then as k — oo, all terms converges to 0,
Ak— 0, x[k] always converges to 0. — Stable system.
* [A]>1, for some .i, then as k — oo, some terms diverge.
There exist x,, such that x[k] grows unbounded. Unstable
* [A] <1 forall .i, all eigenvalues with unit magnitude are
simple, Ak is bounded for all k but not converge to 0. Critical case

* A <1 forall .i, some eigenvalues with unit magnitude are
repeated, A¥ unbounded; x[k] unbounded for some x, Uns‘[abl2e9

An Earlier Example: Interest and Amortization

= How to describe paying back a car loan over

four years with initial debt D, interest r, and

monthly payment p?

1 Let x[k] be the amount you owe at the

beginning of the kth month. Then
x[k+1]=(1 +r) x[k] — p
] Initial and terminal conditions: x[0] = D and
final condition x[48] =0
1 How to find p?
» By solving the system, x[48]=a, D+a,p — p

30
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The system:

x[k+1]={(1 + 1) x[k] +/(-D)}p |
A B u

Solution:

qm:qu+§A“W?wm

:4Lnfqm+§kLnfm*enp

1+1)" -1
()p
T

:(uqﬁD—(§ﬁ1+ﬂ“ij=(anD—

Given D=20000; r=0.004; x[48]=0; ~ Your monthly
payment

(1+0.004)* -1

0 =(1+0.004)*20000 — _
(1+ ) 0.004 p p—458.77§11

Today:

* We will compute et
Some of its properties;
Solution to a continuous-time system

x=Ax+Bu; y=Cx+Du

Solution to the discrete-time system
x[k+1]=A[k]+Bu[k]; y[k]= Cx[k]+ Du[k]

» Equivalent state equations

32
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Equivalent state equations

Given state-space description:

x=Ax+Bu; y=Cx+Du (*)
Let P be a nonsingular matrix.
Define X =Px, then x =P'X

X = Px = PAX + PBu=PAP X+ PBu
y=Cx+Du=CP'X+Du

Denote A=PAP"', B=PB, C=CP"', D=D
X=AX+Bu; y=Cx+Du (**)
> (*)and (**) are said to be equivalent to each other
and the procedure from (*) to (**) is called an
equivalent transformation
Note: For DT systems, the equivalent transformation is the safie.

Recall: 4 =PAP" and A are similar to each other

» They have same eigenvalues. Same stability perf.

What do we expect from the two transfer functions:
G(s)=C(sI-A)'B+D and G(s)=C(sI-A)'B+D

=) | G(s)=G(s)

To verify,
G(s)=C(sI-A)'B+D
=CP'(sPP"' —~PAP)'PB+D
=CP" (PI-AP")'PB+D  [(xyz)' =7y 'X"

=CP'PGsI-A)'P"'PB+D =C(sI-A)'B+D

34
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Example: Given a state equation
0 -1 00
. 1 0 00 -1
x=Ax+Bu, A=, | o} B-
4 3 21

LetQ:[B A’B  AB ASB](the inverse exist). Definez=Q"'x
Compute A and B such that z=Az+ Bu

-1

Q'AQ=A <& AQ=QA

Solution: - =
Q-lB =B < B=QB

LetK:[a1 a, a, a41
AQ=A[B A’B AB A'B|=|AB A'B A’B A‘B]
QA= [Qa, Qa, Qa, Qa]

AB=Qa =[B A’B AB A'Bla; A’B=Qa,=[B A’B AB A’Bla,;
A’B=Qa,=[B A’B AB A'Bla; A'B=Qa,=[B A’B AB A’Ba,

0 0 0
. 0 0
Immediately, a, = N el How to get a,? N
0 1 0
0 -100
a, has to satisty FE LI
11 0 1]
AB=[B 4B 4B A'Bla, *) 43 20
Let a,=[k, k, k; k,]’, (*) can be written as
A'B=k,B+k,A’B+k,AB+k,A’B (**)

From Cayley-Hamilton’s theorem: A(A)=0.
AGB)=sI-A = (s> +1)(s’ —s-2)=s" -5’ —s" -5 -2
AA)=A*-A-A’-A-2I=0 = A'B_A’B—A’B—AB-2B=0
= A’B=2B+A’B+AB+A'B™ | =2 k=k=k, =1
a=[2111],

!

A=

For B, it satisfies
B=[B A’B AB A’B|B = B-

S O O =

36

S = O O
- o o O
S O = O
—_— = =N



Next Time:

* How to deal with complex eigenvalues

* Realization of a transfer function

« Simulation of systems by using Simulink
— Course project

And more from linear algebra

* Quadratic functions and positive-definiteness

37

Problem Set #7
1. The system:
-2 0 0 1
x=1 0 0] x, x(0)=|-1
1 1 =2 1

Compute x(t) for t > 0.

2. For the LTI system
=" T xo+ "] uw; y=1-1 1
KO- | %O+ | w0 y=[-1 1

a) Givenx(0)=[1 1]’, compute the zero-input response y(t);

b) Givenu(t)=I1 for t > 0, compute the zero-state response y(t);

c¢) Let the sampling period be T=0.1. Use matlab to compute the
discretized system matrices A ,B. 38
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Midterm Review (Lecture #1-Lecture #6)

= Modeling of LTI systems
= Linear algebra

— Vector spaces: LI, LD, basis, inner product, orthogonal

— Linear algebraic equation: range space, null space,
conditions for the existence of solution, all solutions

— Eigenvalues, eigenvectors, diagonal form

— Generalized eigenvectors, Jordan from

— Polynomial functions of a matrix
— eAt

39

Model of a circuit:

» State variables?
— 1y, 1, and v,

+ State and output equations?

di, _ =u-Rji-v di, R,. 1 1
= —-— ]—L—1V+L—lu
di, R, 2+LV
L

x =Ax+Bu
y=Cx+Du 40

20



Integrators + amplifiers « What are the state

> it variables?
: - y(®
+ X X
1/s 1/s  Select output of
u(t) - X X . SV
2 | Integrators as SVs
2] * What are the state and
ions?
% =%, output equations’
Xz =u- 2X1 y = X2
x1(To 1qrx7[10 :‘m X| } .
A B C D
41
Example

+
oSy
|
=]
|
+
A\

42
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Linear Algebra Basics

= Elementary operations that preserve determinant
= Elementary operations that preserve rank

= Use elementary operation to transform a matrix into upper
or lower triangular form

43

Linear Independence

= A set of vectors {X,, X,, .., X,,} iIn R"is LD if
3 {o,, &y, .., 0} In R, not all zero, s.t.

oX; +oLXx, +.. +ta,x, =0 (*)
= Ifthe only set of {a;};_; o m S-t. the above holds is
o, =a,= .. =0o,=0
then {X;};_; {, , 1 said to be LI

» Given {Xy, Xy, ., X} fofym[x X, -« Xu]

If Aa=0 has a unique solution, LI;
If Aa=0 has nonunique solution, LD.

If rank(A)=m, the solution is unique = LI
If rank(A)<m, the solution is not unique = LD.

44



o () 0D D0
(et ARG
HES R

* LI if the rank of the matrix equals the number of columns
45

Basis and Representations

« A setof LI vectors {e,, e,, .., €,} of R"is said to be a
basis of R" if every vector in R" can be expressed as a
unique linear combination of them

— For any x € R", there exist unique {B,, B, .., B,,} s.t.

X =Pe; +Paey +.. +Pnen = iﬁiei B
o 5

X = [el €y ... en] .

x=[e; e .. e,]P B.

— B: Representation of x with respect to the basis

Theorem: In an n-dimensional vector space (or subspace),
any set of n LI vectors qualifies as a basis

46
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Change of basis:
* (Given a basis (e1 €, .. en);

* Let the new basis be:
(61 €, .. En):(el e, .. €,
Then,
(e, e, .. e))=( & .. ¢)Q"
 For x such that

x=(e, e .. e

Wehave x=(¢ & .. € )Q'p

47

Linear algebraic equation Ax =y

—Ifp(A) #p([A :y]) (i.e., y € R(A)), then the
equations are inconsistent, and there is no
solution

—If p(A) = p([A : y]), then 3 at least one solution
* I[f p(A) =p([A : y]) <n (1e., V(A) > 0), then
there are infinite number of solutions
* I[f p(A) =p([A : y]) =n (1e., V(A) =0), then
there is a unique solution

— For an nxn matrix, Ax =y has a unique solution
V' y eR™iff Al exists, or |A] # 0

48
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Key concepts: Assume A e R,

Range space R(A): {yeR™: exists xeR"s.t. y=Ax}
* subspace of R™,
* dimension = p(A), rank of A
* basis: formed by the maximal number of LI
columns of A
Null space N(A): {xeRm Ax=0}
* subspace of R?,
* dimension v(A)=n-p(A)
* basis: formed by v(A) LI solutions to Ax=0.

49

0 -1 -2 2
0 0 0 1

a, a, a, a,

Example: {1 2 3 4}
A=

The range space R(A) is spanned by {a,,a,,a5,a,}
What is the relationship among the vectors?
What are p(A), v(A)? The dimension of R(A)?
The basis of R(A)? The null spaces?

50
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Parameterization of all solutions

Theorem: Given mxn matrix A and a mx1 vector y.
— Let x, be a solution to Ax =Y.
— Let v(A)=k.
— Suppose k>0 and the null space is spanned by
{n,n,,...n. }
» The set of all solutions is given by
{x =x,tonta,n+...toyn: o;€R}

51

Eigenvalues, eigenvectors and diagonal form

A scalar A is called an eigenvalue of AeCv ™ if 3
anonzero x € Cn, such that Ax = Ax and x is the
eigenvector associated with A.

Case 1: All eigenvalues are distinct

Theorem: the sets of eigenvectors {v,,v,,....,v,} 1s LL
Let Q=[v, v, ... v,], then

)
Q'aQe? * 0
O 0 . A

52
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Definition. A vector v is a generalized eigenvector
of grade k associated with A if

(A=AD)Kv=0, but(A-AD)v0
Denote v, =v,

Vi1 =(A=Av=(A-Al)vy, Avy =V +Avg
Vo =(A- M)2 v=(A-A)vy_q, Avy_ =V o +Avi
vi=(A- M)k_lv =(A-Al)v,, Avy =vi+Aiv,
(A=A)vy =(A-AD)Kv =0, Avy =Av,

— What is the new representation 0
w.rt. {v,, v, ., Vi }? 1€, 1o a 0
AlVivy ... vi]=[V{ V5 ... v JA o 1

A 0.0 00 .*%
LA .0 AlJordanblock

* Polynomial functions of a square matrix.
« Computation of eAt.

Today’s material will not be included in the midterm.

Questions?
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Midterm exam: 6.30-9:30 pm, Oct 20 (Thursday)

Open book, open notes

No calculator, No Laptop

Good luck!
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