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16.513   Control Systems (Lecture note #7)

A big picture: one branch of the course

The linear algebra tools will also be useful for other objectives. 

Vector spaces
matrices

Algebraic 
equations

Eigenvalues
Eigenvectors

Diagonal form
Canonical form

Matrix functions,
such as eAtDuCxy Bu;Axx

:   toSolutions


• Last Time: 
– Generalized eigenvectors, Jordan form

– Polynomial functions of a square matrix, eAt
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Review: diagonal form and Jordan form

 All eigenvalues of A are distinct  diagonalizable
 There are repeated eigenvalues, 

e.gi  with multiplicity k.
• If  (A-i I)= n - (A-i I)=k,  

there exist  k LI solutions to (A-i I)v=0 and they
are all eigenvectors. 
If this is the case for all repeated eigenvalues 
 diagonalizable

• If  (A-i I)=n - (A-i I) < k,
there exist generalized eigenvectors, 
 not diagonalizable, there exist Jordan blocks
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Definition. A vector v is a generalized eigenvector
of grade k associated with  if

  ,0vIA k 

– What is the new representation 
w.r.t. {v1, v2, ., vk}? i.e.,

A[v1 v2 … vk] = [v1 v2 … vk]Ā

  0vIAbut 1k  

v,   vDenote k 
    ,vIAvIAv k1k 

    ,vIAvIAv 1k
2

2k  

    ,vIAvIAv 2
1k

1  

    ,0vIAvIA k
1  11 vAv 

212 vvAv 

1k2k1k vvAv  

k1kk vvAv  

A Jordan block
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Polynomial functions of a square matrix

 Let f()=i=1
kiAi  be a polynomial function of A.

If A=QĀQ-1,  then  f(A) = Qf(Ā)Q-1. 
 Let () be the characteristic polynomial of A. 

Cayley-Hamilton Theorem:  (A) = 0

Any polynomial can be expressed as a polynomial of 
degree n-1   
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Theorem. Given ACnn and a polynomial f) Let the 

distinct eigenvalues of A be i, i=1,2,...,m, each with 

multiplicity ni, (n1+n2+…+nm= n). Let

  
   

)f(λ)(λf   ,
dλ

λfd
λfwhere ii

(0)

λλ

i

i
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1n
1n10 λβλββ)g( 
 λ

f(l)(i) = g(l) (i), l = 0, 1, ..,ni -1, i = 1, .., m

Then f(A)=g(A) iff 

Under the above condition, the coefficients i’s can 
be determined 
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Definition: Given ACnn . Let the distinct eigenvalues of A 

be i, i=1,2,...,m, each with multiplicity ni, (n1+n2+…+nm= n). 

Let f() be a general function with  {f(l)(i)} well defined. 

Suppose that g() is a polynomial satisfying

f(l)(i) = g(l) (i), l = 0, 1, ..,ni -1, i = 1, .., m

Then f(A)  g(A).

Generally, g is a polynomial of degree n-1. 

General functions of a square matrix:
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• Some properties of eAt;
• Solution to a continuous-time system

DuCxyBu;Axx 

Today:  

Du[k]Cx[k]y[k]Bu[k];A[k]1]x[k 

• Solution to the discrete-time system

• Equivalent state equations
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Some properties for eAt
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From the definition,

The following can be verified

  ;ee

;eee

I;e

1AtAt

AtAt)tA(t

0

2121











Caution: eA+B usually does not equal to eAeB. 
We only have eA+B=eAeB when AB=BA
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More properties:
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More properties:
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 This will be used to compute the output response
under constant inputs.
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Example. Laplace Transform of eAt
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• How to compute (sI - A)-1? 
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Example. f() = (s - )-1.  Compute f(A) = (sI - A)-1,  

.

00

10

01

A

1

1

1























– () = ( - 1)3 , with 1 of multiplicity 3 

– f(0)(1) = (s - 1)-1, f(1)(1) = (s - 1)-2, f(2)(1) = 2(s - 1)-3

– g() = 0 + 1( - 1) + 2( - 1)2

g(0)(1) = 0 = (s - 1)-1, g(1)(1) = 1 = (s - 1)-2

g(2)(1) = 22 = 2(s - 1)-3

– g() = (s - 1)-1 + (s - 1)-2( - 1) + (s - 1)-3( - 1)2

– g(A) = (s - 1)-1I + (s - 1)-2(A - 1) + (s - 1)-3(A - 1)2
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• We will  compute eAt;
• Some of its properties;
 Solution to a continuous-time system

DuCxyBu;Axx 

Today:  

Du[k]Cx[k]y[k]Bu[k];A[k]1]x[k 

• Solution to the discrete-time system

• Equivalent state equations



8

15

State-Space Solutions and Realizations

• Consider a linear system:

Solutions of Dynamic Equations

DuCxyBu;Axx 

– A: nn real matrix;  B: np real matrix 

– C: qn real matrix;  D: qp real matrix
– Given x(t0) = x0 and u() A unique solution x(), y()
– What is the solution?  

x: n1
u: p1 y: q1

16

• Recall that earlier we derived the solution for the 
input/output description based on superposition:

,τ)u(τ)dτG(ty(t)
t

t0

 





















τ)-(tgτ)-(tgτ)-(tg

τ)-(tgτ)-(tgτ)-(tg
τ)-(tgτ)-(tgτ)-(tg

τ)G(t

qpq2q1

2p2221

1p1211

Questions:
– Given system matrices, A,B,C,D, what is G(t)?

– What is the response due to initial state?

• Another approach is by using Laplace transform: 

(s)ûD]BA)[C(sIx(0)A)C(sI(s)ŷ 11  

─A downside:  the Laplace transform of u(t) may be 
not available, you may need to approximate it.  
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State-Space Solutions

DuCxyBu;Axx The system:

Given x(0) and u(t) for t ≥ 0.  The solution for x and y is 

Du(t))d(BuCex(0)Cey(t)

;)d(Buex(0)ex(t)
t

0

τ)A(tAt

t

0

τ)A(tAt
















─ Clearly two parts: zero-input resp. + zero-state resp.
─ Linearity also obvious. 
─ We know how to compute eAt.  The integration can 

be done numerically through discretization. 
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G(t-)=CeA(t-)B
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We first consider the state x: 
(*)                                     Bu(t);Ax(t)(t)x 

Recall that AeAee
dt

d AtAtAt 

dtd  Bu(t)ex(t)e AtAt  

)x(e
dt

d
xe AtAt   

Integrate from 0 to t;     )dBu(e)x(e A

00 
A  

tt

 )dBu(e)0x()x(e A

0

A  
tt t

Premultiplying eAt to both sides, noting  eAte-At = I

 )dBu(e)0x()x( )-A(t

0
tAtet

The key part

AxeeAxe xe
dt

d AtAtAtAt   BuPlug (*) into (**)

xe
dt

d At (**)     Ax        exe AtAt   

BuAte
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 )dBu(e)0x()x( )-A(t

0
tAtet

             Bu(t);Ax(t)(t)x 

We verify that the  solution

satisfies 





   )dτBu(ex(0)e

dt

d
(t)x τ)-A(tt

0

At τ

tτ
τ)-A(tτ)-A(tt

0

At |)Bu(e)dτBu(eAx(0)Ae   ττ

)Bu()dτBu(ex(0)eA τ)-A(tt

0

At tτ 




  

Bu(t)Ax(t)

Also, it is clear that the initial condition is satisfied.

u(t))dBu(eC)0x(       

Du(t)Cx(t))y(

)-A(t

0
DCe

t
tAt 



 

Finally,
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Different ways to compute eAt:

   computer  for  suitable   ,
k!

tA
e

0k

kk
At 







• From Definition 1:  
– Form (), and find {i} and (et)(l)|i

– Construct an (n - 1)th order polynomial such that 

g(l)(i) = (et)(l)|i for all i and l

– eAt = g(A)

• From Definition 2:

• Use Jordan form  A=QĀQ-1,   eAt= QeĀtQ-1

• Use the inverse Laplace transform of  (sI-A)-1.

eAt=L-1(sI-A)-1
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Example:  An LTI system:

0]x  [1y   u(t);1
0x(t)32

10(t)x 
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  τ

Given x(0)=0; u(t)=1, for t ≥ 0. Compute y(t), t ≥ 0. 

Step 1: Compute eAt.  Eigenvalues of A are 
Let g() = a+b; f()=et.

From g(-1)=-a+b=e-t;  g(-2)=-2a+b=e-2t. a=e-t-e-2t; b=2e-t-e-2t;
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Step 2:
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Some properties about the zero-input response

0
Atxex(t) 

Consider a Jordan block 
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For a general A, the terms of eAt are linear combinations of

m,1,2,i,et,,et,te,e tλ1ntλ2tλtλ iiiii  

 Re(i) <0,  for all .i,  then as t , all terms converges  to 0, 
eAt 0, x(t) always converges to 0.   Stable system.

 Re(i) > 0,  for some .i, then as t , some terms diverge.
There exist x0 such that x(t) grows unbounded. Unstable 

 Re(i≤ 0  for all .i, all eigenvalues with 0 real parts are   
simple,  eAt is bounded for all t but not converge to 0. critical case
 Re(i) ≤ 0  for all .i, some eigenvalues with 0 real parts are   

repeated,  eAt unbounded; x(t) unbounded for some x0.  unstable
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• We will  compute eAt;
• Some of its properties;
• Solution to a continuous-time system

DuCxyBu;Axx 

Today:  

Du[k]Cx[k]y[k]Bu[k];A[k]1]x[k 

 Solution to the discrete-time system

• Equivalent state equations

Discretization

DuCxyBu;Axx A continuous-time system

We use discretization for 
• Digital simulation with computer;
• Implementation through a digital controller

Approach 1: Suppose we know x(kT).  If T is small enough,

Bu(kT))T(Ax(kT)(kT)Txx(kT)T)x(kT  

x((k 1)T) x(kT) ATx(kT) BTu(kT) (I AT)x(kT) BTu(kT)
y(kT) Cx(kT) Dy(kT)

      
 

u(kT):u[k]

x(kT);:x[k]




Du[k]Cx[k]y[k]

BTu(k)AT)x[k](I1]x[k




Simple but not accurate.

x(t)  x(T), x(2T), … ,x(kT), …
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Approach 2:
Real situation: control u implemented by computer and
a digital-analog converter. During a holding period, 

u(t) = u(kT)  for  all   t  [kT, (k+1)T), k=0,1,2,…

)dτBu(ex(0)eT)x(:x[k] τ)-A(kT
kT

0

AkT τk 

Solution at kT and (k+1)T,

dτ)Bu(ex(0)e1]k[x
1)T(k

0

τ)-1)TA((k1)TA(k 
   τ





  


  dτ)Bu(ex(0)e

1)T(k

0

τ)-A(kTAkTAT τe

dτ)Bu(edτ)Bu(ex(0)ee
TkT

kT

τ)-1)TA((k
kT

0

τ)-A(kTAkTAT 
 



  ττ

dτBu[k]ex[k]e
T

0

τ)-A(TAT 

Bu[k]dτex[k]e
T

0

τ)-A(TAT 




  u[k]Bx[k]A: dd 
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The discretized system:

u[k]Dx[k]Cy[k]

u[k]Bx[k]A1]x[k

dd

dd




DDC,CB,dτeB,eA  where dd

T

0

τ)-A(T
d

AT
d 





 

 This exactly describes the input-state, input-output 
relationship at instants T, 2T, … , kT, … 

For Bd,  notice that

dτee  dτe
T

0

AτATT

0

τ)-A(T   dτ)Ae(e 
T

0

Aτ1AT    A

 TAeAA 0
1ATT

0

Aτ1AT edee   
  I][AAIeAe d

1AT1AT  
BI][AAB d

1
d  
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u[k]Dx[k]Cy[k]

u[k]Bx[k]A1]x[k

dd

dd




DDC,CI]B,[AAB,eA ddd
1

d
AT

d  

From CT sys.  to  DT sys. 

DuCxy
BuAxx




Let the sampling period be T. Then  

Example:
0.1T,

1
0
0

B,
321

100
010

A 




























Use matlab:  Ad=expm(A*T);   Bd=inv(A)*(Ad-eye(3))*B;

0.9998    0.0997    0.0045
-0.0045    0.9908    0.0861
-0.0861   -0.1767    0.7325

0.0002
0.0045
0.0861

Ad Bd
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Solution of Discrete-time Equations

The DT system:

Du[k]Cx[k]y[k]     
Bu[k]Ax[k]1]x[k




The solution is derived in a straightforward way:

x[1]=Ax[0]+Bu[0]
x[2]=Ax[1]+Bu[1]=A(Ax[0]+Bu[0])+Bu[1]

=A2x[0]+ABu[0]+Bu[1]
x[3]=Ax[2]+Bu[2]=A3x[0]+A2Bu[0]+ABu[1]+Bu[2]

Du[k]Bu[m]CAx[0]CAy[k]

Bu[m]Ax[0]Ax[k]

1k

0m

1mkk

1k

0m

1mkk
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Some properties about the zero-input response

0xAx[k] k
Consider a 
Jordan block

For a general A, the terms of Ak are linear combinations of

m,1,2,i,,1)λk(k,kλ,λ k
i

k
i

k
i  

• |i| < 1,  for all .i, then as k , all terms converges  to 0, 
Ak 0, x[k] always converges to 0.   Stable system.

• |i| > 1,  for some .i, then as k , some terms diverge.
There exist x0 such that x[k] grows unbounded. Unstable 

• |i≤ 1  for all .i, all eigenvalues with unit magnitude are   
simple,  Ak is bounded for all k but not converge to 0. Critical case

• |i| ≤ 1  for all .i, some eigenvalues with unit magnitude are   
repeated,  Ak unbounded; x[k] unbounded for some x0 Unstable
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λ000
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3!2)λ1)(kk(k2!1)λk(kkλλ

A
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An Earlier Example: Interest and Amortization

 How to describe paying back a car loan over 

four years with initial debt D, interest r, and 

monthly payment p?

� Let x[k] be the amount you owe at the 

beginning of  the kth month. Then

x[k+1] = (1 + r) x[k]  p 

� Initial and terminal conditions: x[0] = D and     
final condition x[48] = 0
� How to find p?

 By solving the system, x[48]=a1 D+a2 p  → p
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x[k+1] = (1 + r) x[k] + (1) p 

The system:

Solution: A B u

p
r

1r)(1
Dr)(1pr)(1Dr)(1      

1)p(r)(1x[0]r)(1       

Bu[m]Ax[0]Ax[k]

k
k

1k

0m

1mkk

1k

0m

1mkk

1k

0m

1mkk









































Given D=20000;  r=0.004;  x[48]=0;

p
0.004

1)004.0(1
00002)004.0(10      

48
48 

 p=458.7761

Your monthly
payment
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• We will  compute eAt;
• Some of its properties;
• Solution to a continuous-time system

DuCxyBu;Axx 

Today:  

Du[k]Cx[k]y[k]Bu[k];A[k]1]x[k 

• Solution to the discrete-time system

 Equivalent state equations
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Equivalent state equations 

(*)                  Du        CxyBu;Axx 
Given state-space description:

Let P be a nonsingular matrix. 
xPx    then  Px,x  Define -1

PBuPAxxPx   PBuxPAP 1  

DuxCPDuCxy 1  

DD   ,CPC   PB,B  ,PAPA  Denote -1-1 
(**)                   u         DxCyu;BxAx 

 (*) and (**)  are said to be equivalent to each other
and the procedure from (*) to (**) is called an
equivalent transformation

Note: For DT systems, the equivalent transformation is the same.    
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Recall: othereach  similar to  areA    and  PAP-1A

 They have same eigenvalues. Same stability perf.

What do we expect from the two transfer functions:

  DBA)C(sIG(s) 1   DB)A(sIC(s)G 1  and

 (s)GG(s) 

To verify, 

DB)A(sIC(s)G 1  

1111 XYZXYZ)(  

DPB)PAP(sPPCP         111-1  

DPB)A)P-(P(sI CP -1-1-1 

DPBPA)P(sICP 111   DBA)C(sI 1  
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Bu,Axx 
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1

1

1

B,

1234

1011

0001

0010

A

  xQz Define   exist).  inverse  (the QLet -132  BAABBAB

uBzAz  such  that  B   and  A   Compute 

Example: Given a state equation         

      BBQ  

AAQQ
1-

-1



Solution:    .aaaaALet 4321

   BABABAABBAABBABAAQ 42332 

Immediately, .

0

0

1

0

a,

1

0

0

0

a   ,

0

1

0

0

a 321



























































 How to get a4?

   
    4

32
4

4
3

32
3

2

2
32

2
3

1
32

1

aBAABBABQaBA   ;aBAABBABQaBA

  ;aBAABBABQaBA  ;aBAABBABQaAB





BQB    

AQAQ





 4321 QaaQaQaQAQ 
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a4 has to satisfy 

  (*)               aBA 4
324 BAABBAB

Let a4=[k1 k2 k3 k4]’,  (*) can be written as 

(**)                              BAkABkBAkBkBA 3
43

2
21

4 

From Cayley-Hamilton’s theorem:  (A)=0.

2)21)(s(s|AsI|Δ(s) 23422  sssss

02AAAAΔ(A) 234  I

 BAABBA2BBA 324  k1= 2, k2= k3=k4 =1

a4=[2  1  1  1]’,





















1010

1001

1100

2000

A

 BBAABBA  BB

  satisfiesit   ,BFor   
32





















0
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0

1

B








































 



1

1

1

1

B,

1234

1011

0001

0010

A

02ABAAA 234  BBBB
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Next Time:  

• How to deal with complex eigenvalues
• Realization of a transfer function
• Simulation of systems by using Simulink

 Course project

And more from linear algebra

• Quadratic functions and positive-definiteness
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Problem Set #7

1.  The system:  

2 0 0 1

1 0 0 , (0) 1

1 1 2 1

x x x

   
        
      



Compute x(t) for t ≥ 0. 

-2 1 1
x(t) x(t) u(t);   y [ 1    1]x

-1 2 1

   
          



2.  For the LTI system

a) Given x(0)=[1  1]’,  compute the zero-input  response y(t);
b) Given u(t)=1 for t ≥ 0, compute the zero-state  response y(t);
c) Let the sampling period be T=0.1. Use matlab to compute the 

discretized system matrices Ad,Bd. 
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Midterm Review  (Lecture #1-Lecture #6)

 Modeling of LTI systems
 Linear algebra

─ Vector spaces: LI, LD, basis, inner product, orthogonal
─ Linear algebraic equation: range space, null space, 

conditions for the existence of solution, all solutions
─ Eigenvalues, eigenvectors, diagonal form
─ Generalized eigenvectors, Jordan from
─ Polynomial functions of a matrix
─ eAt
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Model of a circuit:
• State variables?  

– i1, i2, and v, 

 

++

- - - 
u(t) R2 C

L1 

+ 
y

L2 R1
i1

v

• State and output equations?

1L
1

1 v
dt

di
L 

Cidt

dv
C 

21

2
2

2

22

11
1

1

11

i
C

v
i

C

1

dt

dv

v
L

1
i

L

R

dt

di

u
L

1
v

L

1
i

L

R

dt

di







u

0

0
L

1

v

i

i

0
C

1

C

1
L

1

L

R
0

L

1
0

L

R

dt

dv
dt

di
dt

di

1

2

1

22

2

11

1

2

1


























































































i2

2L
2

2 v
dt

di
L 

 

















v

i

i

0R0iRy 2

1

222

viRu 11 

22iRv 

21 ii 

x
x DuCxy

BuAxx
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• What are the state 
variables?  

• Select output of 
integrators as SVs

 

2

1/s 1/s
+

-u(t) 

y(t)

x
1

x
2

• What are the state and 
output equations?

21 xx 

12 x2ux  y = x2

u
1

0

x

x

02

10

x

x

2

1

2

1



























   u0
x

x
10y

2

1 






A B C D

12 xx 

Integrators + amplifiers
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Example 
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 Elementary operations that preserve determinant

 Elementary operations that preserve rank

 Use elementary operation to transform a matrix into upper 
or lower triangular form  

Linear Algebra Basics

44

Linear Independence

 A set of vectors {x1, x2, .., xm} in Rn is LD if 
 {1, 2, .., m} in R, not all zero, s.t.

1x1 + 2x2 + .. + m xm = 0 (*)
 If the only set of {i}i=1 to m s.t. the above holds is

1 = 2 =  ..  = m = 0
then {xi}i=1 to m is said to be LI

 Given {x1, x2, .., xm}, form  1 2 mA x x ... x

If  A=0  has a unique solution, LI;
If  A=0 has nonunique solution, LD.

If rank(A)=m,  the solution is unique   LI
If rank(A)<m, the solution is not unique   LD. 
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Examples: are the following sets of vectors LI, or LD?  

     ,2
1,1

1,1
1   ,1,1   ,1

1,1
1     ,2,1
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• LI if the rank of the matrix equals the number of columns
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Basis and Representations
• A set of LI vectors {e1, e2, .., en} of Rn is said to be a 

basis of Rn if every vector in Rn can be expressed as a 
unique linear combination of them
– For any x  Rn, there exist unique {1, 2, .., n} s.t.




n
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iinn2211 ee..eex
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n21 :
e...eex

  n21 e...eex

– : Representation of x with respect to the basis

Theorem: In an n-dimensional vector space (or subspace), 
any set of n LI vectors qualifies as a basis
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Change of basis:

  ;e...ee n21• Given a basis

• Let the new basis be: 

   Qe...eee...ee n21n21 

• For x such that 

 βe...eex n21

  βQe...eex 1
n21

-We have 

    -1
n21n21 Qe...eee...ee 

Then,
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– If (A)  ([A : y]) (i.e., y  R(A)), then the 
equations are inconsistent, and there is no 
solution

– If (A) = ([A : y]), then  at least one solution

• If (A) = ([A : y]) < n (i.e., (A) > 0), then 
there are infinite number of solutions

• If (A) = ([A : y]) = n (i.e., (A) = 0), then 
there is a unique solution

─ For an nn matrix, Ax = y has a unique solution 
 y Rm iff A-1 exists, or |A|  0

Linear algebraic equation Ax = y
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Key concepts: Assume ARmn.

Range space R(A): {yRm:  exists xRn s.t. y=Ax}
• subspace of Rm, 
• dimension = (A), rank of A
• basis: formed by the maximal number of LI 

columns of A
Null space N(A):  {xRn: Ax=0}

• subspace of Rn,
• dimension (A)=n-(A) 
• basis: formed by (A) LI solutions to Ax=0.
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Example:

43 2  1 a   a    a   a         
1000
2210
4321












A

The range space  R(A)  is spanned by {a1,a2,a3,a4}
What is the relationship among the vectors?
What are (A), (A)? The dimension of R(A)? 
The basis of R(A)? The null spaces?
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Parameterization of all solutions

Theorem: Given mn matrix A and a m1 vector y.
─ Let xp be a solution to Ax = y.  
─ Let (A)=k.
─ Suppose  k>0 and the null space is spanned by 

{n1,n2,…nk}

 The set of all solutions is given by 
{x = xp+1n1+2n2+…+knk:  iR}
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Eigenvalues, eigenvectors and diagonal form

Case 1: All eigenvalues are distinct

A scalar  is called an eigenvalue of ACnn if   
a nonzero  x  Cn, such that Ax = x and x is the 
eigenvector associated with .  

Theorem: the sets of eigenvectors {v1,v2,….,vn} is LI.
Let Q=[v1 v2 … vn], then 
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Definition. A vector v is a generalized eigenvector
of grade k associated with  if

  ,0vIA k 

– What is the new representation 
w.r.t. {v1, v2, ., vk}? i.e.,

A[v1 v2 … vk] = [v1 v2 … vk]Ā

  0vIAbut 1k  

v,   vDenote k 
    ,vIAvIAv k1k 

    ,vIAvIAv 1k
2

2k  

    ,vIAvIAv 2
1k

1  

    ,0vIAvIA k
1  11 vAv 

212 vvAv 

1k2k1k vvAv  

k1kk vvAv  

A Jordan block

……0
1  . …..
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• Polynomial functions of a square matrix.

• Computation of eAt .

Today’s material will not be included in the midterm.

Questions?
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Good luck!

Open book, open notes

Midterm exam:  6.30-9:30 pm, Oct 20 (Thursday)

No calculator, No Laptop


