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DuCxyBu;Axx Consider the system:

Given x(0) and u(t) for t ≥ 0.  The solution is 

Du(t))d(BuCex(0)Cey(t)

;)d(Buex(0)ex(t)
t

0

τ)A(tAt

t

0

τ)A(tAt
















16.513   Control Systems

Summary of Results From Last Lecture: 

The system is internally stable iff all the eigenvalues
of A have negative real parts: Re i(A) < 0 for all i

 x(t) → 0 if u(t)=0

The main problem involved is to compute eAt.
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Solution of Discrete-time Equations

The DT system:
Du[k]Cx[k]y[k]     
Bu[k]Ax[k]1]x[k




Given x[0] and u(k), k 0,  the solution is:

Du[k]Bu[m]CAx[0]CAy[k]

Bu[m]Ax[0]Ax[k]

1k

0m

1mkk

1k

0m

1mkk




















The main problem involved is to compute Ak.

The system is internally stable iff all the eigenvalues
of A are within the unit disk: |i(A)| < 1 for all i

 x[k] → 0 if u[k]=0
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Today: we will address some miscellaneous problems
about LTI systems

 How to deal with complex eigenvalues
 Realization of a transfer function
 Simulation of systems by using Simulink  

 Course project

To prepare for new topics in this course, we will 
also study 
 Quadratic functions and positive-definiteness

Next Time: We start another topic (Chapter 6)
 Controllability and observability
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Deal with complex eigenvalues

AQQA -1

Typically, we would like to transform a matrix ARn×n

into a diagonal form through equivalent transformation


















3

2

1

λ00

0λ0

00λ

A

Suppose that A has complex eigenvalues. 
 Some i  will be complex
 The transformation matrix Q-1 will have complex entries
 What does the new state z = Q-1x stand for? 

Physically, it is meaningless. Numerically, it may render
analysis or design results invalid, such as a feedback law
with complex numbers  
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Since A is a real matrix, if A has complex eigenvalues, 
 The complex eigenvalues appear as conjugate pairs:     

iji, iji .
 The eigenvectors also appear as conjugate pairs

vi+jwi, vi-jwi .

There is a  way to avoid complex numbers. Assume   

;w);vj(w-vjw))(vj(αjw)A(v

w);vj(w-vjw))(vj(αjw)A(v







Add the two: 
αwβvAw 

βw-αvAv 

Subtract: 










??

??
  w][v  w]A[v

A[v  w] [v  w]
-

 
 

 
  

 

6

i i
i i i i i i i

i i

α β
Aq q ,   A[v   w ] [v   w ]

-β α


 
   

 

Suppose we have two real eigenvalues and two pairs
of complex eigenvalues, all distinct, 

,jβα  ,jβα  ,jβα  ,jβα ,λ ,λ 2222111121 

with corresponding eigenvectors; 
,jw  v,jw  v,jw  v,jw v,q ,q 2222111121 

In matrix form; 1

2

1 1
1 2 1 1 2 2 1 2 1 1 2 2

1 1

2 2

2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0
A [q   q  v  w   v  w ] [q   q   v  w   v  w ]

0 0 0 0

0 0 0 0

0 0 0 0




 
 

 
 

 
 
 
 

   
 
 

  

Q Q

A

AQQA 1
Not strictly a diagonal form but real:  a block diagonal form
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Example:
















312
202
100

A

Use matlab [V,D]=eig(A), you get:

V =   complex eigenvectors
0.3162 - 0.3162i   0.3162 + 0.3162i   0.7071          
0.6325                  0.6325                    0.0000          
0.6325                  0.6325                    0.7071          

D =  diagonal form
1.0000 + 1.0000i        0                          0          

0                      1.0000 - 1.0000i        0          

0                             0                         1.0000

Where inv(V)*A*V=D

Let q1=real(V(:,1)); 
q2=imag(V(:,1)); q3=V(:,3)
Form Q=[q1 q2 q3], then 

Q =

0.3162   -0.3162    0.7071
0.6325         0        0.0000
0.6325         0        0.7071

>> inv(Q)*A*Q

ans =

1.0000    1.0000    0.0000
-1.0000    1.0000   -0.0000
-0.0000          0       1.0000

Find the block diagonal form
and the transformation matrix

8

What is eAt with 
α β

A ?
-β α

 
  
 

Use the first definition for a matrix function.  
• Let f()=et.  Find g()=k0+ k1. 
• The eigenvalues of A:     ,jβαλ     β, jαλ 21 

)f(λ)g(λ

)f(λ)g(λ

22

11




β)t j(α
10

β)t j(α
10

eβ) j(αkk

eβ) j(αkk








)sin 
β

α
(cosek      ,

β

sin  e
k αt

0

 tα

1 βtt β
βt



αt
At αt 1 0 α βα e

e g(A) e (cos t sin ) sin 
0 1 -β αβ β

β βt βt
   

      
   

αt cos sin
e

sin cos

t t

t t

 
 

 
   

ൌ ݁ఈ௧ cosݐߚ	 ൅ ݐߚ݊݅ݏ݆

ൌ ݁ఈ௧ሺcos 	ݐߚ െ ݆ sin ሻݐߚ
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cos βt sin βtαtx(t) e x(0) e x(0)
-sin βt cos βt

At  
   

 

In summary:

α β
With  A ,

-β α

 
  
 

At cos βt sin βtαte e ,  
-sin βt cos βt

 
  

 

The zero-input solution is 

BuAxx For the system:

The real part of the eigenvalue) determines the stability 
of the system;
The imaginary part   determines the frequency of
the oscillation.  

10

1

2

1 1

1 1

2 2

2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

A




 
 

 
 

 
 
 
 

   
 
 

  

For a matrix 

1

2

1 1

1 1

2 2

2 2

λ t

λ t

α t α t
At 1 1

α t α t
1 1

α t α t
2 2

α t α t
2 2

e 0 0 0 0 0

0 e 0 0 0 0

0 0 e cosβ t e sinβ t 0 0
e

0 0 -e sinβ t e cosβ t 0 0

0 0 0 0 e cosβ t e sinβ t

0 0 0 0 -e sinβ t e cosβ t

 
 
 
 

  
 
 
 
  
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Realization of a periodic signal, e.g., with two harmonics: 

ݒ ݐ ൌ ௗ௖ݒ ൅ ଵܸ sin ݐ	ߚ ൅ ଵߠ ൅ ଶܸ sinሺ2ݐߚ ൅ ଶሻߠ

Can be realized as the output of a 5th-order system:

 

0 0 0 0 0

0 0 0 0

, 1 1 0 1 00 0 0 0

0 0 0 0 2

0 0 0 2 0

A







 
 
 

    
 
 
  

ሶݔ ൌ ;ݔܣ ݒ				 ൌ Γ	ݔ, ݔ 0 ൌ ଴ݔ ൌ ܽ	ܾ	ܿ	݀	݁ ்

ݒ ݐ ൌ Γ݁஺௧ݔ଴

 

1 0 0 0 0

0 cos sin 0 0

( ) 1 1 0 1 0 ,0 sin cos 0 0

0 0 0 cos2 sin 2

0 0 0 sin 2 cos2

a

t t b

v t t t c

t t d

t t e

 
 

 
 

   
   
   

    
   
   
      

ܽ ൌ ௗ௖ݒ
ܾ ൌ ଵܸ sin ଵߠ
ܿ ൌ ଵܸ cos ଵߠ
݀ ൌ ଶܸ sin ଶߠ
݁ ൌ ଶܸ cos ଶߠ

Will learn how to build an observer to reconstruct a 
periodic signal
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Today: some miscellaneous problems about LTI systems
 How to deal with complex eigenvalues
 Realization of a transfer function
 Simulation of systems by using Simulink  
 Course Project

 Quadratic functions and positive-definiteness

And more from linear algebra
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State-space realizations of transfer functions 

(*)                  Du        CxyBu;Axx 
Given state equations

DBA)C(sIG(s) 1  The transfer function is: 

Now, given G(s), how to find (A,B,C,D)?

Background:
 Sometimes it is hard to obtain a state-space description.
 But you can identify the transfer function using 

frequency response.
We have more advanced design methods for state-space

models. 
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Example: 
32

654
)(

23

2





sss

ss
sG

It can be verified that  G(s) = C(sI-A)-1B + D with

  0D,654C,
0
0
1

B  ,
010
001
321

























 
A

First, 32sss
s10
0s1
321s

|AsI| 23 






















**1
**s
**s

32sss

1
A)-(sI

2

23
1Then,

The adjunct matrix
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














**1
**s
**s

32sss

1
A)-(sI

2

23
1

 

32sss

65s4s
                               

0
0
1

**1
**s
**s

32sss

6   5   4
DBA)C(sI

23

2

2

23
1































 

G(s)
 We say that (A,B,C,D) is a realization of G(s)

If there exists (A,B,C,D) such that G(s)=C(sI-A)-1B+D
then we say that G(s) is realizable.

  0D,654C,
0
0
1

B  ,
010
001
321

























 
A
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Theorem: A transfer matrix G(s) is realizable with 
LTI state equation if and only if it is a proper 
rational matrix.

─ A proper rational matrix can be decomposed as the
sum of a constant matrix and a strictly proper 
rational matrix:   G(s)=Gsp(s)+D,  D= G()

─ Let d(s)=sr + a1sr-1 + a2sr-2 +….+ ar-1s +ar  be the least
common denominator of all entries of Gsp(s)

─ Then Gsp(s) can be expressed as (assume G is qp)

─ First observe that C(sI-A)-1B+D is always proper and
rational (necessity proved).

  pq
ir1r

2r
2

1r
1sp RN,NsNsNsN

d(s)

1
(s)G 


  
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r 1 r 2 m
sp 1 2 r 1 r i

r r 1
1 r 1 r

1
G (s) N s N s N s N , N R

d(s)

d(s) s a s a s a

p  





       

    





With 

The realization of Gsp(s)  is given as:







































 





0
0
0
0

,

0I00

00I0
000I

IaIaIaIa

A

p

p

p

prp1rp2p1
pI

B










 r1r21 NNNNC  

Another form of realization: Problem 4.9

18

Example:  




























2)2(

1

)2)(12(

1
2

3

12

104

)(

s

s

ss

ss

s

sG

Step 1: break it into a constant part and a strictly proper part

12s

12-

12s

24s

12s

10-4s
     ,

)2(

1

)2)(5.0(

5.0
2

3

5.0

6

00
02)(

2











































s

s

ss

sssG

Step 2:  the monic least common denominator
d(s)=(s+0.5)(s+2)(s+2)=s3 + 4.5s2 + 6s + 2

a1  a2 a3

Gsp(s)

Step 3:












0.5)1)(s(s2)0.5(s
0.5)2)(s3(s2)6(s

2)0.5)(s(s

1
(s)G

2

2sp









0.51.5ss10.5s
36s3s2424s6s

d(s)

1
2

22
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







0.51.5ss10.5s

3s5.73s2424s6s
d(s)

1
(S)G  :3 step From 2

22

sp





















 0.51

324s1.50.5
7.524s10

36
d(s)

1 2

d(s)=s3 + 4.5s2 + 6s + 2=a1s2+ a2s+ a3

Step 4:









 
















































00
02,5.015.15.010

3245.72436

,

00
00
00
00
10
01

,

001000
000100
000010
000001
20605.40

020605.4

DC

BA

N1

N3N1 N2

N3N2
a1Ip a2Ip a3Ip

20

Discussion:

 The realization (A,B,C,D) for a particular G(s) is 
not unique;

 All the equivalence transformations are also valid
realizations;

 With different methods, the dimensions of the resulting
systems,  i.e., the number of state variables,  may be
different. There exist a minimal-order realization

 We will learn later how to reduce the order of a 
realization to the minimal number.

Another realization of the same system is given in p.105
Example 4.7, where the dimension is only 4.
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Today: some miscellaneous problems about LTI systems
 How to deal with complex eigenvalues
 Realization of a transfer function
 Simulation of systems by using Simulink
 Course project

 Quadratic functions and positive-definiteness

And more from linear algebra

22

A Tool for System Simulation: SIMULINK

Can be used for simulation of various systems:
– Linear, CT or DT,
– Nonlinear;
– Switched;
– Hybrid:  CT + DT components, signals; 

Input signals can be arbitrarily generated:
– Standard: sinusoidal, polynomial, square, impulse
– Customized: from a function, look-up table

Output signals can be stored or demonstrated in 
different ways. 
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Example:

Input u yyyy

yy2y3uy  

uyy2y3y  

Click simulation and use plot(t,y),  
you will get a time response of y

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec)

y

• The parameters can be easily changed;
• The initial condition can be easily changed.

24

Simulink for linear systems

Main components with dynamics: 
– integrators, 
– state-space description (A,B,C,D)
– transfer function
– derivative (rarely used)

The first two components need initial conditions

Math components:  
– addition (a+b+c); product (ab); 
– dot (inner) product <x,y>; 
– gain (amplifier) kx : x a scalar
– matrix gain Kx: x a vector
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Sources: input signals
– constant, step,  ramp
– pulse, sine wave, square wave
– from data file
– signal generator

Sinks:  for output demonstration or storage
– digital display 
– scope
– save to file
– export to workspace
– XY graph

Nonlinear:  functions and operations
– saturation, deadzone, switch

26

Signals and systems:
– Demux: input a vector signal and output all 

the components
– Mux: input a bunch of scalar signals and output a 

vector signal

Functions and tables:
– input u → output y:  y=f(u); f composed from 

available functions or operations; 
e.g, y=sin(u1)+u1*u2

– matlab function:  y=f(u); f written by a matlab file
– look-up table.
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Example: Find the solution to the  LTI systems

  xy

uxx

001
1
0
0

321
100
010






























where  x(0)=0;  u(t) is a square wave. 

Steps:
1. Open matlab workspace
2. type simulink and return

- simulink library browser window is open
3. Click file and choose new then choose model

- a blank window is open
4. Open one of the commonly used blocks and drag and drop

whatever you need to the blank window.
5.  Connect the components by arrows. 

28

First approach: use state-space description:

 Click each component to setup the parameters properly
sinks labeled “t”, “u”, “y”:  choose “array” for save format
sampling time can be a parameter inputted from workspace

 When ready, click simulation and choose configuration parameters
to setup simulation time. Finally, click simulation and choose start 

 When finished, type plot(t,y,t,u) to plot the input and output



15

29

Second approach: use integrators and amplifiers:

ଷݔଶݔଵݔ
ሶଵݔ

ሶଷݔ
ሶଶݔ

30

You can make any kind of changes to the model:
Change the parameters, the sampling time, add some
nonlinear component such as a saturation:
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Simulation for nonlinear system: 

),( uxfx 


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






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














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mn u

u

u
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x
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x

2

1

2

1

,

Matlab
function

s

1

s

1

s

1

u1

u2
u

3

v dx

function dx=fun1(v)
x1=v(1);
x2=v(2);
xn=v(n)
u1=v(n+1);
u2=v(n+2);
um=v(n+m);
dx(1)=f1(x1,...,u1,…)
dx(2)=f2(x1,…,u1,…)
dx(n)=f3(x1,…,u1,…) 

Click on matlab function to 
choose fun1

1x

2x

3x

1x

3x

2x

32

function dx=ff(x)
g=9.8; m1=1;m2=1;a1=1;a2=1;
x1=x(1);x2=x(2);
x3=x(3);x4=x(4);

dx2=-(g/a1)*sin(x1)+(m2*g/(m1*a1))*cos(x3)*sin(x3-x1)-0.2*x2;
dx4=-(g/a2)*sin(x3)-0.2*x4;
dx=[dx2;dx4] 

l1


m1g u

 l2

m2g

T

T 43
2

4

43

2133
11

2
1

1
2

21

2.0sin

;

2.0)sin(cossin

;

xx
l

g
x

xx

xxxx
lm

gm
x

l

g
x

xx

















Simulation for a two-link pendulum

ଵݔ

ଷݔ

ଶݔ

ସݔ

ሶଶݔ

ሶସݔ
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At this point, it is time to give a summary on
what we have achieved and 

what will be studied

34

Main Problems of the Course

– Analysis: Solutions to LTI systems, stability etc.
– Controllability and observability;
– Feedback design and construction of observers
– Optimal control   
– Lyapunov stability

Course project will involve feedback design of 
an inverted pendulum system.  
• Design a feedback law through the linearized system
• Apply the feedback law to the nonlinear system
• Use simulink to check if desirable performance requirements

are  satisfied. 
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Course Project

M
u



y

A cart with an inverted pendulum (page 22, Chen’s book)

u: control input, external force (Newton)
y: displacement of the cart (meter)
 angle of the pendulum (radians) 

The control problems are
1:  Stabilization: Design a feedback law u=Fx such that x(t)  0 

for x(0) close to the origin.  
2:  For x(0)=(0,0,), apply an impulse force (u(t)=umax for t[0,ݐ଴]) to

bring  to a certain range and then switch to the linear controller so 
that x(t)  0.

Assume that there is no friction or damping. The nonlinear model is as follows.
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
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
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θg

θθmlu

θ

y

lθ

θmlmM

sin

sin

cos

cos 2




m

9.8g   cart,  theof mass  :5

pendulum  theoflength   :2.0

pendulum  theof mass  :1





kgM

ml

kgm

State:

36

























 
gθ

u

θ

y

l

mlmM



1

Linearize the system at x=0; 

1. Find matrices A, B for the state space equation.
2. Design a feedback law u=F1x so that A+BF1 has eigenvalues at -1±j1;-2.5 

and -5. Build a simulink model for the closed-loop linear system.
Plot the response under initial condition x(0)=[1.5,0,1,-3]. 

3. Build a simulink model for the original nonlinear system, verify that 
stabilization is achieved  by u=F1x  when  x(0) is close to the origin. 
Find the maximal  0 so that the nonlinear system can be stabilized from
x(0)=(0,0,0,0).  

4. For x(0)=(0,0,compare the response y(t) and (t)  for the linearized
system and the nonlinear system under the same feedback u=F1x. 

BuAxx 





















θ

θ

y

y

x





The state space description for the linearized system

Problems:
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5. Assume that the initial condition is x(0)=(0,0,,0). 
For the nonlinear system, construct a switching law to bring the pendulum
upward and stabilized at x=0. (cart still at y=0, pendulum inverted, =0).
An initial impulse control is applied with  u(t)= umax for t(0,t0] and u(t)=0  
for t ≥ t0.  After the angle is within a small range, i.e., ||≤d, switch
to a linear controller u=F2x.  Find umax, t0,  d, and F2 so that the following
requirements are satisfied: 
1)   |y(t)|≤1 for all t>0 or keep the maximal y as small as possible. 
2)   |y(t)| ≤0.02  for t > 2.5.
3)   |u|≤150  for all t>0. 

Note:  
In all the simulation, please choose a fixed sampling period: 0.001second

38

Some guidelines:

The simulink model
Use a matlab function to realize
the nonlinear/linear model

Use a matlab function to realize
the switching control law

You may use a not so good control law to check if your simulink model is built correctly. 

 
  16.5057  125.5455 y3.1831 0.7071y

16.5057   125.5455  3.1831    0.7071



 xu
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Sample design results: 
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Course project: a new option-- Ripple reduction in power converter

௛ܭ

௖,௥௘௙ݒ
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Everything outside the red box is provided: 

Vs=24;hh=0.000002;%(hh is sampling time for simulation)
%boost converter parameters
Rs=0.1;RL0=0.067;L=0.00033;C=0.00013;
%inverter parameters;
R1=0.056;L1=0.0001;R2=0.15;L2=0.00068;
C2=0.00002;R3=50;
%Mosfet parameters
Ron=0.007;Rd=1e-4;Vf=0.1;Rsn=1e6;(snubber resistance);Cs=1e-6;
k1=-2.4;k2=-0.06;k3=-1;

PWM frequency=12000Hz,  sinusoidal function frequency = 60Hz

Duty cycle for the boost converter  0< d <0.75

42

Objective: 
1. Design a 5th-order discrete-time observer,  to estimate the first order

and second order harmonics of vc. (see slide  12). 
For computer implementation, the observer is discretized with 
sampling frequency 12000Hz (same as PWM frequency). 
Denote the estimated state as vce. 

2. Use the first order harmonics as feedback to reduce the ripple of vc
The gain Kh will be Kh=[0  k4  k5  0  0]. 
Choose k4, k5 by trial and error to achieve minimal ripple.

The boost converter is designed so that the dc-link voltage vc
will track a reference voltage, ݒ௖,௥௘௙.  In the figure, ݒ௖,௥௘௙ ൌ 40ܸ.
When an inverter is connected as a load, there will be ripples 
in vc, with frequency twice that of the inverter output voltage.  
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Results: 

Kh=0

Kh് 0

Blue curve:  dc link voltage: vc
Red curve: estimated dc link voltage, vce

44

– Controllability and observability;

• We need some background on linear algebra:
 positive-definiteness of a square matrix. 

They are also essential to Lyapunov stability and 
optimal control.

• We are going to learn how to design a good control law.

• Before that, we need to study
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Quadratic functions and positive-definiteness
( §3.9 )

Given a symmetric matrix P=P’ (pij=pji). 
A quadratic function can be defined as

V(x) = x’Px

Example:   2
221
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• Under what condition is V(x)=x’Px  positive definite?

• This depends on the eigenvalues of  P.

Compare the eigenvalues of 









  cb

baP  and    ab
baP 21

{a+jb, a-jb} for P1,  
2

22

Pfor      
2

4bc)(aca 

Definition:
A symmetric matrix P is said to be positive definite,
denoted by P > 0, if  x’Px > 0  for all x0. It is said to be 
positive  semidefinite, denoted by P  0, if x’Px  0
for all x.
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Theorem: A real symmetric matrix has real eigenvalues.

Proof: Suppose that  is an eigenvalue, possibly 
complex,  v is the eigenvector such that Pv = v.  
The complex conjugate transpose of v is v*, the 
complex conjugate transpose of P is P’.  We have

(v*Pv)*=v*P*v=v*P’v=v*Pv

v*Pv must be a real number. Also recall that v*v is 
a real number. From Pv=v, we have

v*Pv=v*v  must be a real number  

Theorem: A real symmetric matrix P is always 
diagonalizable.

48

Theorem: A symmetric matrix P is positive definite
(P > 0) if and only if its eigenvalues are all positive.

Proof: There exist diagonal matrix D and orthogonal
matrix U such that  P=UDU’.

x’Px=x’UDU’x=z’D z > 0 for all x  0

Consider the quadratic form z’Dz. Have 

z’Dz = d11z1
2 + d22z2

2 +…. +dnnzn
2  > 0 for all z0

Let z=U’x.    z=0  iff  x=0.  Hence

Theorem: A symmetric matrix P is positive definite
iff there exists a nonsingular matrix N such that P=NN’. 

Proof: ….
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In summary:
Given a symmetric matrix P. 
All the eigenvalues and eigenvectors are real.
 Exists a matrix U, UU’=U’U=I, and a diagonal

D, such that P=UDU’. 
 P is positive definite iff 

─ all eigenvalues are positive;
─ exists nonsingular N such that P=NN’; 

 P positive semi-definite iff
─ all eigenvalues are non-negative;
─ exists N such that P=NN’;

 P negative definite iff 
─ all eigenvalues are negative;
─ exists nonsingular N such that P=  NN’

50

Today: some miscellaneous problems about LTI systems
 How to deal with complex eigenvalues
 Realization of a transfer function
 Simulation of systems by using Simulink 
 Course project
 Quadratic functions and positive-definiteness

Next Time:  Chapter 6.
 Controllability and Observability
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Problem set #8

1.  Use the first definition of  a matrix function to compute eAt for 

1 1
A

2 3

 
  
 

2. Find a state space realization for  

.
2s44s3ss

43s2ss
G(s)  
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




Use integrators and amplifiers to construct a Simulink model for it. Let 
the input be a  step signal: u(t)=0 for t<0 and u(t)=2 for t > 0. Choose 
the sampling time to be T=0.1. Simulate the output under 0 initial 
condition  and plot the output response for t=0 to t=15.  (print the model 
and the output response).  You can try different input signals.

52

3.  Construct the simulink model on page 33 (two link pendulum) 
and  run simulation from t=0 to t=20, with initial condition   
x(0)=(0.5,0,-1,1). Choose sampling time=0.001second.    Plot the two 

outputs theta1 and theta2. 


