16.513 Control Systems

Summary of Results From Last Lecture:

Consider the system: X =Ax+Bu; y=Cx+Du

Given x(0) and u(t) for t > 0. The solution is

x(t) = e*'x(0) + 'foteA(H)Bu(r)d 7

y(®) = Ce™x(0) + [ Ce™* "Bu(r)d 7 + Du(t)

The main problem involved is to compute et

The system is internally stable iff all the eigenvalues
of A have negative real parts: Re A,(A) <0 for all 1

= x(t) — 0 if u(t)=0

Solution of Discrete-time Equations

The DT system:  x[k+1]= Ax[k]+ Bu[k]
y[k] = Cx[k]+ Du[k]

Given x[0] and u(k), k >0, the solution is:

x[k] = A*x[0] + kzi A" 'Bu[m]

y[k] = CA*x[0] + sz CA "™ 'Bu[m] + Du[k]

m=0

The main problem involved is to compute A*.

The system is internally stable iff all the eigenvalues
of A are within the unit disk: |A,(A)| <1 for all 1

= x[k] — 0 if u[k]=0



Today: we will address some miscellaneous problems
about LTI systems
How to deal with complex eigenvalues
Realization of a transfer function
Simulation of systems by using Simulink
— Course project

To prepare for new topics in this course, we will
also study
Quadratic functions and positive-definiteness

Next Time: We start another topic (Chapter 6)
= Controllability and observability

Deal with complex eigenvalues

Typically, we would like to transform a matrix AeR™®
into a diagonal form through equivalent transformation

B A 0 0
A=Q'AQ A=[0 A, 0
0 0 A&,

Suppose that A has complex eigenvalues.

= Some A, will be complex

= The transformation matrix Q-! will have complex entries
= What does the new state z = Q"'x stand for?

Physically, it is meaningless. Numerically, it may render
analysis or design results invalid, such as a feedback law
with complex numbers 4



Since A is a real matrix, if A has complex eigenvalues,
= The complex eigenvalues appear as conjugate pairs:
o+ B, o—gP; -
= The eigenvectors also appear as conjugate pairs
Vitjwi, Vi w; .
There is a way to avoid complex numbers. Assume
A+ W) = (0+ SV + JW) = av - Bw + j(BV + aw);
A(V= W) = (a— BV —]jw) = av- fw = j(fv+aw);;
Add the two: Av=av-pw

Subtract: Aw =Bv+aw ?

7?7 ?
— ALV W]=[v w]{, }

Alv wl=[v w] [‘; ﬂ
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Suppose we have two real eigenvalues and two pairs
of complex eigenvalues, all distinct,

Ashy, a0+ 3By, o =By, o, + By, o, — B,
with corresponding eigenvectors;
4155, Vi H Wy, V= JW,, Vo Wy, V, — Wy,
o B
Aq; = A4q;, Alv, wi]=[v; w,]
P |

A

In matrix form,; 20 0 0 0 07
Q Q 04 0 0 0 0
, ' 0 0 o f 0 0
Allq q, v, W, vivz]H[q1 Qb VW, V, W] 0 0 _/131 011 0 o
A:Q—IAQ 00 0 0 a B
0.0 0 0 -B af

Not strictly a diagonal form but real: a block diagonalsform




Example: 4o _02 8 % Find the block diagonal form
_97 _1 3| and the transformation matrix

Use matlab [V,D]=eig(A), you get:

Q=
V = complex eigenvectors
0.3162-0.3162i 0.3162+0.3162i 0.7071 0.3162 -0.3162 0.7071
0.6325 0.6325 0.0000 0.6325 0 0.0000
0.6325 0.6325 0.7071 0.6325 0 0.7071
D = diagonal form
1.0000 + 1.00001 0 0 >> inv(Q)*A*Q
0 1.0000 - 1.00001 0
0 0 1.0000 | |ans=

i * A=
Where inv(V)*A*V=D 1.0000 1.0000: 0.0000
-1.0000 1.0000: -0.0000

Let ql=real(V(;,1)); | -1.0000 1.0000 -0.000C
q2=imag(V(:,1)); 3=V(:,3) -0.0000 0  1.0000

Form Q=[ql g2 q3], then
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What is eAt with A= o« P ?
_B o

Use the first definition for a matrix function.
« Let f(A)=e*. Find g(L)=k,+ k.
* The eigenvalues of A: A =a+iB, A, =a—ip,

g(A)=1f(\) ‘ k, +k,(a+jp)=e“ P = e(cospt + jsinpt)
g(h,) =1(x,) k, +k,(a—jB)=e“ P =e(cospt — jsinpt)

‘ k, :#, koze“‘(cosﬁt—%sin[ft)

At _ _ o at Q. 1o e;n . a B
e™ =g(A)=e"(cos fit Bsmﬁt){o J+ﬁsmﬁ{_ﬁ (J

«| cosBt sinft
=e
—sin St cos St



In summary:

With A = |: a B:| eAt _ eat |:COS ﬁt

_B o

For the system: %= Ax+Bu

The zero-input solution is

x(t) = e*'x(0) = e {

sin [t
-sin Bt cos Pt |’
C(?S Bt sin Bt} «(0)
-sin Bt cos Bt

The real part o (of the eigenvalue) determines the stability

of the system;

The imaginary part 3 determines the frequency of

the oscillation.

For a matrix -

4L 0 0 0 0 0
04 0 0 0 0
Slo0 @ g 0 0
0 0 B a 0 0
00 0 0 a §B
00 0 0 -8 a
A 0 0 0 0
0 o™ 0 0 0 0
a | 0 0 e"cosPt e"sinpt 0 0
10 0 -"sinBt e“cosp,t 0 0
0 0 0 0 e®'cosP,t  e™'sinf,t
10 0 0 0 -e™'sinB,t  e™'cosp,t |




Realization of a periodic signal, e.g., with two harmonics:
v(t) = vy + Vysin(B t + 0,) + V,sin(2ft + 6,)

Can be realized as the output of a 5"-order system:

x=Ax; v=Tx, x(0)=xy=[abcde]”
00 0 0 0
00 B8 0 0
A=[0 = 0 0 0 T=[1 101 0] p(t)=TeAlx,
0 0 0 0 28
00 0 =28 0
1 0 0 0 0 a a = Vg
0 cospft sinpft 0 0 b b =V;sin6,
v(l)=[1 1 01 0] 0 —sinft cospt 0 0 cl, ¢ =V;cos0,
0 0 0 cos2ft sin2pt d d =V;sin6,
0 0 0 —sin2Bt cos2pt| |e| €T V2cost:
Will learn how to build an observer to reconstruct a .

periodic signal

Today: some miscellaneous problems about LTI systems
How to deal with complex eigenvalues
Realization of a transfer function
Simulation of systems by using Simulink
Course Project

And more from linear algebra

Quadratic functions and positive-definiteness



State-space realizations of transfer functions

Given state equations
x=Ax+Bu; y=Cx+Du (*)
The transfer function is: G(s)=C(sI-A) 'B+D

Now, given G(s), how to find (A,B,C,D)?

Background:

= Sometimes it is hard to obtain a state-space description.
= But you can identify the transfer function using
frequency response.

= We have more advanced design methods for state-space
models.

13

45 +55+6

Example: G(s)=
P (5) s 452 +2s5+3

It can be verified that G(s) = C(sI-A)'B + D with

-1 -2 -3 1
A=|1 0 0/ B=|0|, C=[4 5 6], D=0
0O 1 O 0
. s+1 2 3
First, |sl-A|=[-1 s 0/=s’+s?+25+3
-1 s
1 2 ko ok
Then, (sI-A)'=—————| s * *
S+ +2s+3| 1 *

A

The adjunct matrix 14



-1 -2 -3 1]
A=[1 0 0], B=|0], C=[4 5 6], D=0
0 1 0 0
2 % x|
GLAY =[x
$*+s*+2s+3| 1 x

S}

—

$*+s*+2s+3 x x|

k% 1
C(sI—A)'1B+D=—[4 5 6] [S * *]H

4s® +55+6
_ s +55+6 :G(S)

s?+s2+2s+3

» We say that (A,B,C,D) is a realization of G(s)

If there exists (A,B,C,D) such that G(s)=C(sI-A)'B+D
then we say that G(s) is realizable.

Theorem: A transfer matrix G(s) is realizable with
LTI state equation if and only if it is a proper
rational matrix.

— First observe that C(sI-A)'B+D is always proper and
rational (necessity proved).

— A proper rational matrix can be decomposed as the
sum of a constant matrix and a strictly proper
rational matrix: G(s)=Gg,(s)+D, D= G()

— Let d(s)=s"+a;s~!+ays™2+....+ a_;s +a, be the least
common denominator of all entries of G,(s)

— Then Gg,(s) can be expressed as (assume G is qxp)

G, (s) = %[le” +Ns 24+ N,_s+N,| N, eR™
S




With
_ 1 -1 r-2 mxp
G,(s)= ﬁ[le +N,s""+---4+N,_s+N, |, N eR
d(s)=s"+as"' +---+a_s+a,

The realization of G (s) is given as:

—al, —a,l] —a I, —al I
P
L 0 0 0 0
A=l 0 I8 0 0 |, B=|0
: 0
0 0 I, 0 0
C= [Nl N, N, Nr]

Another form of realization: Problem 4.9

G | 45-10 3
xample:
wo-| 3

Q2s+1)(s+2) (s+2)°

Step 1: break it into a constant part and a strictly proper part

-6 3
20 s+0.5 s+2 4s-10 4s+2 -12
G = + < = +
(s) [0 0} 0.5 s+l 2s+1  2s+1 2s+1
(S + OS)(S + 2) (S + 2)2 Gsp(s)

Step 2: the monic least common denominator
d(s)=(s+0.5)(s+2)(s+2)=s>+ g_SSZ +6s+2
1

Qh a3
Step 3: G (S):l[—6(s+2)2 3(s+2)(s+0.5)}
& (s+0.5)(s+2)* 0.5(s+2) (s+1)(s+0.5)

1 [—652—245—24 3sz+6s+3}

Tds)l 055+l s> +1.55+0.5 s



d(s)=s*+4.5s>+ 6s + 2=a,s>+ a,s+ a,

2 2
From step 3: Gsp(S):L[_6S —24s-24 3s +7.55+3}

d(s) 0.5s+1 s’ +1.5s+0.5
_ 1 [[-6 3., [-24 757 [-24 3
—@{[o 1}5 +[0.5 1.5}”[1 0.5}
N1 N2 N3

Step 4: oyl al,  oagl o
~45 0 -6 0 -2 0 10
0 -45 0 -6 0 -2 0.1
1T 0 0 0 0 0 oo
4=l 0 1 0 o0 o ol B=lo o}
0O 0 1 0 0 0 00
0 0 0 1 0 0] 0 0]
[-6 3 —24 75 -24 3 {20
“=l0o 1 05 15 1 o.s} D‘[o o}

N, N, N,

Another realization of the same system is given in p.105
Example 4.7, where the dimension is only 4.

Discussion:

= The realization (A,B,C,D) for a particular G(s) is
not unique;

= All the equivalence transformations are also valid
realizations;

= With different methods, the dimensions of the resulting
systems, 1i.e., the number of state variables, may be
different. There exist a minimal-order realization

= We will learn later how to reduce the order of a
realization to the minimal number.

20
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Today: some miscellaneous problems about LTI systems
How to deal with complex eigenvalues
Realization of a transfer function
» Simulation of systems by using Simulink
Course project

And more from linear algebra

Quadratic functions and positive-definiteness

21

A Tool for System Simulation: SIMULINK

Can be used for simulation of various systems:
— Linear, CT or DT,
— Nonlinear;
— Switched;
— Hybrid: CT + DT components, signals;

Input signals can be arbitrarily generated:
— Standard: sinusoidal, polynomial, square, impulse
— Customized: from a function, look-up table

Output signals can be stored or demonstrated in
different ways.

22

11



Example:

t
Clock To Workspace2

1 u

Step Gain3 To Workspacei

Input u +| Y ol 3 y 1Y 1 Y

& 8 E

¥y

+
+
+

Gain

m) Yy=u-3y—-2y-y Gain2

Integrator Integratort Integrator2 To Workspace

=) Y+3y+2y+y=u
Click simulation and use plot(t,y),

you will get a time response of y

« The parameters can be easily changed; )
* The initial condition can be easily changed.

Simulink for linear systems

H

Integrator

Main components with dynamics:

— integrators, z ]
— state-space description (A,B,C,D) Traetor Fon
— transfer function =

— derivative (rarely used) ol

The first two components need initial conditions

Math components:
— addition (at+b+c); product (axb); >
— dot (inner) product <x,y>; Bt
— gain (amplifier) kx : x a scalar
— matrix gain Kx: X a vector

++ 4+

24
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Sources: input signals Siep
— constant, step, ramp
— pulse, sine wave, square wave
— from data file
— signal generator

Clock

Sinks: for output demonstration or storage
— digital display R
— scope ,@
— save to file
— export to workspace

=
— XY graph
Nonlinear: functions and operations
— saturation, deadzone, switch

Signals and systems:

— Demux: input a vector signal and output all
'[ the components
:l — Mux: input a bunch of scalar signals and output a

vector signal

Functions and tables:
— input u — output y: y=f(u); f composed from
available functions or operations;
e.g, y=sin(ul)+ul*u2
— matlab function: y=f(u); f written by a matlab file
— look-up table.

26



Example: Find the solution to the LTI systems

0O 1 0 0
x={0 0 1 |[x+|0]u
-1 -2 -3 1
y=[1 0 0]x
where x(0)=0; u(t) is a square wave.

Steps:

1. Open matlab workspace

2. type simulink and return
- simulink library browser window is open

3. Click file and choose new then choose model
- ablank window is open

4. Open one of the commonly used blocks and drag and drop
whatever you need to the blank window.

. Connect the components by arrows. 27

N

First approach: use state-space description:

u

To Workspace2 » :l
X' = Ax+Bu Scope
y = Cx+Du
Pulse
Generator State-Space R

y

To Workspace1

t

Clock To Workspace

= Click each component to setup the parameters properly
sinks labeled “t”, “u”, “y”: choose “array” for save format
sampling time can be a parameter inputted from workspace

= When ready, click simulation and choose configuration parameters
to setup simulation time. Finally, click simulation and choose start

= When finished, type plot(t,y,t,u) to plot the input and output 28

14



Second approach: use integrators and amplifiers:

—p u
To Workspace2 . .
X2 X1
X X3 X2
UE 1 1
+ s s s
Pulse +
Generator + Integrator | Integrator1 | Integrator2
-3
Gain2
-2
Gaint
Gain

O——

Clock

t

To Workspace1

'
=N

X1

[ ]

Scope

y

To Workspace

You can make any kind of changes to the model:
Change the parameters, the sampling time, add some

nonlinear component such as a saturation:

> u

To Workspace2

|-

A

To Workspace3

JTUL :
N
Pulse +
Generator + Saturatjon
-3
Gain2

1
B

14

]

Scope

29

Integrator

Clock

To Workspace1

P y

To Workspace

30
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Simulation for nonlinear system:

X=f(xu) || .o|®
function dx=fun1(v)
x1=v(1);
x2=v(2);
X, xn=v(n)
| - ul=v(n+1);
_, Matlab dx N ENEN u2=v(n+2);
function |S—11 um=v(n+m);
73’ s dx(1)=f1(x1,...,ul,...
‘ dx(2)=f2(x1,...,ul,...
dx(n)=f3(x1,...,ul,...

Click on matlab function to
choose funl

31
Simulation for a two-link pendulum
X, =Xy;
X, = ~&in x + 28 cos x, sin(x; —x,)—0.2x,
1 mi,
Xy =X,
i, =—Zsinx, —0.2x,
2
xl thetat
Integratord To Workspace
. x3 theta2
X4 Integrator | Integratort To Workspaced
function dx=ff(x)
£=9.8; ml=1;m2=1;al=1;a2=1;
x1=x(1);x2=x(2);
x3=x(3);x4=x(4); Glock To Workspace2
dx2=-(g/al)*sin(x1)+(m2*g/(m1*al))*cos(x3)*sin(x3-x1)-0.2*x2;
dx4=-(g/a2)*sin(x3)-0.2*x4;
dx=[dx2;dx4] 32

16



At this point, it is time to give a summary on
what we have achieved and
what will be studied

33

Main Problems of the Course

Analysis: Solutions to LTI systems, stability etc.
— Controllability and observability;

— Feedback design and construction of observers
— Optimal control

— Lyapunov stability

Course project will involve feedback design of

an inverted pendulum system.

* Design a feedback law through the linearized system
» Apply the feedback law to the nonlinear system

are satisfied.

* Use simulink to check if desirable performance requirements

34
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Course Project

A cart with an inverted pendulum (page 22, Chen’s book) State:

u: control input, external force (Newton) x =
y: displacement of the cart (meter)

y
y
0
0: angle of the pendulum (radians) 0

ey

The control problems are
1: Stabilization: Design a feedback law u=Fx such that x(t) - 0
for x(0) close to the origin.
2: For x(0)=(0,0,—m,0), apply an impulse force (u(t)=u,,,, for te[0,ty]) to
bring 0 to a certain range and then switch to the linear controller so
that x(t) —> 0.
Assume that there is no friction or damping. The nonlinear model is as follows.

{M +m mlcos Q}P}} ~ {u +mlé?sin 9} m =1kg : mass of the pendulum

g 1=0.2m: length of the pendulum

cosf / gsinf

M =5kg: massof thecart, g= 9.8°

Linearize the system at x=0;

o o

0
The state space description for the linearized system
x =Ax+Bu
Problems:

1. Find matrices A, B for the state space equation.

2. Design a feedback law u=F x so that A+BF, has eigenvalues at -1+j1;-2.5
and -5. Build a simulink model for the closed-loop linear system.
Plot the response under initial condition x(0)=[1.5,0,1,-3].

3. Build a simulink model for the original nonlinear system, verify that
stabilization is achieved by u=F;x when x(0) is close to the origin.
Find the maximal 0, so that the nonlinear system can be stabilized from
x(0)=(0,0,8,,0).

4. For x(0)=(0,0,7/5,0), compare the response y(t) and 0(t) for the linearized
system and the nonlinear system under the same feedback u=Fx.

36

18



5. Assume that the initial condition is x(0)=(0,0,-7,0).
For the nonlinear system, construct a switching law to bring the pendulum
upward and stabilized at x=0. (cart still at y=0, pendulum inverted, 6=0).
An initial impulse control is applied with u(t)=u,,,, for te(0,t,] and u(t)=0
fort >t,. After the angle is within a small range, i.e., [0]<0,, switch
to a linear controller u=F,x. Find u,,,.t,, 6, and F, so that the following
requirements are satisfied:
1) Jy(t)|<1 for all t>0 or keep the maximal y as small as possible.
2) |y(t) <0.02 fort>2.5.
3) |ul<150 for all 0.

Note:
In all the simulation, please choose a fixed sampling period: 0.001second

37
Some guidelines:
The simulink model - -
Use a matlab function to realize
the nonlinear/linear model
¥
Integrator2 Integratord Ta Workspace
To Workspace:
MATLAB Fcpt
integrator | Integratort To Workspaced
To Workspace!
Clock

Use a matlab function to realize
the switching control law

You may use a not so good control law to check if your simulink model is built correctly.
u=[0.7071 3.1831125.5455 16.5057]x
:0.7071y+341831y+125.54559+16.50579 38
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Sample design results:

y (meter)

Controller not so good

.
2 4 6 8 10 12 14 16
time (second)

150 T T T T T T T

u (newton)
)

-100

-150 L L L L L L

.
0 2 4 6 8 10 12 14
time (second)

.
2 4 6 8 10 12 14 16 18 20
time (second)

An animation code will

be provided

39

Course project: a new option-- Ripple reduction in power converter

t

Clock To Workspacel

—[

To w9 pow ergui

Mog

Mdg

sine Wave  Swmi 1

onstantl

= ]Pere

Add2

oo \J=Cx(n)+Di

T h)=Ax(n)+H
To wi2 Gain4  piscrete State-Spacel
h
40
e —
Gainl TowE

20



Everything outside the red box is provided:

Vs=24;hh=0.000002;%(hh is sampling time for simulation)

%boost converter parameters
Rs=0.1;RL0=0.067;L=0.00033;C=0.00013;

%inverter parameters;

R1=0.056;L1=0.0001;R2=0.15;1.2=0.00068;

C2=0.00002;R3=50;

%Mosfet parameters
Ron=0.007;Rd=1e-4;V{=0.1;Rsn=1e6;(snubber resistance);Cs=1e-6;
k1=-2.4;k2=-0.06;k3=-1;

PWM frequency=12000Hz, sinusoidal function frequency = 60Hz

Duty cycle for the boost converter 0<d <0.75

41

The boost converter is designed so that the dc-link voltage vc
will track a reference voltage, v rer. In the figure, v o = 40V.
When an inverter is connected as a load, there will be ripples

in vc, with frequency twice that of the inverter output voltage.

Objective:
1.

2. Use the first order harmonics as feedback to reduce the ripple of vc

Design a 5"-order discrete-time observer, to estimate the first order
and second order harmonics of vc. (see slide 12).

For computer implementation, the observer is discretized with
sampling frequency 12000Hz (same as PWM frequency).

Denote the estimated state as vce.

The gain Kh will be Kh=[0 k4 k5 0 0].
Choose k4, kS5 by trial and error to achieve minimal ripple.

42
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Results:
Blue curve: dc link voltage: ve

Red curve: estimated dc link voltage, vce

. W
0 >
~ 4

/

5 d\/
/

Kh# 0

‘ Kh=0

L L L L L L L L L g L L L L L L L L L
0 001 002 003 004 005 006 007 008  0.09 01 0 001 002 003 004 005 006 007 008 009

43

* We are going to learn how to design a good control law.

» Before that, we need to study

— Controllability and observability;

* We need some background on linear algebra:
— positive-definiteness of a square matrix.

They are also essential to Lyapunov stability and
optimal control.

44
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Quadratic functions and positive-definiteness

(§3.9)

Given a symmetric matrix P=P” (p;=p;)).
A quadratic function can be defined as

V(x) =x’Px
Example: V,(x)=[x, xz][ﬁ E} L)z' } =ax; +2bx,x, +¢x3
X P x

a d e X
Vz(X)=[X1 X, Xs] d b fx,
e f ¢ X,

_ 2 2 2
=ax; +bx; +cx; +2dx,X, +2ex,x; + 2fx,X,

For higher order vector spaces, V(x)=xPx=) > p,x

X.X.
1
i=1 =1 s

Definition:

A symmetric matrix P is said to be positive definite,
denoted by P> 0, if x’Px >0 for all x=0. It is said to be
positive semidefinite, denoted by P > 0, if x’Px > 0

for all x.
* Under what condition is V(x)=x"Px positive definite?
* This depends on the eigenvalues of P.

Compare the eigenvalues of

P, =[{a) _ab} and P, = [ia) E}

{a+jb, a-jb} for P,, a+ci\/(a2—c)2 T4 P,
46
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Theorem: A real symmetric matrix has real eigenvalues.

Proof: Suppose that A is an eigenvalue, possibly
complex, v is the eigenvector such that Pv = Av.

The complex conjugate transpose of v is v*, the
complex conjugate transpose of P is P’. We have

(V¥Pv)*=v*P*y=v*P’v=v*Pv
v*Pv must be a real number. Also recall that v*v is
a real number. From Pv=Av, we have
v¥Pv=Av*v mmp A must be a real number

Theorem: A real symmetric matrix P is always

diagonalizable.
47

Theorem: A symmetric matrix P is positive definite
(P> 0) if and only if its eigenvalues are all positive.

Proof: There exist diagonal matrix D and orthogonal
matrix U such that P=UDU".

Consider the quadratic form z’Dz. Have

2’Dz =d;,z,*+ dp,z,> +.... +d,,z,> > 0 for all z=0
Let z=U’x. z=0 iff x=0. Hence
x’Px=x"UDU’x=z2’D z>0 forall x # 0
Theorem: A symmetric matrix P is positive definite
iff there exists a nonsingular matrix N such that P=NN”.

Proof: ....

48
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In summary:

Given a symmetric matrix P.

= All the eigenvalues and eigenvectors are real.

» Exists a matrix U, UU’=U"U=I, and a diagonal
D, such that P=UDU".

= P is positive definite iff
— all eigenvalues are positive;
— exists nonsingular N such that P=NN’;

= P positive semi-definite iff
— all eigenvalues are non-negative;
— exists N such that P=NN:

= P negative definite iff
— all eigenvalues are negative;
— exists nonsingular N such that P=— NN’

Today: some miscellaneous problems about LTI systems
How to deal with complex eigenvalues
Realization of a transfer function
Simulation of systems by using Simulink
Course project
Quadratic functions and positive-definiteness

Next Time: Chapter 6.
= Controllability and Observability

50
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Problem set #8

1. Use the first definition of a matrix function to compute et for
1 -1
A=
2 3
2. Find a state space realization for

s’ +2s*+3s+4
st 4387 +4s> +4s+2°

G(s) =

Use integrators and amplifiers to construct a Simulink model for it. Let
the input be a step signal: u(t)=0 for t<0 and u(t)=2 for t > 0. Choose
the sampling time to be T=0.1. Simulate the output under 0 initial
condition and plot the output response for t=0 to t=15. (print the model
and the output response). You can try different input signals.
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3. Construct the simulink model on page 33 (two link pendulum)
and run simulation from t=0 to t=20, with initial condition
x(0)=(0.5,0,-1,1). Choose sampling time=0.001second. Plot the two
outputs thetal and theta2.
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