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16.513 Control Systems

Controllability and Observability

(Chapter 6)
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A General Framework in State-Space Approach

(*)                      Cx        y      Bu;Axx 
Given an LTI system:

The system might be unstable or doesn’t meet the required 
performance spec. How can we improve the  situation?

The main approach: Let u= v- Kx (state feedback), then 

 Dv-DK)x-(C        Bv;BK)x-(A   
Kx)-D(vCxy      Kx);-B(vAxx




The performance of the system is changed by matrix K.
Questions:

• Is there a matrix K s.t. A-BK is stable?
• Can eig(A-BK) be moved to desired locations?            

These issues are related to the controllability of  (*) 
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Main Result 1: The eigenvalues of  A-BK can be moved
to any desired locations iff the system (*) is controllable.
Another situation: the state x is not completely available. 
Only a linear combination of  x, e.g., y = Cx, can be 
measured. How can we realize u = v-Kx?

A possible solution: build an observer to estimate x based
on measurement of y. 

Main result 2: The observer error (difference between the
real x and estimated x) can be made arbitrarily small within
arbitrarily short time period iff  (*) is observable.

We will arrive at these conclusions in Chapter 8. Before 
that, we need to prepare some tools and go through these 
fundamental problems: controllability and observability.
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Controllability:  Definition

Consider the system

.Ru  ;R   xBu,Axx pn 
Controllability is a relationship between state and input. 

Definition: The system, or the pair (A,B),  is said to be 
controllable if for any  initial state  x(0)=x0 and any final 
state xd, there exist a finite time T > 0 and an input u(t), 
t[0,T] such that

(1)                             x)dτBu(exex(T) d
τ)-A(T

T

00
AT   τ

Comment: There may exist different T and u that satisfy  (1).
As a result, there may be different trajectories starting from x0 and
end at xd.   Controllability does not care about the difference.
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Examples: uncontrollable networks.

R4= 1 R3= 1 

R2= 1 R1= 1 

+     x

+
u


1 1 

+
u


1 F 1 F
+

x1



+
x2



Observation:
• If x(0)=0, then  x(t)=0 for 

all t > 0.  The input u can  
do nothing about it.  

• If  the resistance is changed
so that R1/R3  R2/R4, then
you can bring x to any desired
value.

Observation:
• If x1(0)=x2(0)=0, then 

x1(t)=x2(t) for all t > 0.
You cannot bring x(t) to any
point in the plane. 

• This situation can be changed
by altering the parameters 
of the components.
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Equivalent conditions: The following are equivalent
conditions for the pair (A,B) to be controllable:

deBB'edτeBB'e(t)W τ)(tA'
t

0

τ)A(tτA'
t

0

Aτ
c

 

1) Wc(t)  is nonsingular for every t > 0.
2) Wc(t)  is nonsingular for at least one  t > 0.
3) For every vRn, v0,  v’eAt B is not identically zero.
4) The matrix  Gc = [B  AB  A2B … An-1B] has full 

row rank,  i.e.,  (Gc) = n.
5) The matrix M() = [AI  B] has full row rank at all C. 
6) M() has full row rank at every eigenvalues of A.

Note: M() has full row rank if   is not an eigenvalue of A.
We only need to check the rank of M() at eigenvalues of A. 

Note : Of all the conditions, only 4) and 6) can be practically verified.
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dτeBB'e(t)W τA'
t

0

Aτ
c 

]xx)[e(tWeB'u(t) d0
At

1
1t)(tA' 11  

Some observations: To bring the state from x(0) = x0 to x(t1) = xd , 
a particular input is 

 This is actually the minimal energy control, i.e., if there is another
input w(t) to transfer x0 to xd within the same time interval, then

  11

00
)()'()()'(

tt
duudww 

 If (A,B) is controllable, Wc(t)-1 exists for all t > 0.
 The transfer of the state can be accomplished in arbitrarily small

time interval 

Note that as t1 decrease, both min[Wc(t1)] and max[Wc(t1)] decrease.
Then ||Wc(t1)-1|| increases.  larger magnitude of u is required.
As t1 → 0, ||Wc(t1)-1|| →  , u(t) → . 
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An example:  
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Eigenvalues of Wc(t1) Eigenvalues of Wc(t1)-1

]xx)[e(tWeB'u(t) d0
At

1
1t)(tA' 11  

Magnitude of u increases as t1 is decreased.

dτeBB'e(t)W τA'
t

0

Aτ
c 
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Example:  Determine the controllability for












 b

aBA ,10
01    Bu,Axx

Approach 1: 



 b-b

a-aAB]  [BGc

b  and  a  possible allfor    2)( nG 
The system not controllable whatever a and b are.

Approach 2: Check M()=[A-I  B] at =-1





 b00

a001)M(

(M(-1)) < 2  for all possible a and b

Same conclusion on controllability
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Example:  












 b

aBA ,20
01    Bu,Axx

Approach 1:




 2b-b

a-aAB]  [BGc

  
0bor  0aeither  if   2,)ρ(G

       0b and  0a if   2,)ρ(G  ab,detG c

c
c








The system is controllable if a  0  and b  0.

Approach 2: Check M()=[A-I  B] at =-1

,b00
a012)M(,b1-0

a001)M( 









(M(-1))= (M(-2))=2  iff  a  0  and b  0

Same conclusion on controllability
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A general SI system (diagonalizable) 
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The above system is controllable if and only if
the eigenvalues are distinct and none of the bi’s is zero
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Example:  
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The system is controllable if  0  and (b1,b2)  (0,0)
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Theorem: Consider the pair  
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Suppose that the eigenvalues of Ai and those of Aj are 
disjoint for i  j . Then (A,B) is controllable iff (Ai,Bi) 
is controllable for all i. 
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Theorem: Let (B) = p. The pair (A,B) is controllable iff 

Gc
n-p+1: = [B  AB  A2B … An-pB]

has full row rank. This is equivalent to Gc
n-p+1Gc’n-p+1 being

nonsingular,  and to Gc
n-p+1Gc’n-p+1 > 0 (positive definite.)
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Example:
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n=4, p=2.  (B)=2= p.  
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The first 4 columns are LI.  (Gc
n-p+1)=4 = n 

 (A,B) controllable
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Example:
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BA n=4, p=2.  (B)=2.
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The first 3 columns are LI. 
The 4th is dependent on the first 3.

  rank row full has   

9311
4201
8301
1101

bAAbbb 1
2

121



















Hence (A,B) is controllable.
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Question:
Does similarity transformation retain the controllability property? 

Recall that equivalence transformation can make the structure
cleaner and simplify analysis. 

Theorem: The controllability property is invariant under any
equivalence transformation 

Proof: Consider (A,B) with Gc=[B AB A2B …. An-1B]. 
Let the transformation matrix be P. Then  (A,B)  (PAP-1, PB) 

c

1-n

1-n

11-n1-

1nc

PG    
B]A    AB  P[B    

]BPA    PAB  [PB    
PB]PPA    PBPAP  [PB    

]BABAB[G



















Since P is nonsingular,

)ρ(G)Gρ( cc 

Effect of equivalence transformation
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Next Problem:   Observability 
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Observability:  A dual concept
Consider an n-dimensional, p-input, q-output system:

DuCxy    Bu;Axx 

Definition: The system, is said to be observable if for 
any unknown  initial state x(0), there exists a finite t1> 0 
such  that x(0) can be  exactly  evaluated over [0,t1] from 
the input u and  the output y.  Otherwise the system is 
said to be unobservable. 

Systemu y

Assume that we know the input and can measure the 
output, but has no access to the state.
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Duality between controllability and observability

Theorem of duality: The pair (A,B) is controllable if 
and only if  (A1, C1) = (A’,B’) is observable.

BuAxx  zBzCy
zAzAz
'
'

1

1


Dual systems
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Equivalent conditions for observability:

1) The pair (A,C) is observable.
2) Wo(t) is nonsingular for some t > 0.
3) The observability matrix 


















1n

o

CA

CA
C

G 

has full column rank, i.e., (Go) = n.

4) The matrix 





  C

λIA)(Mo λ

has full column rank at every eigenvalue of A.
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Theorem: The pair (A,C) is observable if and only if





















qn

o
1q-n

CA

CA
C

G


has full column rank, where q=(C).

Theorem: The obserbability property is invariant 
under any equivalence transformation;
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Examples:  Two circuits
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CA
CGo

(Go) = 1 < 2

Unobservable
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10
CA
CGo

(Go) = 2 

Observable
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Theorem: Consider the pair  
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Suppose that the eigenvalues of Ai and those of Aj are 
disjoint for .i  j . Then (A,C) is observable iff (Ai,Ci) 
is observable for all i. 
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So far, we have learned 
• Controllability
• Observability

Next, we will study
• Canonical decomposition:  to divide the state space

into controllable/uncontrollable, 
observable/unobservable subspaces
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Canonical Decomposition

Consider an LTI system,

DuCxyBu,Axx 
Let z = Px, where P is nonsingular, then 

DD,CPCPB,B,PAPA  where

uDzCyu,BzAz            
11- 






Recall that under an equivalence transformation, all properties,
such as stability, controllability and observability are preserved.

We also have 1oocc PGG,PGG 
Next we are going to use equivalence transformation to obtain 
certain specific structures which reflect controllability and 
observability.
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Controllability decomposition

Theorem: Suppose that (Gc) = n1 <  n.  Let Q be a 
nonsingular  matrix whose first n1 columns are LI 
columns of Gc. Let P=Q-1.  Then 

Recall Gc=[B AB … An-1B].  Suppose that (Gc) = n1 < n. 
Then Gc has at most n1 LI columns.
They form a basis for the range space of Gc.

 cc

pn
c

nn
c

c

c

12c1

CCC

RB,RA,
0
BPBB,

A0
AA

PAPA 111
















 

DBA)C(sIDB)A(C
 and lecontrollab is  )B,A(pair     theMoreover,

1
c

1
cc

cc

 sI

See page 159 for the proof.
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Discussion: 
After state transformation, the equivalent system is

2c2

c2121c1

zA           z
uBzAzAz








The input u has no effect on z2. This part of state is uncontrollable.
The first sub-system is controllable if z2=0. If z20, then

20
A

2

212
τ)-(tA

t

0c
τ)-(tA

t

010
tA

11

ze)(z

 )d(zAe  )du(Beze)(tz

c

1c
1

1c
1

1c







  ττ

de'BBe)(W 'A
cc

τA
t

01
cc

1

tc

Given a desired value for z1, say z1d. If we let

, dzeAe )(v 20
A

12
τ)-(tA

t

01
c1c

1 t

]z)(z)[e(tWe'Bu(t)  and 1d110
tA

1
1

c
t)(t'A

c
1c1c   tv

Then  you can verify that z1(t1)=z1d.
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Example:
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n=3, p=2, n-p+1=2.
Only need to check Gc
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 q is picked to make 

Q nonsingular
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c

c

12c

Note: the last column of Q is different from the book (page 161).
As a result, Ā12 is different from that in the book, which is 0.
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Theorem: Suppose that (Go) = n1 < n.  Let P be a nonsingular 
matrix whose first n1 rows are LI rows of Go. Then 
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Observability decomposition (follows from duality) 
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Discussion: After state transformation, the equivalent system is

DuzCy
  u,BzA zA  z

uBzAz
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o2o1212

o1o1








z2 may be affected by z1 

but  has no effect on y or z1
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Summary for today: 

• Controllability
• Observability
• Canonical decomposition

– Controllable/uncontrollable 
– Observable/unobservable

Next Time:

• Controllability and observability continued
– Controllability/observability decomposition
– Minimal realization
– Conditions for Jordan form conditions
– Parallel results for discrete-time systems 
– Controllability after sampling

• State feedback design (introduction)
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Problem Set #9

1.  Is the following state equation controllable?  observable? 

 
0 1 1 0

1 1 1 1 ,         y 1 0 1

1 1 0 0

x x u x

   
          
       



If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one. 

2.  Is the following state equation controllable?  observable? 

 
1 0 2 0 1

0 1 2 0 1 ,         y 1 0 1

0 0 2 1 0

x x u x

   
         
      



If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one. 


