16.513 Control Systems

Controllability and Observability
(Chapter 6)

A General Framework in State-Space Approach

Given an LTI system:

x=Ax+Bu; y=Cx (*)
The system might be unstable or doesn’t meet the required
performance spec. How can we improve the situation?
The main approach: Let u= v- Kx (state feedback), then

x =Ax+B(v-Kx); y=Cx+D(v-Kx)

=(A-BK)x+ Byv; =(C-DK)x-Dv
The performance of the system is changed by matrix K.
Questions:

* Is there a matrix K s.t. A-BK is stable?
» Can eig(A-BK) be moved to desired locations?
These issues are related to the controllability of (*) 2



Main Result 1: The eigenvalues of A-BK can be moved
to any desired locations iff the system (*) is controllable.

Another situation: the state x is not completely available.
Only a linear combination of x, e.g., y = Cx, can be
measured. How can we realize u = v-Kx?

A possible solution: build an observer to estimate x based
on measurement of .

Main result 2: The observer error (difference between the
real x and estimated x) can be made arbitrarily small within
arbitrarily short time period iff (*) is observable.

We will arrive at these conclusions in Chapter 8. Before
that, we need to prepare some tools and go through these
fundamental problems: controllability and observability.;

Controllability: Definition
Consider the system
Xx=Ax+Bu, xeR"; ueR?’.

Controllability is a relationship between state and input.

Definition: The system, or the pair (A,B), is said to be
controllable if for any initial state x(0)=x, and any final
state x4, there exist a finite time T > 0 and an input u(t),
te[0,T] such that

x(T) = eATx, + jOT eATIBu(r)dr = X, (1)

Comment: There may exist different T and u that satisfy (1).
As a result, there may be different trajectories starting from x,, and
end at x4. Controllability does not care about the difference.



Examples: uncontrollable networks.

R1=IQ§ %Rz 10
R3=IQ£ %th 1o
| |

Observation:

* Ifx(0)=0, then x(t)=0 for
allt> 0. The inputu can
do nothing about it.

» If the resistance is changed
so that R,/Ry # R,/R,, then
you can bring x to any desired
value.

+

QY

R ﬁ

Observation:

* If x,(0)=x,(0)=0, then
X,(t)=x,(t) for all t > 0.
You cannot bring x(t) to any
point in the plane.

* This situation can be changed
by altering the parameters
of the components.

W (t) I ArBB'eAIdT _I A(t— I)BBv A'(t— T)dT

Equivalent conditions: The following are equivalent
conditions for the pair (A,B) to be controllable:

1) W_(t) is nonsingular for every t > 0.
2) W (t) is nonsingular for at least one t> 0.
3) For every veR™, v£0, v’eAtB is not identically zero.

4) The matrix G¢=
row rank, 1.e
5) The matrix M(A) =

[B AB A’B ... A™!B] has full
, p(G®) =n.
[A—AI B] has full row rank at all AeC.

6) M(A) has full row rank at every eigenvalues of A.
Note: M(A) has full row rank if A is not an eigenvalue of A.
We only need to check the rank of M(1\) at eigenvalues of A.

Note : Of all the conditions, only 4) and 6) can be practically verified.



t D
W.(t) = jo e"BB'e " dt
Some observations: To bring the state from x(0) = x,, to x(t,) = x4,
a particular input is
u(t) =-B'e*" W (t,)[e*x, — x,]
This is actually the minimal energy control, i.e., if there is another
input w(t) to transfer x, to x;, within the same time interval, then

_[: w(r)'w(r)dr > I: u(t)'u(r)dr

If (A,B) is controllable, W (t)! exists for all t > 0.
= The transfer of the state can be accomplished in arbitrarily small
time interval

Note that as t, decrease, both A, [W (t,)] and A, [W(t,)] decrease.
Then |[W(t,)!|| increases. = larger magnitude of u is required.
Ast; — 0, [[W ()| = o0, u(t) — .

t 1,
W.(t) = j eMBB'e " dt
An example: L7 0

0 1 0 1
x=Ax+Bu, A=/0 0 1] B=|l
-1 -2 -3

Eigenvalues of W (t,) Eigenvalues of W (t,)!

8 2 L L L L
0 1 2 4 5 0 1 2 3 4 5

u(t) = —B'e‘A'(t"t)W‘l(tl)[eAtl Xy —Xy4]

Magnitude of u increases as t, is decreased. 8



Example: Determine the controllability for

- -1 0 _la
x = Ax+ Bu, A—[O _J, B—[b}

Approach 1: G =[B AB]=[la) :%}

p(G)<2=n forallpossible a and b
The system not controllable whatever a and b are.
Approach 2: Check M(A)=[A-Al B] at A=-1

MED-[G 6 )

p(M(-1)) <2 for all possible aand b

Same conclusion on controllability

Example:

- _|=-1 0 _|a
X =Ax+Bu, A_[O _2}, B—[}

Approach 1: G¢ =[B AB]= [% -_Z%b}

p(G°)=2, ifa#0 andb=#0
p(G°)<2, ifeithera=00rb=0

The system is controllable if a# 0 and b # 0.
Approach 2: Check M(A)=[A-AI B] at A=-1

Men=[g & bf Mea=[g g b

p(M(-1))= p(M(-2))=2 iff a0 andb =0

detG® = —ab, {

Same conclusion on controllability



A general SI system (diagonalizable)

A 0 - 0 b,
x=Ax+Bu, A=0 % 7 0 p_|b
0 0 - A b

The above system is controllable if and only if
the eigenvalues are distinct and none of the b,’s is zero

Example:

X = Ax + Bu, A=[; ‘ﬁ}, B:[bl}

bz
. _[b, ab,—Bb,
o =18 AB]{bz Bb, +ab,

p(G*)=2, if B0 and b2+b2 %0

c _ 2 2
detG —ﬂ(b1 +b2)> {p(GC)<2; if eitherﬂ:()orbl2 +b22 =0

The system 1s controllable if = 0 and (b,,b,) # (0,0)



Theorem: Consider the pair

4 0 - 0 B
A= 0 4 - 8 . p=|B
0 0 - 4 B,

Suppose that the eigenvalues of A; and those of A; are
disjoint for i # j . Then (A,B) is controllable iff (A;,B;)
is controllable for all i.

Theorem: Let p(B) = p. The pair (A,B) is controllable iff
Ge =[B AB A’B ... A"PB]

n-p+1 :

has full row rank. This is equivalent to G¢, ,,,G’
nonsingular, and to G, ,,,G’

p1 being
> (0 (positive definite.)

n-p+1



Example:

0 1 0 0 0 0

13 0 0 2 11 0

A=10 0 o 1] Z=lo o

0 -2 0 0 0 1

n=4, p=2. p(B)=2=rp.

00 1 0 0 2
. 10 0 2 -1 0
Gn_p+1:[BABA2B]:0 0 0 1 2 0
01 =2 0 0 -4

b, b, Ab, Ab, A%, A’b,

The first 4 columns are LI. = p(G¢,,.;)=4=n
= (A,B) controllable

Example:
1 0 0 O 1 0
o210 {10 o _
4=190 2 ol B=|1 o n=4, p=2. p(B)=2.
00 0 3 0 1
1 0 1 0 1 0
¢ 1 0 3 0 8 0
Gi,.=BABAB]=|, o 3 o 4 o
1 1 3 3 9 9
b, b, Ab, Ab, A?b, A’b,

The first 3 columns are LI.
The 4™ is dependent on the first 3.

1 0 1

[b1 b, Ab, A2b1]= has full row rank

O ~ 00—

1 0 3
1 0 2
1 1 3

Hence (A,B) is controllable.



Effect of equivalence transformation

Recall that equivalence transformation can make the structure
cleaner and simplify analysis.

Question:
Does similarity transformation retain the controllability property?

Theorem: The controllability property is invariant under any
equivalence transformation

Proof: Consider (A,B) with G=[B AB A’B .... A™~B].
Let the transformation matrix be P. Then (A,B) < (PAP-!, PB)
G*=[B AB---A"'B]
=[PB PAP'PB --- PA™'P"'PB]

=[PB PAB --- PA"'B] Since P is nonsingular,
=P[B AB --- A™B — .
o ] p(G) =p(GY)

Next Problem: Observability



Observability: A dual concept
Consider an n-dimensional, p-input, g-output system:
x=Ax+Bu; y=Cx+Du
u =) System [ Y

Assume that we know the input and can measure the
output, but has no access to the state.

Definition: The system, is said to be observable if for
any unknown initial state x(0), there exists a finite t,> 0
such that x(0) can be exactly evaluated over [0,t,] from

the input u and the output y. Otherwise the system is
said to be unobservable.

Duality between controllability and observability

Theorem of duality: The pair (A,B) is controllable if
and only if (A,, C,) = (A’,B’) is observable.

Dual systems i=Az=Az

XZAX-I-Bu y:CIZ:B'Z

20

10



Equivalent conditions for observability:

1) The pair (A,C) is observable.
2) W_(t) is nonsingular for some t > 0.
3) The observability matrix

C
Go=| “A
CAn—l
has full column rank, i.e., p(G°) = n.
4) The matrix
M°(2) :[AEM}

has full column rank at every eigenvalue of A.
21

Theorem: The pair (A,C) is observable if and only if

C
CA
CA™

has full column rank, where q=p(C).

o —
n-qg+l

Theorem: The obserbability property is invariant
under any equivalence transformation;

22

11



Examples: Two circuits

y=[0 1]x y=[0 1]x
. [cl o 1 . [c1.Jo 1
G ‘[CA}‘[O —1} G _[CA}_[I —2}
p(G)=1<2 p(G°) =2
=) Unobservable mm) Observable ”s

Theorem: Consider the pair

4 0 0
4= 0 A 0 ese ¢ )]
0 0

Suppose that the eigenvalues of A; and those of A; are
disjoint for .1 # j . Then (A,C) is observable iff (A,,C,)
is observable for all 1.

24

12



So far, we have learned
* Controllability
* Observability
Next, we will study

» Canonical decomposition: to divide the state space
into controllable/uncontrollable,

observable/unobservable subspaces

25

Canonical Decomposition

Consider an LTI system,

x=Ax+Bu, y=Cx+Du
Let z = Px, where P is nonsingular, then

z=Az+Bu, y=Cz+Du
where A=PAP', B=PB, C=CP", D=D
Recall that under an equivalence transformation, all properties,
such as stability, controllability and observability are preserved.
We also have Ge — pGge. G° = GoP~!

Next we are going to use equivalence transformation to obtain

certain specific structures which reflect controllability and
observability.

26
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Controllability decomposition

Recall G*=[B AB ... A™'B]. Suppose that p(G°) =n, <n.
Then G¢ has at most n, LI columns.
They form a basis for the range space of G

Theorem: Suppose that p(G®) =n,; < n. LetQbea

nonsingular matrix whose first n; columns are LI
columns of G¢. Let P=Q-!. Then

K:PAPI{% %‘2}, §=PB=[%} A, eR™™ B eR™"

6 = [Ec EE]
Moreover, the pair (KC , EC) 1s controllab le and
C.(sI-A)'B,+D=C(sI-A)'B+D

c

See page 159 for the proof.

27

Discussion:

After state transformation, the equivalent system is
Z, = Kczl + Klzzz +§Cu
Z, = Az,

The input u has no effect on z,. This part of state is uncontrollable.
The first sub-system is controllable if z,=0. If z,#0, then

z,(t)=e Nz, + ‘Ltl e B u(r)dzr + Ltl eMUIA 7 (1)dr
z2,(7) = exérzzo
Given a desired value for z,, say z,4. If we let
v(t,) = jo‘ MR Mz, dr, W)= BB M dr
and u(t) =—B,'e™ W, (t,)[e"" 2, + (1) — 2,4]

Then you can verify that z,(t,)=z,,.
28
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x=Ax+Bu

A=0 1 0], B=|l1 0
0 1 1 0 1 Only need to check G¢,

Example:

0 1 1 1
G:=[B AB]= [1 0 1 0] p(G5)=2<3, uncontrollable
0 1 1 1

Let Q=[b, b, q]= (1) (1) % p=Q- q is picked to make
L 01 0| Q nonsingular

-1 1 1]t 1 ofo 1 11t 0:!0]rx =
0 0 1f0 1 of1 0 1|51 151{‘* Aiz}
10 -0 1 1o 1 of 070 L0 A

Note: the last column of Q is different from the book (page 161).

As aresult, A, is different from that in the book, which is 0.
29

Observability decomposition (follows from duality)

C
Recall G° = C;A
CA™!

Theorem: Suppose that p(G°) =n, <n. Let P be a nonsingular
matrix whose first n, rows are LI rows of G°. Then

A=pap'=| 2 91 Bopp=|B| A crwm B, er™
A, A, B,

o (4]

c=fc. o C R
Moreover, the pair (A,,C,) is observable and
C,(sI-A)"'B,+D=C(I-A)"'B+D

Discussion: After state transformation, the equivalent system is

2= A,z +Byu z, may be affected by z,

2, = Auz + AgZ, + Bgu, but has no effect on y or z,
y= COZ] +Du 30

15



Summary for today:

* Controllability

* Observability

 Canonical decomposition
— Controllable/uncontrollable
— Observable/unobservable

Next Time:

 Controllability and observability continued
— Controllability/observability decomposition
— Minimal realization
— Conditions for Jordan form conditions
— Parallel results for discrete-time systems
— Controllability after sampling

» State feedback design (introduction) 51

Problem Set #9

1. Is the following state equation controllable? observable?

0o 1 -1 0
x=|-1 -1 1| x+|1]| u, yz[l 0 1]x
-1 -1 0 0

If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one.

2. Is the following state equation controllable? observable?

1 0 -2 0 1
x=|0 1 2| x+|0 1]|u, y=[1 0 l]x
0 0 2 1 0

If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one.

32
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