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16.513 Control Systems

Controllability and Observability

(Chapter 6)
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A General Framework in State-Space Approach

(*)                      Cx        y      Bu;Axx 
Given an LTI system:

The system might be unstable or doesn’t meet the required 
performance spec. How can we improve the  situation?

The main approach: Let u= v- Kx (state feedback), then 

 Dv-DK)x-(C        Bv;BK)x-(A   
Kx)-D(vCxy      Kx);-B(vAxx




The performance of the system is changed by matrix K.
Questions:

• Is there a matrix K s.t. A-BK is stable?
• Can eig(A-BK) be moved to desired locations?            

These issues are related to the controllability of  (*) 
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Main Result 1: The eigenvalues of  A-BK can be moved
to any desired locations iff the system (*) is controllable.
Another situation: the state x is not completely available. 
Only a linear combination of  x, e.g., y = Cx, can be 
measured. How can we realize u = v-Kx?

A possible solution: build an observer to estimate x based
on measurement of y. 

Main result 2: The observer error (difference between the
real x and estimated x) can be made arbitrarily small within
arbitrarily short time period iff  (*) is observable.

We will arrive at these conclusions in Chapter 8. Before 
that, we need to prepare some tools and go through these 
fundamental problems: controllability and observability.
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Controllability:  Definition

Consider the system

.Ru  ;R   xBu,Axx pn 
Controllability is a relationship between state and input. 

Definition: The system, or the pair (A,B),  is said to be 
controllable if for any  initial state  x(0)=x0 and any final 
state xd, there exist a finite time T > 0 and an input u(t), 
t[0,T] such that

(1)                             x)dτBu(exex(T) d
τ)-A(T

T

00
AT   τ

Comment: There may exist different T and u that satisfy  (1).
As a result, there may be different trajectories starting from x0 and
end at xd.   Controllability does not care about the difference.
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Examples: uncontrollable networks.

R4= 1 R3= 1 

R2= 1 R1= 1 

+     x

+
u


1 1 

+
u


1 F 1 F
+

x1



+
x2



Observation:
• If x(0)=0, then  x(t)=0 for 

all t > 0.  The input u can  
do nothing about it.  

• If  the resistance is changed
so that R1/R3  R2/R4, then
you can bring x to any desired
value.

Observation:
• If x1(0)=x2(0)=0, then 

x1(t)=x2(t) for all t > 0.
You cannot bring x(t) to any
point in the plane. 

• This situation can be changed
by altering the parameters 
of the components.
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Equivalent conditions: The following are equivalent
conditions for the pair (A,B) to be controllable:

deBB'edτeBB'e(t)W τ)(tA'
t

0

τ)A(tτA'
t

0

Aτ
c

 

1) Wc(t)  is nonsingular for every t > 0.
2) Wc(t)  is nonsingular for at least one  t > 0.
3) For every vRn, v0,  v’eAt B is not identically zero.
4) The matrix  Gc = [B  AB  A2B … An-1B] has full 

row rank,  i.e.,  (Gc) = n.
5) The matrix M() = [AI  B] has full row rank at all C. 
6) M() has full row rank at every eigenvalues of A.

Note: M() has full row rank if   is not an eigenvalue of A.
We only need to check the rank of M() at eigenvalues of A. 

Note : Of all the conditions, only 4) and 6) can be practically verified.
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dτeBB'e(t)W τA'
t

0

Aτ
c 

]xx)[e(tWeB'u(t) d0
At

1
1t)(tA' 11  

Some observations: To bring the state from x(0) = x0 to x(t1) = xd , 
a particular input is 

 This is actually the minimal energy control, i.e., if there is another
input w(t) to transfer x0 to xd within the same time interval, then

  11

00
)()'()()'(

tt
duudww 

 If (A,B) is controllable, Wc(t)-1 exists for all t > 0.
 The transfer of the state can be accomplished in arbitrarily small

time interval 

Note that as t1 decrease, both min[Wc(t1)] and max[Wc(t1)] decrease.
Then ||Wc(t1)-1|| increases.  larger magnitude of u is required.
As t1 → 0, ||Wc(t1)-1|| →  , u(t) → . 
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An example:  





























1
1
1

,
321

100
010

    Bu,Axx BA

Eigenvalues of Wc(t1) Eigenvalues of Wc(t1)-1

]xx)[e(tWeB'u(t) d0
At

1
1t)(tA' 11  

Magnitude of u increases as t1 is decreased.

dτeBB'e(t)W τA'
t

0

Aτ
c 
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Example:  Determine the controllability for












 b

aBA ,10
01    Bu,Axx

Approach 1: 



 b-b

a-aAB]  [BGc

b  and  a  possible allfor    2)( nG 
The system not controllable whatever a and b are.

Approach 2: Check M()=[A-I  B] at =-1





 b00

a001)M(

(M(-1)) < 2  for all possible a and b

Same conclusion on controllability
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Example:  












 b

aBA ,20
01    Bu,Axx

Approach 1:




 2b-b

a-aAB]  [BGc

  
0bor  0aeither  if   2,)ρ(G

       0b and  0a if   2,)ρ(G  ab,detG c

c
c








The system is controllable if a  0  and b  0.

Approach 2: Check M()=[A-I  B] at =-1

,b00
a012)M(,b1-0

a001)M( 









(M(-1))= (M(-2))=2  iff  a  0  and b  0

Same conclusion on controllability
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A general SI system (diagonalizable) 




































nn b

b
b

BA








 2

1

2

1

,

00

00
00

    Bu,Axx






The above system is controllable if and only if
the eigenvalues are distinct and none of the bi’s is zero
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Example:  









 

2

1,    Bu,Axx
b
b

BA 











212

211

αbβbb
βbαbb

AB]  [BGc

  
0or  0either  if   2,)ρ(G

   0   and  0 if   2,)ρ(G
      ),b(bdetG 2

2
2

1
c

2
2

2
1

c
2
2

2
1

c







bb

bb




The system is controllable if  0  and (b1,b2)  (0,0)
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Theorem: Consider the pair  




































mm B

B
B

B

A

A
A

A







2

1

2

1

,

00
0
00
00

Suppose that the eigenvalues of Ai and those of Aj are 
disjoint for i  j . Then (A,B) is controllable iff (Ai,Bi) 
is controllable for all i. 
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Theorem: Let (B) = p. The pair (A,B) is controllable iff 

Gc
n-p+1: = [B  AB  A2B … An-pB]

has full row rank. This is equivalent to Gc
n-p+1Gc’n-p+1 being

nonsingular,  and to Gc
n-p+1Gc’n-p+1 > 0 (positive definite.)
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Example:





































10
00
01
00

,

0020
1000
2003
0010

BA

n=4, p=2.  (B)=2= p.  

 

2
2

1
2

2121

2c
1pn

bA  bA  Ab Ab  b   b                                       
400210

021000
012001
200100

BA  AB  BG





















The first 4 columns are LI.  (Gc
n-p+1)=4 = n 

 (A,B) controllable
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Example:



































10
01
01
01

,

3000
0200
0120
0001

BA n=4, p=2.  (B)=2.

 

2
2

1
2

2121

2c
1pn

bA  bA   Ab   Ab   b      b                                        
993311
040201
080301
010101

BA  AB  BG


















The first 3 columns are LI. 
The 4th is dependent on the first 3.

  rank row full has   

9311
4201
8301
1101

bAAbbb 1
2

121



















Hence (A,B) is controllable.
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Question:
Does similarity transformation retain the controllability property? 

Recall that equivalence transformation can make the structure
cleaner and simplify analysis. 

Theorem: The controllability property is invariant under any
equivalence transformation 

Proof: Consider (A,B) with Gc=[B AB A2B …. An-1B]. 
Let the transformation matrix be P. Then  (A,B)  (PAP-1, PB) 

c

1-n

1-n

11-n1-

1nc

PG    
B]A    AB  P[B    

]BPA    PAB  [PB    
PB]PPA    PBPAP  [PB    

]BABAB[G



















Since P is nonsingular,

)ρ(G)Gρ( cc 

Effect of equivalence transformation

18

Next Problem:   Observability 
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Observability:  A dual concept
Consider an n-dimensional, p-input, q-output system:

DuCxy    Bu;Axx 

Definition: The system, is said to be observable if for 
any unknown  initial state x(0), there exists a finite t1> 0 
such  that x(0) can be  exactly  evaluated over [0,t1] from 
the input u and  the output y.  Otherwise the system is 
said to be unobservable. 

Systemu y

Assume that we know the input and can measure the 
output, but has no access to the state.

20

Duality between controllability and observability

Theorem of duality: The pair (A,B) is controllable if 
and only if  (A1, C1) = (A’,B’) is observable.

BuAxx  zBzCy
zAzAz
'
'

1

1


Dual systems
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Equivalent conditions for observability:

1) The pair (A,C) is observable.
2) Wo(t) is nonsingular for some t > 0.
3) The observability matrix 


















1n

o

CA

CA
C

G 

has full column rank, i.e., (Go) = n.

4) The matrix 





  C

λIA)(Mo λ

has full column rank at every eigenvalue of A.

22

Theorem: The pair (A,C) is observable if and only if





















qn

o
1q-n

CA

CA
C

G


has full column rank, where q=(C).

Theorem: The obserbability property is invariant 
under any equivalence transformation;
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Examples:  Two circuits

1
1

1 H

1F

+

x2 = y



x1

1
1

1 H

1F

+

x2 = y



x1

  x10y

u,1
1

x
x

10
01

x
x

2

1

2

1



























  x10y

u,1
1

x
x

21
10

x
x

2

1

2

1





































 10

10
CA
CGo

(Go) = 1 < 2

Unobservable











 21

10
CA
CGo

(Go) = 2 

Observable

24

Theorem: Consider the pair  

 m
m

CCCC

A

A
A

A 






21
2

1

,

00
0
00
00




















Suppose that the eigenvalues of Ai and those of Aj are 
disjoint for .i  j . Then (A,C) is observable iff (Ai,Ci) 
is observable for all i. 
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So far, we have learned 
• Controllability
• Observability

Next, we will study
• Canonical decomposition:  to divide the state space

into controllable/uncontrollable, 
observable/unobservable subspaces

26

Canonical Decomposition

Consider an LTI system,

DuCxyBu,Axx 
Let z = Px, where P is nonsingular, then 

DD,CPCPB,B,PAPA  where

uDzCyu,BzAz            
11- 






Recall that under an equivalence transformation, all properties,
such as stability, controllability and observability are preserved.

We also have 1oocc PGG,PGG 
Next we are going to use equivalence transformation to obtain 
certain specific structures which reflect controllability and 
observability.
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Controllability decomposition

Theorem: Suppose that (Gc) = n1 <  n.  Let Q be a 
nonsingular  matrix whose first n1 columns are LI 
columns of Gc. Let P=Q-1.  Then 

Recall Gc=[B AB … An-1B].  Suppose that (Gc) = n1 < n. 
Then Gc has at most n1 LI columns.
They form a basis for the range space of Gc.

 cc

pn
c

nn
c

c

c

12c1

CCC

RB,RA,
0
BPBB,

A0
AA

PAPA 111
















 

DBA)C(sIDB)A(C
 and lecontrollab is  )B,A(pair     theMoreover,

1
c

1
cc

cc

 sI

See page 159 for the proof.
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Discussion: 
After state transformation, the equivalent system is

2c2

c2121c1

zA           z
uBzAzAz








The input u has no effect on z2. This part of state is uncontrollable.
The first sub-system is controllable if z2=0. If z20, then

20
A

2

212
τ)-(tA

t

0c
τ)-(tA

t

010
tA

11

ze)(z

 )d(zAe  )du(Beze)(tz

c

1c
1

1c
1

1c







  ττ

de'BBe)(W 'A
cc

τA
t

01
cc

1

tc

Given a desired value for z1, say z1d. If we let

, dzeAe )(v 20
A

12
τ)-(tA

t

01
c1c

1 t

]z)(z)[e(tWe'Bu(t)  and 1d110
tA

1
1

c
t)(t'A

c
1c1c   tv

Then  you can verify that z1(t1)=z1d.
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Example:





























10
01
10

B,
110
010
011

A

BuAxx

n=3, p=2, n-p+1=2.
Only need to check Gc

2

 













1110
0101
1110

ABBGc
2

ableuncontroll    ,32)( 2 cG

1
21 QP,

010
101
110

]qbb[QLet  











 q is picked to make 

Q nonsingular


















































































0
B

00
10
01

PBB

,
A0
AA

100
111
001

010
101
110

110
010
011

101
100
111

PAQA

c

c

12c

Note: the last column of Q is different from the book (page 161).
As a result, Ā12 is different from that in the book, which is 0.

30

Theorem: Suppose that (Go) = n1 < n.  Let P be a nonsingular 
matrix whose first n1 rows are LI rows of Go. Then 

  1

111

n
oo

pn
o

nn
o

o

o

o21

o1

RC                                                 ,0CC

RB,RA,
B
B

PBB,
AA
0A

PAPA






















q

DBA)C(sIDB)A(C
 and observable is  )C,A(pair     theMoreover,

1
o

1
oo

oo

 sI

Observability decomposition (follows from duality) 


















1n

o

CA

CA
C

G   Recall


Discussion: After state transformation, the equivalent system is

DuzCy
  u,BzA zA  z

uBzAz

1o

o2o1212

o1o1








z2 may be affected by z1 

but  has no effect on y or z1



16

31

Summary for today: 

• Controllability
• Observability
• Canonical decomposition

– Controllable/uncontrollable 
– Observable/unobservable

Next Time:

• Controllability and observability continued
– Controllability/observability decomposition
– Minimal realization
– Conditions for Jordan form conditions
– Parallel results for discrete-time systems 
– Controllability after sampling

• State feedback design (introduction)

32

Problem Set #9

1.  Is the following state equation controllable?  observable? 

 
0 1 1 0

1 1 1 1 ,         y 1 0 1

1 1 0 0

x x u x

   
          
       



If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one. 

2.  Is the following state equation controllable?  observable? 

 
1 0 2 0 1

0 1 2 0 1 ,         y 1 0 1

0 0 2 1 0

x x u x

   
         
      



If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one. 


