16.513 Control Systems

Controllability and Observability (Chapter 6)

A General Framework in State-Space Approach

Given an LTI system:

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} ; \quad \mathrm{y}=\mathrm{Cx} \tag{*}
\end{equation*}
$$

The system might be unstable or doesn't meet the required performance spec. How can we improve the situation?

The main approach: Let $u=v-K x$ (state feedback), then

$$
\begin{aligned}
\dot{x} & =A x+B(v-K x) ; & y & =C x+D(v-K x) \\
& =(A-B K) x+B v ; & & =(C-D K) x-D v
\end{aligned}
$$

The performance of the system is changed by matrix K.

Questions:

- Is there a matrix K s.t. A-BK is stable?
- Can eig(A-BK) be moved to desired locations?

These issues are related to the controllability of (*) 2

Main Result 1: The eigenvalues of A-BK can be moved to any desired locations iff the system $\left({ }^{*}\right)$ is controllable. Another situation: the state x is not completely available. Only a linear combination of x, e.g., $y=C x$, can be measured. How can we realize $u=v-K x$?

A possible solution: build an observer to estimate x based on measurement of y.

Main result 2: The observer error (difference between the real x and estimated x) can be made arbitrarily small within arbitrarily short time period iff $\left(^{*}\right)$ is observable.

We will arrive at these conclusions in Chapter 8. Before that, we need to prepare some tools and go through these fundamental problems: controllability and observability. 3

Controllability: Definition

Consider the system

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{x} \in \mathrm{R}^{\mathrm{n}} ; \mathrm{u} \in \mathrm{R}^{\mathrm{p}} .
$$

Controllability is a relationship between state and input.
Definition: The system, or the pair (A,B), is said to be controllable if for any initial state $\mathrm{x}(0)=\mathrm{x}_{0}$ and any final state x_{d}, there exist a finite time $\mathrm{T}>0$ and an input $\mathrm{u}(\mathrm{t})$, $t \in[0, \mathrm{~T}]$ such that

$$
\begin{equation*}
\mathrm{x}(\mathrm{~T})=\mathrm{e}^{\mathrm{AT}} \mathrm{x}_{0}+\int_{0}^{\mathrm{T}} \mathrm{e}^{\mathrm{A}(\mathrm{~T}-\tau)} \mathrm{Bu}(\tau) \mathrm{d} \tau=\mathrm{x}_{\mathrm{d}} \tag{1}
\end{equation*}
$$

Comment: There may exist different T and u that satisfy (1).
As a result, there may be different trajectories starting from x_{0} and end at x_{d}. Controllability does not care about the difference.

Examples: uncontrollable networks.

Observation:

- If $x(0)=0$, then $x(t)=0$ for all $t>0$. The input u can do nothing about it.
- If the resistance is changed so that $R_{1} / R_{3} \neq R_{2} / R_{4}$, then you can bring x to any desired value.

Observation:

- If $x_{1}(0)=x_{2}(0)=0$, then $x_{1}(t)=x_{2}(t)$ for all $t>0$. You cannot bring $x(t)$ to any point in the plane.
- This situation can be changed by altering the parameters of the components.

$$
\mathrm{W}_{\mathrm{c}}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A}^{\tau}} \mathrm{BB}^{\prime} \mathrm{e}^{\mathrm{A}^{\prime} \tau} \mathrm{d} \tau=\int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A}(\mathrm{t}-\tau)} \mathrm{BB}^{\prime} \mathrm{e}^{\mathrm{A}^{\prime}(\mathrm{t}-\tau)} \mathrm{d} \tau
$$

Equivalent conditions: The following are equivalent conditions for the pair (A, B) to be controllable:

1) $W_{c}(t)$ is nonsingular for every $t>0$.
2) $W_{c}(t)$ is nonsingular for at least one $t>0$.
3) For every $v \in R^{n}, v \neq 0$, $v^{\prime} e^{A t} B$ is not identically zero.
4) The matrix $G^{c}=\left[B \quad A B \quad A^{2} B \ldots A^{n-1} B\right]$ has full row rank, i.e., $\rho\left(\mathrm{G}^{\mathrm{c}}\right)=\mathrm{n}$.
5) The matrix $\mathrm{M}(\lambda)=\left[\begin{array}{ll}A-\lambda I & B\end{array}\right]$ has full row rank at all $\lambda \in \mathrm{C}$.
6) $\mathrm{M}(\lambda)$ has full row rank at every eigenvalues of A.

Note: $M(\lambda)$ has full row rank if λ is not an eigenvalue of A. We only need to check the rank of $\mathrm{M}(\lambda)$ at eigenvalues of A.
Note : Of all the conditions, only 4) and 6) can be practically verified.

$$
\mathrm{W}_{\mathrm{c}}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A} \tau} \mathrm{BB}^{\prime} \mathrm{e}^{\mathrm{A}^{\prime} \tau} \mathrm{d} \tau
$$

Some observations: To bring the state from $\mathrm{x}(0)=\mathrm{x}_{0}$ to $\mathrm{x}\left(\mathrm{t}_{1}\right)=\mathrm{x}_{\mathrm{d}}$, a particular input is

$$
u(t)=-B^{\prime} e^{A^{\prime}\left(t_{1}-t\right)} W^{-1}\left(t_{1}\right)\left[e^{A t_{1}} x_{0}-x_{d}\right]
$$

- This is actually the minimal energy control, i.e., if there is another input $\mathrm{w}(\mathrm{t})$ to transfer x_{0} to x_{d} within the same time interval, then

$$
\int_{0}^{t_{1}} w(\tau)^{\prime} w(\tau) d \tau \geq \int_{0}^{t_{1}} u(\tau)^{\prime} u(\tau) d \tau
$$

- If (A, B) is controllable, $W_{c}(t)^{-1}$ exists for all $t>0$.
\Rightarrow The transfer of the state can be accomplished in arbitrarily small time interval

Note that as t_{1} decrease, both $\lambda_{\min }\left[\mathrm{W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)\right]$ and $\lambda_{\max }\left[\mathrm{W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)\right]$ decrease.
Then $\left\|\mathrm{W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)^{-1}\right\|$ increases. \Rightarrow larger magnitude of u is required.
As $\mathrm{t}_{1} \rightarrow 0,\left\|\mathrm{~W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)^{-1}\right\| \rightarrow \infty, \mathrm{u}(\mathrm{t}) \rightarrow \infty$.

An example:

$$
\mathrm{W}_{\mathrm{c}}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{e}^{\mathrm{A} \tau} \mathrm{BB}^{\prime} \mathrm{e}^{\mathrm{A}^{\prime} \tau} \mathrm{d} \tau
$$

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -2 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Eigenvalues of $\mathrm{W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)$
Eigenvalues of $\mathrm{W}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)^{-1}$

Magnitude of u increases as t_{1} is decreased.

Example: Determine the controllability for

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad B=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Approach 1: $G^{c}=\left[\begin{array}{ll}B & \mathrm{AB}\end{array}\right]=\left[\begin{array}{ll}\mathrm{a} & -\mathrm{a} \\ \mathrm{b} & -\mathrm{b}\end{array}\right]$

$$
\rho(G)<2=n \text { for all possible } \mathrm{a} \text { and } \mathrm{b}
$$

The system not controllable whatever a and b are.
Approach 2: Check $\mathrm{M}(\lambda)=[\mathrm{A}-\lambda \mathrm{I}$ B] at $\lambda=-1$

$$
\mathrm{M}(-1)=\left[\begin{array}{lll}
0 & 0 & \mathrm{a} \\
0 & 0 & \mathrm{~b}
\end{array}\right]
$$

$\rho(\mathrm{M}(-1))<2$ for all possible a and b
Same conclusion on controllability

Example:

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right], \quad B=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Approach 1: $G^{c}=\left[\begin{array}{ll}B & \mathrm{AB}\end{array}\right]=\left[\begin{array}{cc}\mathrm{a} & -\mathrm{a} \\ \mathrm{b} & -2 \mathrm{~b}\end{array}\right]$

$$
\operatorname{det} G^{\mathrm{c}}=-\mathrm{ab},\left\{\begin{array}{l}
\rho\left(\mathrm{G}^{\mathrm{c}}\right)=2, \text { if } \mathrm{a} \neq 0 \text { and } \mathrm{b} \neq 0 \\
\rho\left(\mathrm{G}^{\mathrm{c}}\right)<2, \text { if either } \mathrm{a}=0 \text { or } \mathrm{b}=0
\end{array}\right.
$$

The system is controllable if $a \neq 0$ and $b \neq 0$.
Approach 2: Check $\mathrm{M}(\lambda)=[\mathrm{A}-\lambda \mathrm{I}$ B] at $\lambda=-1$

$$
\begin{aligned}
& M(-1)=\left[\begin{array}{ccc}
0 & 0 & a \\
0 & -1 & b
\end{array}\right], \quad M(-2)=\left[\begin{array}{ccc}
1 & 0 & a \\
0 & 0 & b
\end{array}\right], \\
& \rho(M(-1))=\rho(M(-2))=2 \text { iff } a \neq 0 \text { and } b \neq 0
\end{aligned}
$$

Same conclusion on controllability

A general SI system (diagonalizable)

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad A=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The above system is controllable if and only if the eigenvalues are distinct and none of the b_{i} 's is zero

Example:

$$
\begin{aligned}
& \dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad A=\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right], \quad B=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \\
& G^{c}=\left[\begin{array}{ll}
B & \mathrm{AB}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{b}_{1} & \alpha \mathrm{~b}_{1}-\beta \mathrm{b}_{2} \\
\mathrm{~b}_{2} & \beta \mathrm{~b}_{1}+\alpha \mathrm{b}_{2}
\end{array}\right] \\
& \operatorname{detG}^{\mathrm{c}}=\beta\left(\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}\right), \quad\left\{\begin{array}{l}
\rho\left(\mathrm{G}^{\mathrm{c}}\right)=2, \\
\rho\left(\mathrm{G}^{\mathrm{c}}\right)<2, \text { if } \beta \neq 0 \text { and } b_{1}^{2}+b_{2}^{2} \neq 0
\end{array}\right. \\
& \beta=0 \text { or } b_{1}^{2}+b_{2}^{2}=0
\end{aligned}
$$

The system is controllable if $\beta \neq 0$ and $\left(b_{1}, b_{2}\right) \neq(0,0)$

Theorem: Consider the pair

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & A_{m}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{m}
\end{array}\right]
$$

Suppose that the eigenvalues of A_{i} and those of A_{j} are disjoint for $\mathrm{i} \neq \mathrm{j}$. Then (A, B) is controllable iff $\left(\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}\right)$ is controllable for all i.

Theorem: Let $\rho(B)=p$. The pair (A, B) is controllable iff

$$
\mathrm{G}_{\mathrm{n}-\mathrm{p}+1}^{\mathrm{c}}:=\left[\begin{array}{lllll}
\mathrm{B} & \mathrm{AB} & \mathrm{~A}^{2} \mathrm{~B} & \ldots & \mathrm{~A}^{\mathrm{n}-\mathrm{p}} \mathrm{~B}
\end{array}\right]
$$

has full row rank. This is equivalent to $\mathrm{G}^{\mathrm{c}}{ }_{\mathrm{n}-\mathrm{p}+1} \mathrm{G}^{\mathrm{c}}{ }_{\mathrm{n}-\mathrm{p}+1}$ being nonsingular, and to $\mathrm{G}^{\mathrm{c}}{ }_{\mathrm{n}-\mathrm{p}+1} \mathrm{G}^{\mathrm{c}}{ }_{\mathrm{n}-\mathrm{p}+1}>0$ (positive definite.)

Example:

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \\
\mathrm{n}=4, \mathrm{p}=2 \cdot \rho(\mathrm{~B})=2=\mathrm{p} .
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{G}_{\mathrm{n}-\mathrm{p}+1}^{\mathrm{c}}=\left[\begin{array}{lll}
\mathrm{B} & \mathrm{AB} & \mathrm{~A}^{2} \mathrm{~B}
\end{array}\right]= & {\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0 & 0 & -4
\end{array}\right] } \\
& \mathrm{b}_{1} \\
\mathrm{~b}_{2} & \mathrm{Ab}_{1}
\end{aligned} \mathrm{Ab}_{2} \mathrm{~A}^{2} \mathrm{~b}_{1} \mathrm{~A}^{2} \mathrm{~b}_{2} .
$$

The first 4 columns are LI. $\Rightarrow \rho\left(\mathrm{G}_{\mathrm{n}-\mathrm{p}+1}^{\mathrm{c}}\right)=4=\mathrm{n}$

$$
\Rightarrow(\mathrm{A}, \mathrm{~B}) \text { controllable }
$$

Example:

$$
\begin{gathered}
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathrm{n}=4, \mathrm{p}=2 . \rho(\mathrm{B})=2 . \\
\mathrm{G}_{\mathrm{n}-\mathrm{p}+1}^{\mathrm{c}}=\left[\begin{array}{llllll}
\mathrm{B} & \mathrm{AB}^{2} \mathrm{~B}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 3 & 0 & 8 & 0 \\
1 & 0 & 2 & 0 & 4 & 0 \\
1 & 1 & 3 & 3 & 9 & 9
\end{array}\right] \\
\mathrm{b}_{1} \\
\mathrm{~b}_{2}
\end{gathered} \mathrm{Ab}_{1} \mathrm{Ab}_{2} \mathrm{~A}^{2} \mathrm{~b}_{1} \mathrm{~A}^{2} \mathrm{~b}_{2} .
$$

The first 3 columns are LI.
The $4^{\text {th }}$ is dependent on the first 3 .
$\left[b_{1} b_{2} A b_{1} A^{2} b_{1}\right]=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 0 & 3 & 8 \\ 1 & 0 & 2 & 4 \\ 1 & 1 & 3 & 9\end{array}\right]$ has full row rank
Hence (A, B) is controllable.

Effect of equivalence transformation

Recall that equivalence transformation can make the structure cleaner and simplify analysis.

Question:
Does similarity transformation retain the controllability property?
Theorem: The controllability property is invariant under any equivalence transformation

Proof: Consider (A,B) with $\left.\mathrm{G}^{\mathrm{c}=[\mathrm{B} \mathrm{AB} \mathrm{A}}{ }^{2} \mathrm{~B} \ldots . \mathrm{A}^{\mathrm{n}-1} \mathrm{~B}\right]$.
Let the transformation matrix be P . Then $(\mathrm{A}, \mathrm{B}) \Leftrightarrow\left(\mathrm{PAP}^{-1}, \mathrm{~PB}\right)$

$$
\begin{aligned}
\overline{\mathrm{G}}^{\mathrm{c}} & =\left[\begin{array}{l}
\overline{\mathrm{B}} \\
\left.\overline{\mathrm{AB}} \cdots \overline{\mathrm{~A}}^{\mathrm{n}-1} \overline{\mathrm{~B}}\right] \\
\\
=\left[\mathrm{PB} \mathrm{PAP}^{-1} \mathrm{~PB} \cdots \mathrm{PA}^{\mathrm{n}-1} \mathrm{P}^{-1} \mathrm{~PB}\right] \\
\\
=\left[\mathrm{PB} \text { PAB } \cdots \mathrm{PA}^{\mathrm{n}-1} \mathrm{~B}\right] \\
\\
=\mathrm{P}\left[\begin{array}{ll}
\mathrm{B} & \mathrm{AB}
\end{array} \cdots \mathrm{~A}^{\mathrm{n}-1} \mathrm{~B}\right] \\
\end{array}\right]
\end{aligned}
$$

Since P is nonsingular,

$$
\rho\left(\overline{\mathrm{G}}^{\mathrm{c}}\right)=\rho\left(\mathrm{G}^{\mathrm{c}}\right)
$$

Observability: A dual concept

Consider an n-dimensional, p-input, q-output system:
$\dot{x}=A x+B u ; y=C x+D u$
$u \Rightarrow \sqrt{\text { System }} \Rightarrow \mathrm{y}$
Assume that we know the input and can measure the output, but has no access to the state.

Definition: The system, is said to be observable if for any unknown initial state $x(0)$, there exists a finite $t_{1}>0$ such that $\mathrm{x}(0)$ can be exactly evaluated over $\left[0, \mathrm{t}_{1}\right]$ from the input u and the output y. Otherwise the system is said to be unobservable.

Duality between controllability and observability

Theorem of duality: The pair (A, B) is controllable if and only if $\left(A_{1}, C_{1}\right)=\left(A^{\prime}, B^{\prime}\right)$ is observable.

$$
\dot{x}=A x+B u \quad \stackrel{\text { Dual systems }}{ } \quad \begin{aligned}
& \dot{z}=A_{1} z=A^{\prime} z \\
& y=C_{1} z=B^{\prime} z
\end{aligned}
$$

Equivalent conditions for observability:

1) The pair (A, C) is observable.
2) $W_{o}(t)$ is nonsingular for some $t>0$.
3) The observability matrix

$$
\mathrm{G}^{\mathrm{o}}=\left[\begin{array}{c}
\mathrm{C} \\
\mathrm{CA} \\
\vdots \\
\mathrm{CA}^{\mathrm{n}-1}
\end{array}\right]
$$

has full column rank, i.e., $\rho\left(\mathrm{G}^{\circ}\right)=\mathrm{n}$.
4) The matrix

$$
\mathrm{M}^{0}(\lambda)=\left[\begin{array}{c}
\mathrm{A}-\lambda \mathrm{I} \\
\mathrm{C}
\end{array}\right]
$$

has full column rank at every eigenvalue of A.

Theorem: The pair (A, C) is observable if and only if

$$
\mathrm{G}_{\mathrm{n}-q+1}^{\mathrm{o}}=\left[\begin{array}{c}
\mathrm{C} \\
\mathrm{CA} \\
\vdots \\
\mathrm{CA}^{\mathrm{n}-\mathrm{q}}
\end{array}\right]
$$

has full column rank, where $q=\rho(C)$.

Theorem: The obserbability property is invariant under any equivalence transformation;

Examples: Two circuits

Theorem: Consider the pair

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & A_{m}
\end{array}\right], \quad C=\left[\begin{array}{llll}
C_{1} & C_{2} & \cdots & C_{m}
\end{array}\right]
$$

Suppose that the eigenvalues of A_{i} and those of A_{j} are disjoint for $. i \neq j$. Then (A, C) is observable iff $\left(A_{i}, C_{i}\right)$ is observable for all i.

So far, we have learned

- Controllability
- Observability

Next, we will study

- Canonical decomposition: to divide the state space into controllable/uncontrollable, observable/unobservable subspaces

Canonical Decomposition

Consider an LTI system,

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{y}=\mathrm{Cx}+\mathrm{Du}
$$

Let $\mathrm{z}=\mathrm{Px}$, where P is nonsingular, then

$$
\dot{\mathrm{z}}=\overline{\mathrm{A}} \mathrm{z}+\overline{\mathrm{B}} \mathrm{u}, \quad \mathrm{y}=\overline{\mathrm{C}} \mathrm{z}+\overline{\mathrm{D}} \mathrm{u}
$$

where $\overline{\mathrm{A}}=\mathrm{PAP}^{-1}, \quad \overline{\mathrm{~B}}=\mathrm{PB}, \quad \overline{\mathrm{C}}=\mathrm{CP}^{-1}, \quad \overline{\mathrm{D}}=\mathrm{D}$
Recall that under an equivalence transformation, all properties, such as stability, controllability and observability are preserved.
We also have $\overline{\mathrm{G}}^{\mathrm{c}}=\mathrm{PG}^{\mathrm{c}}, \quad \overline{\mathrm{G}}^{\mathrm{o}}=\mathrm{G}^{\mathrm{o}} \mathrm{P}^{-1}$
Next we are going to use equivalence transformation to obtain certain specific structures which reflect controllability and observability.

Controllability decomposition

Then G^{c} has at most n_{1} LI columns.
They form a basis for the range space of G^{c}.
Theorem: Suppose that $\rho\left(\mathrm{G}^{\mathrm{c}}\right)=\mathrm{n}_{1}<\mathrm{n}$. Let Q be a nonsingular matrix whose first n_{1} columns are LI columns of G^{c}. Let $\mathrm{P}=\mathrm{Q}^{-1}$. Then

$$
\begin{aligned}
& \overline{\mathrm{A}}=\mathrm{PAP}^{-1}=\left[\begin{array}{cc}
\overline{\mathrm{A}}_{\mathrm{c}} & \overline{\mathrm{~A}}_{12} \\
0 & \overline{\mathrm{~A}}_{\overline{\mathrm{c}}}
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{PB}=\left[\begin{array}{c}
\overline{\mathrm{B}}_{\mathrm{c}} \\
0
\end{array}\right], \quad \overline{\mathrm{A}}_{\mathrm{c}} \in \mathrm{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, \overline{\mathrm{~B}}_{\mathrm{c}} \in \mathrm{R}^{\mathrm{n}_{1} \times p} \\
& \overline{\mathrm{C}}=\left[\begin{array}{ll}
\overline{\mathrm{C}}_{\mathrm{c}} & \overline{\mathrm{C}}_{\overline{\mathrm{c}}}
\end{array}\right]
\end{aligned}
$$

Moreover, the pair ($\overline{\mathrm{A}}_{\mathrm{c}}, \overline{\mathrm{B}}_{\mathrm{c}}$) is controllable and $\overline{\mathrm{C}}_{\mathrm{c}}\left(s I-\overline{\mathrm{A}}_{\mathrm{c}}\right)^{-1} \overline{\mathrm{~B}}_{\mathrm{c}}+\mathrm{D}=\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}+\mathrm{D}$

See page 159 for the proof.

Discussion:

After state transformation, the equivalent system is

$$
\begin{aligned}
& \dot{\mathrm{z}}_{1}=\overline{\mathrm{A}}_{\mathrm{c}} \mathrm{z}_{1}+\overline{\mathrm{A}}_{12} \mathrm{z}_{2}+\overline{\mathrm{B}}_{\mathrm{c}} \mathrm{u} \\
& \dot{\mathrm{z}}_{2}=\quad \overline{\mathrm{A}}_{\overline{\mathrm{c}}} \mathrm{z}_{2}
\end{aligned}
$$

The input u has no effect on z_{2}. This part of state is uncontrollable. The first sub-system is controllable if $z_{2}=0$. If $z_{2} \neq 0$, then

$$
\begin{aligned}
& \mathrm{z}_{1}\left(\mathrm{t}_{1}\right)=\mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}} \mathrm{t}_{1}} \mathrm{Z}_{10}+\int_{0}^{\mathrm{t}_{1}} \mathrm{e}^{\overline{\bar{c}}_{\mathrm{c}}\left(\mathrm{t}_{1}-\tau\right)} \overline{\mathrm{B}}_{\mathrm{c}} \mathrm{u}(\tau) \mathrm{d} \tau+\int_{0}^{\mathrm{t}_{1}} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}}\left(\mathrm{t}_{1}-\tau\right)} \overline{\mathrm{A}}_{12} \mathrm{Z}_{2}(\tau) \mathrm{d} \tau \\
& \mathrm{z}_{2}(\tau)=\mathrm{e}^{\overline{\mathrm{A}}_{\bar{\tau}} \tau} \mathrm{Z}_{20}
\end{aligned}
$$

Given a desired value for z_{1}, say $\mathrm{z}_{1 \mathrm{~d}}$. If we let

$$
\mathrm{v}\left(t_{1}\right)=\int_{0}^{\mathrm{t}_{1}} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}}\left(\mathrm{t}_{1}-\tau\right)} \overline{\mathrm{A}}_{12} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{\varepsilon}} \tau} \mathrm{Z}_{20} \mathrm{~d} \tau, \quad \overline{\mathrm{~W}}_{c}\left(t_{1}\right)=\int_{0}^{\mathrm{t}_{1}} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}} \tau} \overline{\mathrm{~B}}_{\mathrm{c}} \overline{\mathrm{~B}}_{\mathrm{c}} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}} \tau} \mathrm{~d} \tau
$$

and $\mathrm{u}(\mathrm{t})=-\overline{\mathrm{B}}_{\mathrm{c}} \mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}}{ }^{\prime\left(\mathrm{t}_{1}-\mathrm{t}\right)} \overline{\mathrm{W}}_{\mathrm{c}}^{-1}\left(\mathrm{t}_{1}\right)\left[\mathrm{e}^{\overline{\mathrm{A}}_{\mathrm{c}} \mathrm{t}_{1}} \mathrm{Z}_{10}+v\left(t_{1}\right)-\mathrm{Z}_{1 \mathrm{~d}}\right]}$
Then you can verify that $z_{1}\left(t_{1}\right)=z_{1 d}$.

Example:

$$
\begin{aligned}
& \dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu} \\
& \mathrm{~A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad \begin{array}{c}
\mathrm{n}=3, \mathrm{p}=2, \mathrm{n}-\mathrm{p}+1=2 . \\
\text { Only need to check } \mathrm{G}_{2}{ }_{2}
\end{array}
\end{aligned}
$$

$\mathrm{G}_{2}^{\mathrm{c}}=\left[\begin{array}{ll}\mathrm{B} & \mathrm{AB}\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right] \quad \rho\left(G_{2}^{c}\right)=2<3, \quad$ uncontrollable
Let $\mathrm{Q}=\left[\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{q}\right]=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \mathrm{P}=\mathrm{Q}^{-1} \quad \mathrm{q}$ is picked to make
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right] \quad \mathrm{Q}$ nonsingular
$\overline{\mathrm{A}}=\mathrm{PAQ}=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{cc:c}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cc}\overline{\mathrm{A}}_{\mathrm{c}} & \overline{\mathrm{A}}_{12} \\ 0 & \overline{\mathrm{~A}}_{\mathrm{c}}\end{array}\right]$,
$\overline{\mathrm{B}}=\mathrm{PB}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{c}\overline{\mathrm{B}}_{\mathrm{c}} \\ 0\end{array}\right]$
Note: the last column of Q is different from the book (page 161).
As a result, $\overline{\mathrm{A}}_{12}$ is different from that in the book, which is 0 .

Observability decomposition (follows from duality)

$$
\text { Recall } \quad \mathrm{G}^{\circ}=\left[\begin{array}{c}
\mathrm{C} \\
\mathrm{CA} \\
\vdots \\
\mathrm{CA}^{\mathrm{n}-1}
\end{array}\right]
$$

Theorem: Suppose that $\rho\left(\mathrm{G}^{\mathrm{o}}\right)=\mathrm{n}_{1}<\mathrm{n}$. Let P be a nonsingular matrix whose first n_{1} rows are LI rows of G°. Then

$$
\begin{array}{ll}
\overline{\mathrm{A}}=\mathrm{PAP}^{-1}=\left[\begin{array}{ll}
\overline{\mathrm{A}}_{\mathrm{o}} & 0 \\
\overline{\mathrm{~A}}_{21} & \overline{\mathrm{~A}}_{\overline{\mathrm{o}}}
\end{array}\right], \quad \overline{\mathrm{B}}=\mathrm{PB}=\left[\begin{array}{ll}
\overline{\mathrm{B}}_{\mathrm{o}} \\
\overline{\mathrm{~B}}_{\overline{\mathrm{o}}}
\end{array}\right], & \overline{\mathrm{A}}_{\mathrm{o}} \in \mathrm{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, \overline{\mathrm{~B}}_{\mathrm{o}} \in \mathrm{R}^{\mathrm{n}_{1} \times \mathrm{p}} \\
\overline{\mathrm{C}}=\left[\begin{array}{ll}
\overline{\mathrm{C}}_{\mathrm{o}} & 0
\end{array}\right], & \overline{\mathrm{C}}_{\mathrm{o}} \in \mathrm{R}^{q \times \mathrm{n}_{1}}
\end{array}
$$

Moreover, the pair ($\overline{\mathrm{A}}_{0}, \overline{\mathrm{C}}_{0}$) is observable and $\overline{\mathrm{C}}_{\mathrm{o}}\left(s I-\overline{\mathrm{A}}_{\mathrm{o}}\right)^{-1} \overline{\mathrm{~B}}_{\mathrm{o}}+\mathrm{D}=\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}+\mathrm{D}$
Discussion: After state transformation, the equivalent system is

$$
\begin{array}{ll}
\dot{\mathrm{z}}_{1}=\overline{\mathrm{A}}_{0} \mathrm{z}_{1}+\overline{\mathrm{B}}_{\mathrm{o}} \mathrm{u} & \mathrm{z}_{2} \text { may be affected by } \mathrm{z}_{1} \\
\dot{\mathrm{z}}_{2}=\overline{\mathrm{A}}_{21} \mathrm{z}_{1}+\overline{\mathrm{A}}_{\overline{\mathrm{o}}} \mathrm{z}_{2}+\overline{\mathrm{B}}_{\overline{\mathrm{o}}} \mathrm{u}, & \text { but has no effect on } \mathrm{y} \text { or } \mathrm{z}_{1} \\
\mathrm{y}=\overline{\mathrm{C}}_{\mathrm{o}} \mathrm{z}_{1}+\mathrm{Du} &
\end{array}
$$

Summary for today:

- Controllability
- Observability
- Canonical decomposition
- Controllable/uncontrollable
- Observable/unobservable

Next Time:

- Controllability and observability continued
- Controllability/observability decomposition
- Minimal realization
- Conditions for Jordan form conditions
- Parallel results for discrete-time systems
- Controllability after sampling
- State feedback design (introduction)

Problem Set \#9

1. Is the following state equation controllable? observable?
$\dot{x}=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & -1 & 1 \\ -1 & -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] u, \quad \mathrm{y}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right] x$
If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one.
2. Is the following state equation controllable? observable?

$$
\dot{x}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -2 \\
0 & 0 & 2
\end{array}\right] x+\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] u, \quad \mathrm{y}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] x
$$

If not controllable, reduce it to a controllable one;
If not observable, reduce it to an observable one.

