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16.513 Control Systems

Today, we are going to cover part of Chapter 6

and part of Chapter 8

– Controllability and Observability

– State Feedback and State Estimators

Last Time : 

• Controllability
• Observability
• Canonical decomposition

– Controllable/uncontrollable 
– Observable/unobservable
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Controllability:  Definition

Consider the system

.Ru  ;R   xBu,Axx pn 
Controllability is a relationship between state and input. 

Definition: The system, or the pair (A,B),  is said to be 
controllable if for any  initial state  x(0)=x0 and any final 
state xd, there exist a finite time T > 0 and an input u(t), 
t[0,T] such that

(1)                             x)dτBu(exex(T) d
τ)-A(T

T

00
AT   τ
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Equivalent conditions for controllability:

deBB'edτeBB'e(t)W τ)(tA'
t

0

τ)A(tτA'
t

0

Aτ
c

 

1) Wc(t)  is nonsingular for any t > 0.
2)  The matrix  Gc = [B  AB  A2B … An-1B] has full 

row rank,  i.e.,  (Gc) = n.
3) The matrix  Gc

n-p+1 = [B  AB  A2B … An-pB] has full 
row rank  (p=rank(B))

4)  M() = [A-I B] has full row rank at every 
eigenvalue  of A.
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Observability:  A dual concept
Consider an n-dimensional, p-input, q-output system:

DuCxy    Bu;Axx 

Definition: The system, is said to be observable if for 
any unknown  initial state x(0), there exists a finite t1> 0 
such  that x(0) can be  exactly  evaluated over [0,t1] from 
the input u and  the output y.  Otherwise the system is 
said to be unobservable. 

Systemu y

Assume that we know the input and can measure the 
output, but have no access to the state.
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Equivalent conditions for observability:

1) Wo(t) is nonsingular for some t > 0.
2) The observability matrix 
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has full column rank,  (Go
n-p+1) = n. (p=rank(C))
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has full column rank at every eigenvalue of A.
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Controllability decomposition

Theorem: Suppose that (Gc) = n1 <  n.  Let Q be a 
nonsingular  matrix whose first n1 columns are LI 
columns of Gc. Let P=Q-1  and  z=Px.  Then 
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Theorem: Suppose that (Go) = n1 < n.  Let P be a nonsingular 
matrix whose first n1 rows are LI rows of Go. Then 
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Observability decomposition (follows from duality) 

Discussion: After state transformation, the equivalent system is

DuzCy
  u,BzA zA  z

uBzAz

1o

o2o1212
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





 z2 may be affected by z1 

but  has no effect on y or z1, 
z2 not observable

DuzCy

uBzAz

1o

o1o1



 has the same transfer function as the original system and
is obervable.  
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• Controllability and observability continued
– Controllability/observability decomposition
– Minimal realization
– Conditions for Jordan form conditions
– Parallel results for discrete-time systems 
– Controllability after sampling

• State feedback design – Pole assignment
– Using controllable canonical form
– By solving matrix equation 

Today:
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Controllability-Observability decomposition
Theorem: All LTI system can be transformed via equivalent 
transformation into the following form: 
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 is a controllable and observable realization
It has the same transfer function as the original system
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Let G(s) be a proper rational transfer matrix.  
We learned earlier that there exists (A,B,C,D) such that 

G(s)=C(sI-A)-1B+D 
The realization is not unique.

Observation: 

Which one is a minimal realization? How to  obtain  a minimal
realization?

Question:

Definition: A realization (A,B,C,D) of G which has the minimal
dimension of state space is called a minimal realization of G.

Minimal realization of a transfer matrix

Theorem: (A,B,C,D) is a minimal realization iff (A,B) is 
controllable and (A,C) is observable.
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An earlier result: For a strictly proper and rational matrix G(s),

─ Let d(s)=sr + a1sr-1 + a2sr-2 +….+ ar-1s +ar  be the least
common denominator of all entries

─ Then G(s) can be expressed as (assume G is qp)
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─ A realization of G(s)  is given as:
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Procedure to obtain a minimal realization:
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─ Use equivalence transformation z = Px such that

– If G(s) is not strictly proper, we can first decompose it as 
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Conditions for Jordan form equations

 Equivalence transformations do not change controllability
and observability

 These properties are easy to see from Jordan form. 

Theorem: Assume that A  has m distinct eigenvalues 1,2,…,m

and has a Jordan form arranged by the eigenvalues with blocks

,...]J,J  ......,,...,J,J  ,...J,diag[J m2m122211211 J
1 2 m

Let the row of  B corresponding to the last row of Jij  be bij. 
Let the columns of  C corresponding to the first column of Jij be cij

Then the system is controllable iff for each i , the rows 
{bi1, bi2,…,} are LI. 
The system is observable iff for each i, the columns 
{ci1,ci2,…,} are LI. 
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Example: 

(A,B) is controllable iff  {b11,b12,b13} is LI and b210

(A,C) is observable iff  {c11,c12,c13} is LI and c210

The columns of C and the rows of B marked by “*”
have no effect on controllability or observability.
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Example: 
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Example: 
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Case 1:  12. 

Theorem: For a single input system, 
It is controllable iff for each distinct eigenvalue, there is only 
one Jordan block and each element of B corresponding to the
last row of a Jordan  block is nonzero;
It is observable iff for each distinct eigenvalue, there is only 
one Jordan block and each element of C corresponding to the
first column of a Jordan  block is nonzero.

(A,B) is controllable iff  b20, and b40
(A,C) observable iff c10,  and c30

Case 2:  1=2,  then what? 
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Discrete-Time Systems

x[k+1] = Ax[k]+Bu[k]
y[k]= Cx[k]+Du[k]

The system described by difference equations: 

Results on controllability and observability are quite similar
to those for continuous-time systems.

18

Definitions

Consider the difference equation 

D[k]Cx[k]y[k]     
Bu[k]Ax[k]1]x[k




where xRn, uRp.  

Definition 1: The system, or the pair (A,B),  is said to be controllable 
if for any  initial state  x(0)=x0 and any final state xd, there exist an 
integer k1> 0 and a sequence of input u[k], k[0,k1] such that 

(1)                         x  u[m]AxA]x[k d

1

0

m-1-k
0

k
1

1

11  




k

m

Definition 2 : The system, or the pair (A,C), is said to be observable
if for any unknown  initial state x(0), there exists a finite k1> 0 such 
that x(0) can be  exactly  evaluated over [0,k1] from the input u and  
the output y.   Otherwise the system is said to be unobservable. 
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Equivalent conditions for controllability: 

1) The matrix  Gc = [B  AB  A2B … An-1B] has full row rank
i.e.,  (Gc) = n.

2)  The matrix Mc() = [AI  B] has full row rank at every 
eigenvalues of A.

3)  The following nn matrix is nonsingular

)'(ABB'A1][nW m
1n

0m

m
dc 







Note:  There may exist an integer n1 < n such that Wdc(n1-1) is
nonsingular. 

The following are equivalent conditions for the pair (A,B) 
to be controllable:
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Equivalent conditions for observability:

1) The observability matrix 
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has full column rank at every eigenvalue of A.

3)  The following nn matrix is nonsingular
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Controllability after sampling

A continuous-time system

Bu;Axx 

Let the sampling period be T.  During the sampling period, 

u(t) = u(kT)  for  all   t  [kT, (k+1)T), k=0,1,2,…

Define u[k]:= u[kT]; x[k]=x[kT]. The relation between u[k]
and x[k] is governed by the difference equation: 

u[k]Bx[k]A1]x[k dd 

I]B-[AAB,eA  where d
1

d
AT

d


Question:  Is controllability retained after discretization?
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Summary of results from §6.7

• If the pair (A,B)  is uncontrollable, then (Ad,Bd)  is also    
uncontrollable for any sampling time T.

• If all the eigenvalues of A is real, then (A,B) controllable
implies that (Ad,Bd) is controllable. 

• If A has complex eigenvalues, controllability maybe 
lost for some special sampling period T. 

We use Re[x] and Im[x] to denote the real part and the imaginary
part of a complex number x. Suppose (A,B) is controllable. 
A sufficient condition for (Ad,Bd) to be controllable is that
|Im[i  j]| 2m/T  for m=1,2,…, whenever Re[i-j]=0.

The condition is to ensure that the number of Jordan blocks 
will not increase for a particular eigenvalue. Note that if
i is an eigenvalue of A, then eiT is an eigenvalue of Ad. If
i and j have same real parts, eiT and ejT may be the same.
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Example:  

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c
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

The CT system is controllable if  0. Now suppose 
  0. Let the sampling period be T. 












 



βTsinαβT βcos β
βTsinβαβTcosα

B,
βT cosT sin 

sin βT cos
eeA

u[k],Bx[k]A1]x[k

d
αTAT

d

dd


T

What happens when  T=?  
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Main Problems of the Course

– Analysis: Solutions to LTI systems, stability etc.
– Controllability and observability;
– Feedback design and construction of observers
– Optimal control   

So far, we have studied controllability 
and observability

Next, we will start to address design problems
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Stabilization problems

 Bu.Axx 
Given a LTI system

• A typical control problem is to bring the state x from any
initial condition to the origin and keep it there. 

If A is stable, we only need to set u=0 and x(t) will converge 
to the origin asymptotically. 

• Another problem is to bring x to a desirable point xd as fast
as possible and keep it there.

• Both of these problems are about stabilization at an equilibrium
point. The second problem can be transformed into the first one.

26

For example, given an LTI system: 

DvCzyBv;Azz 

Suppose that A is nonsingular and v = u + ue . (ue a given constant).
We have

  Bu;BuAzz e 

Let ze = A1Bue and define x = z  ze.  Then 

 Bu;AxBu)z-A(zBuBuAAAzzx ee
1  

Suppose that ze is a desirable point where we would like to
keep z there. If A is stable, then by setting  u = 0, x(t) will
converge to 0 from any initial x0 and will stay there. 
 z(t) = x(t) + ze converges to ze and stay there. 

 Bu.Axx    

Question: What if A is not stable? 
What if A is stable but the convergence rate is too slow?
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(*)                               ]xx)[e(tWeB'u(t) d0
At

1
1t)(tA' 11  

Recall that if (A,B) is controllable, then the following control 

 Bu.Axx 
For the equation

can bring x from any initial condition x0 to any final destination
xd. The time duration [0,t1] can be arbitrarily small. And the 
control is of minimal energy. 

However, this control strategy is not used in practice. 

Reasons: 
 Very sensitive to parameter changes and implementation error;
 Even if the state is at the origin, disturbances keep driving 

it away from the origin. 
 Not easy to compute. 
 In summary:  not reliable, complicated and frustrating.
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A practical and effective solution: state feedback

DuCxy  Bu,Axx 
For the system

If we let u = r  K x. Then 

 Br.BK)xA(x 

 If A is unstable but (A,B) is controllable,  we can make A  BK 
stable by choosing K properly;

 If A is stable but the convergence rate is too slow, we can improve
the convergence property by designing K properly.

 The feedback law u = r Kx is simple for implementation but 
very effective. 

We shall find out how to design a state feedback law.
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What if the state cannot be obtained through measurement?

If the system is observable, we shall use a state-estimator, 
called an observer to estimate the state from the measurement 
y and the input u.

An additional tool: State estimation

Assume that all the information that can be measured is
y = Cx+Du. 

The observer is also an LTI system with input as u and y, 
and its output is the estimate of the state x: 

Observer
u
y

 x(t)of estimatean  -(t)x̂

We will learn how to design an observer.

We Start with State Feedback Design

30

State feedback design: single input case

cxy  bu,Axx 

A single input single output system,

(assume D=0 for simplicity)

where ARnn, bRn1 has only one column and cR1n has 
one row.  p=q=1.

Let kR1n be a row vector. Then kx R. With state feedback 
u= r – kx, we have

cxy    br,bk)xA(x 

Theorem: The pair (A-bk, b) is controllable iff (A,b) is 
controllable. (see page 232 for proof.)

Comment: state-feedback does not change controllability property.
However, the observability of (A-bk,c) might be different from
that of (A,c).
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 What can be gained from using state feedback?

cxy  bu,Axx 
cxy    br,bk)xA(x 

The original system:

With state feedback we have:

A result to be shown later: if (A,b) is controllable, then the 
eigenvalues of  A-bk can be placed anywhere by choosing k
properly. 

 Example: 

  



 

















13
k3k1

kk0
1

13
31bkA,0

1b,13
31A 21

21

─ Eigenvalues of A: 1 = 4, 2 =  2,  unstable. 

─ Characteristic polynomials for A-bk is 
(s)=s2+(k1-2)s+(3k2-k1-8)=s2+a1s+a0

 The two coefficients a1 and a0 can take any values.

32

Controllable Canonical Form

43
2

2
3

1
4 αsαsαsαsA)det(sI 

Theorem: Suppose that (A,b) is controllable and  

For simplicity, we consider a 4th-order system.  The results for
the general case can be easily extended from the pattern.

 


















1000
α100
αα10
ααα1

bAbAAbbP:QLet  
1

21

321

321-

With the state transformation z = Px, we have 

 4321
1

4321

1-

ββββcPc

,

0
0
0
1

Pbb,

0100
0010
0001
αααα

PAPA

































 





Furthermore, 

43
2

2
3

1
4

43
2

2
3

11

αsαsαsαs

βsβsβsβ
b)A(sIc




 

Controllable
Canonical 
form
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Proof: We can break the transformation into two steps:
x→P1x → P2P1x, where

 
















 

1000
α100
αα10
ααα1

QP,bAbAAbbQP 
1

21

321

2
1

2
32

1
1-

1

With the first transformation, we obtain 







































 

0
0
0
1

BQB,

α100
α010
α001
α000

AQQA 1
11

1

2

3

4

1
1

11

With the second transformation, we obtain 
































 

 

0
0
0
1

BQB,

0100
0010
0001
αααα

QAQA 1
1

2

4321

21
1

2

Here we can verify that 12212 BBQ,QAAQ 

34

Exact pole assignment

Theorem: Suppose that (A,b) is controllable. Then the eigenvalues
of A-bk can be arbitrarily assigned provided that complex conjugate
eigenvalues are assigned in pairs.  

Proof: Let z = Px be the state transformation that transforms the
equations into controllable canonical form: 

,

0

0

0

1

Pbb,

0100

0010

0001

αααα

PAPA

4321

1-





































 



 



















 





0100

0010

0001

kαkαkαkα

kb-A

  have    we,kkkkkWith  

44332211

4321

4433
2

22
3

11
4 kα)sk(α)sk(α)sk(αs)kbAdet(sI 
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4433
2

22
3

11
4 kα)sk(α)sk(α)sk(αs)kbAdet(sI 

bk?-Aabout  How   assigned.
yarbitraril becan   kbA of seigenvalue  that themeans This 

   ,PkQkklet    weIf -1 

From the proof, a procedure to design the feedback gain
k can be  derived.

 kbA  of  thoseas same  thearebk -A of seigenvalue The  
,)QkbAQ(QkbQQAQbk-Athen  111   -

36

Procedure for assigning the eigenvalues of A-bk.   

Step 1. Choose the desired eigenvalue set {i, i=1,2,…n} which 
contains conjugate complex pairs, e.g., i = -1+j2 and  i+1= j2 
and  obtain  the coefficients of 

n1n
1n

1
nn

21d αsαsαs)λ(s)λ)(sλ(s(s)  
 

Step 2. Compute the characteristic polynomial of A 

n1n
1n

1
n αsαsαsA)sIdet((s)  

 

and the transformation matrix, e.g., for n = 4 

  ,

1000
α100
αα10
ααα1

bAbAAbbP:Q
1

21

321

321-


















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,

0
0
0
1

Pbb,

0100
0010
0001
αααα

PAPAThen   
4321

1-
































 

















 


0100
0010
0001

kαkαkαkα

kb-A
44332211

Step 3: iii αα k    Choose 















 



0100
0010
0001
ααα

kb-AThen 
4321

Step 4:  P. kk  Compute 

n}1,2,...,i,{λ
 seigenvalue desired   thehas )QkbAQ(bk-Athen  

i

1


 

38

Example: 

  le.controllab B)(A, r,nonsingula  
010
201
011

BAABBG

unstable  2,- 1,  0,  :seigenvalue,
0
1
1

B,
010
111
010

A

2c








































Step 1: The desired eigenvalues -1, -2+j2, -2-j2

321

23

α     α      α                                                                  
812s5ssj2)2j2)(s21)(s()(  ssd

Step 2: Characteristic polynomial of A

321

23

α      α      α                           
0    2s1ssA)sIdet( 





























 












 
 

111
111
131

2

1
QP,

110
011
121

100
110
211

GQ 1c
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Step 3:

 8144k 
8;ααk    14;ααk  4;ααk 333222111




Step 4: 
   931

111
111
131

2

1
8144Pkk 



















Step 5: Verify: 

 









































010
840
921

931
0
1
1

010
111
010

bkA

j2-2- j2,2- 1,-  :bk-A of sEigenvalue 

)22)1)((s(s                                                

)444)(1(s
s10
84s0
921s

A)sIdet(

22

2




















 ss


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Transfer function of the feedback system:

 4321

4321

ββββc,

0
0
0
1

b,

0100
0010
0001
αααα

A 































 



The original system cxy  bu,Axx 

The system with state feedback, cxy  br,bk)x-A(x 

Transfer function from u to y: 
43

2
2

3
1

4
43

2
2

3
11

αsαsαsαs

βsβsβsβ
bA)c(sI




 















 



0100
0010
0001

kαkαkαkα

bk-A
44332211

Transfer function from r to y: 

4433
2

22
3

11
4

43
2

2
3

11

kα)skα()skα()skα(s

βsβsβsβ
bbk)Ac(sI




 
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43
2

2
3

1
4

43
2

2
3

11

αsαsαsαs

βsβsβsβ
bA)c(sI




 

4433
2

22
3

11
4

43
2

2
3

11

kα)skα()skα()skα(s

βsβsβsβ
bbk)Ac(sI




 

Compare:

Conclusion:
 State feedback does not change the zeros of  the system. 
 If (A,b) is controllable, the poles can be arbitrarily assigned.
 The feedback gain k that assign the eigenvalues is unique.

– (Not unique if the system has multiple inputs).

 If a new pole is the same as one of the zeros, the order of the
closed-loop system can be reduced.  must be unobservable.
(since the controllability is the same). 

42

Desirable eigenvalue region

At the first step of the procedure, we need to choose the desirable
eigenvalues. How to do this? 

There are some general rules, depending on the performance specs.
Such as the overshoot, rise time, settling time (convergence rate).

Generally, 
 Large real parts of eigenvalues 
 fast convergence, short settling  time
 Large imaginary parts of eigenvalues
 big oscillations and big overshoots. 
 If the ratio between the imag part and   

the  real part is appropriate,  we may 
have small overshoot and fast rise
time  A typical region for 

desired eigenvalues

Re s

Im s
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State feedback design: multiple input case

Consider a system, 

DuCxyBu;Axx 

where ARnn,  BRnp, CRqn. 

 We can also transform the system into a controllable 
canonical  form. 
– The idea is extended from the single-input case;
– The canonical form also reveals the structure to see how the 

poles are moved;
– However, the procedure can be very complicated. (see §8.6.3) 

 Here we will study a quite different approach. It also applies
to single input systems.

44

State feedback design: By solving matrix equation

 In this approach, we don’t transform a system into a 

controllable canonical form

 How does it work? The main idea is as follows.

– The problem: Find K s.t. A - BK has a set of desired 
eigenvalues, say the eigenvalues of F. This is the case

if  A-BK and F are similar, i.e., there exists a nonsingular 

matrix T s.t.,

A - BK = TFT-1

~ Similar matrices have same eigenvalues

– Key: Find both K and T
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The new problem:

Given A, B and F, find K and nonsingular T such that 

A - BK = TFT-1

Multiply both sides from right with T, we obtain 

AT - BKT = TF
Since T is nonsingular, there is a one to one correspondence
between KT and K. If we let K0= KT, then K=K0T-1. Now, 

AT – BK0 = TF AT –T F =  BK0

The procedure: choose K0Rpn. Solve  A T T F = BK0 for T. 
If T is nonsingular, let K=K0T-1. Then A-BK and F are similar.
Then A-BK has the desired eigenvalues. 

Main concerns:
 How to solve the matrix equation AT-TF=BK0?
 Under what condition is the solution T nonsingular?

46

Summary of the main points:
 The matrix equation can be transformed into a regular linear

algebraic equation with nn unknowns.
 It has a unique solution iff A and F have no common eigenvalues.
 If (A,B) is controllable, then the solution is generally nonsingular

with K0 arbitrarily chosen. 
─ If K0 is generated by rand(p,n) or randn(p,n), then the 

probability that T is nonsingular is 1.
 When  p = 1, the resulting K=Ko T-1 is unique.
 When  p > 1, the resulting K=Ko T-1 is not unique.
 Based on these results, optimization algorithms can be developed

for improving other performances while the eigenvalues are 
at the desired locations.

Main concerns:
 How to solve the matrix equation AT  T F = BK0?
 Under what condition is the solution T nonsingular?
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Example: Solve AT - TF = BK0






















2221

1211
0 tt

tt
T,4-3-

2-1-BK,20
01F,10

32A
























 20

01
tt
tt

tt
tt

10
32TFATS

2221

1211

2221

1211

11 21 12 22
0

21 22

3t 3t 4t 3t 1 2
BK

2t 3t 3 4

      
        

– Does it have a solution?

– Recognizing that we have 4 
variables and 4 conditions, the 
above can be converted to: 

11 11

12 12

21 21

22 22

s t3 0 3 0 1

s t0 4 0 3 2

s t0 0 2 0 3

s t0 0 0 3 4

      
             
      
               

Transformation into a regular algebraic equation:

48

About the solution to  AT  TF = BK0

Theorem 1: If A and F have no common eigenvalues, 
then the equation has a unique solution.  (§3.7)

Theorem 2: If A and F have no common eigenvalues, 

the  necessary conditions for T to be nonsingular 

are that {A, B} is controllable and {F,K0} is observable.

For the single input case (p=1), T is nonsingular iff 

{A, B} is controllable and {F,K0} is observable.

Theorem 3: Suppose that A and F have no common 
eigenvalues and (A,B) is controllable. 
Then for almost all K0, T is nonsingular. 
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– Select F having desired closed-loop eigenvalues which are 
different from those of A

– Choose an arbitrary K0 such that {F,K0} is observable

– Solve  AT-TF=BK0  to obtain the unique T.

The matlab command to solve the equation is

T=lyap(A,-F,-B*K0)

– If T is non-singular, let K = K0 T-1.  

Then A-BK has the desired eigenvalues. 

– If T is singular, which is rarely the case, 

choose a different K0 and try again 

– Finally, don’t forget to check if A-BK has the desired
eigenvalues. You might have typed the wrong numbers.

eig(A-B*K)=?

Algorithm

50

About the selection of  F:

• First, select the desired eigenvalues with some rules
• If the desired eigenvalues are all real, simply let 

F=diag{1,2,…,n}
• If the desired eigenvalues has complex conjugate pairs,

say,  1, 1+j1, 1-j1, 2+j2, 2-j2, choose

























22

22

11

11

1

αβ000
βα000
00αβ0
00βα0
0000λ

F
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Example:  

















































500
030
002

F,
00
10
01

B,
111

100
101

A

Use T= lyap(A,-F,-B*K0),  and  K=K0*inv(T)

1     0     1
0     1     0

K0: 

5.3621   -2.7414    4.1724
0.2931    2.6379    1.7586

K

0     1     0
1     1     1

1.4571    0.4857   -2.4286
-3.3714    6.5429   -4.7143

1     2     3
4     5     6

43.5000  -21.5000  -53.0000
72.9000  -35.5000  -85.4000

Observe that some K have small elements, but some may have
big elements. In implementation, we like to use small valued K.

52

An interesting and meaningful problem: 
Pick one  from those K’s which  assign the eigenvalues
such that the spectral norm of K, i.e., ||K||2 is minimized.

Observation: If there are more than one K that assign
the eigenvalues of A-BK to the same locations, then 
there are infinitely many of them. 

We may also develop algorithms to choose K to 
optimize or improve other performances, see, e.g.,

T. Hu, Z. Lin and J. Lam, ``A unified gradient approach to performance 
optimization under pole assignment constraint", Journal of Optimization 
Theory and Applications, July, 2004
T. Hu and J. Lam, ``Improvement of parametric stability margin under 
pole assignment,''  IEEE Transactions on Automatic Control, Vol.~44, 
No.~10, pp.~1938-1942, 1999.
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Cxy
BuAxx




Same system can be equivalently realized with 

u y

1

x Ax

y x

Bu 



C

x yu
y=Cy1=Cx

The purpose of 
doing this is to get x 

How to realize state-feedback in Simulink? 

x not available in 
this block

xy

uAxx

1 
 B

C
x yu

K

v

Under state feedback  u=v-Kx, 

54

• Controllability and observability continued
– Controllability/observability decomposition
– Minimal realization
– Conditions for Jordan form conditions
– Parallel results for discrete-time systems 
– Controllability after sampling

• State feedback design
– Using controllable canonical form
– By solving matrix equations

Today:

Next Time:
 Regulation  and tracking
 Robust tracking and disturbance rejection
 Stabilization
 State estimation 
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Problem set #10

1. Is the following state equation controllable? Observable? 

xy

uxx



















































































0110111

0101000

1010101

011

110

101

121

110

011

100

1000000

0100000

0110000

0001000

0000100

0000010

0000011


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2. For the following state equation

 xyuxx 111,

1

0

0

000

100

010




































1) Find a state feedback u = r - k x to place the poles at -2,-3,-4.  
Use both methods (via controllable canonical form, via solving matrix 
equation, show all steps) and compare the results. 

2) Find a state feedback u = r - f x to place the poles at -3+j3, -3-j3, -8
Use both methods and compare the results. 

3) Use simulink to simulate the closed-loop systems resulting from 1) and 2), 
respectively, under initial condition  x(0)=[1 -1 3]’ and r(t) =unit step.  
Plot y(t) for the two cases in the same figure.
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3.  For the following state equation

 xyuxx 111,

11

01

10

111

010

101

































 


1) Find two different state feedback u = r – K1x  and u = r- K2x to place 
the poles at -3+j3, -3-j3, -6.  Try to find K1 and K2 such that one has 
relatively larger elements and the other one has relatively  small 
elements.

2) Use simulink to simulate the closed-loop systems  resulting from 

Case 1:  u = r - K1x,  x(0)=[1 2 3]’ and r(t) =0. 
Case 2:  u = r - K2x,  x(0)=[1 2 3]’ and r(t) =0. 
Plot y(t) for the two cases in the same figure. 
Plot u1(t) for the two cases in the same figure.
Plot u2(t) for the two cases in the same figure.

Note that 









2

1

u

u
u


