16.513 Control Systems

Today, we are going to cover part of Chapter 6
and part of Chapter 8

— Controllability and Observability
— State Feedback and State Estimators
Last Time :

* Controllability

* Observability

 Canonical decomposition
— Controllable/uncontrollable
— Observable/unobservable

Controllability: Definition
Consider the system
Xx=Ax+Bu, xeR"; ueR?’.

Controllability is a relationship between state and input.

Definition: The system, or the pair (A,B), is said to be
controllable if for any initial state x(0)=x, and any final

state x,, there exist a finite time T > 0 and an input u(t),
te[0,T] such that

x(T) = eATx, + jOT eATIBu(r)dT = X, (1)




VVc (t) = J'Ot eATBBveA'th — Iot eA(t—t)BBveA'(t_-,;)dz_

Equivalent conditions for controllability:

1) W (t) is nonsingular for any t > 0.

2) The matrix G°=[B AB A’B ... A~'B] has full
row rank, i.e., p(G®) =n.

3) The matrix G¢,,.,; =[B AB A’B ... A™PB] has full
row rank (p=rank(B))

4) M(L) =[A-AI B] has full row rank at every
eigenvalue of A.

Observability: A dual concept

Consider an n-dimensional, p-input, g-output system:

x=Ax+Bu; y=Cx+Du

u =) System [V

Assume that we know the input and can measure the
output, but have no access to the state.

Definition: The system, is said to be observable if for
any unknown 1nitial state x(0), there exists a finite t,> 0
such that x(0) can be exactly evaluated over [0,t;] from
the input u and the output y. Otherwise the system is
said to be unobservable.




Equivalent conditions for observability:

1) W_(t) 1s nonsingular for some t > 0.
2) The observability matrix

C C
Gopu=| D or(Ge=| )
CA™ CA™
has full column rank, p(G®,,;;) = n. (p=rank(C))
3) The matrix
M°(2) :[AEM}

has full column rank at every eigenvalue of A.

Controllability decomposition

Theorem: Suppose that p(G) =n,; < n. Let Q be a
nonsingular matrix whose first n; columns are LI
columns of G¢. Let P=Q'! and z=Px. Then

A=PAP =| A Ap , B=PB= B, , A, eR"™™ B, eR"™?
0 A, 0 ¢
6:[Ec 6(]

Moreover, the pair (A_,B,) is controllable and
C.(sI-A)"'B,+D=C(sI-A)'B+D

21 = XCZI +X12Z2 +§Cu Zl = KCZ] +§Cu The state Z, is
z,= Az, y=C.z, uncontrollable
y= [Ec EE]Z is controllable and z,= Kezz

has the same transfer The control has

function as the

. no effect on it
original system.



Observability decomposition (follows from duality)

Theorem: Suppose that p(G°) =n, <n. Let P be a nonsingular
matrix whose first n, rows are LI rows of G°. Then

A=papi=| A O , B=PB= EO, A, eR™™ B eR™?
A, A B

21 o [

c=[c, o] C, e R™™

Moreover, the pair (A,,C,) is observable and
C,(sI-A,)"'B,+D=C(sI-A)'B+D

Discussion: After state transformation, the equivalent system is

z,=A_z,+B,u z, may be affected by z,
z,= A,z +A,z, +Bu, but has no effect ony or z,,
y=C,z +Du z, not observable

z, = KOZI + Eou has the same transfer function as the original system and
y= C z,+Du is obervable. 7

Today:

» Controllability and observability continued
— Controllability/observability decomposition
Minimal realization
Conditions for Jordan form conditions
Parallel results for discrete-time systems
Controllability after sampling
« State feedback design — Pole assignment
— Using controllable canonical form
— By solving matrix equation



Controllability-Observability decomposition

Theorem: All LTI system can be transformed via equivalent
transformation into the following form:

z, ] [A, 0 A, 0 [z] |B,

2.2 — A21 Ac ézs A24 ZZ + Ecﬁ u

Z, 0 0 A, 0 |z 0

i4 0 0 K43 75 z, 0
y= 0 C, O ]Z + Du

where q } { Dis controllable

(A, is controllable and (A, C,, ) is observable.
(A, is observable.

Moreover,  C (sI -A,)"'B,+D=C(sI-A)"'B+D
z,=A_z,+B_u

co?

o Be)
0 Co)

- is a controllable and observable realization
y=C,z,+Du It has the same transfer function as the original system 9

Minimal realization of a transfer matrix

Observation:

Let G(s) be a proper rational transfer matrix.

We learned earlier that there exists (A,B,C,D) such that
G(s)=C(sI-A)'B+D

The realization is not unique.

Definition: A realization (A,B,C,D) of G which has the minimal
dimension of state space is called a minimal realization of G.

Question:

Which one is a minimal realization? How to obtain a minimal
realization?

Theorem: (A,B,C,D) is a minimal realization iff (A,B) is
controllable and (A,C) is observable.

10



Procedure to obtain a minimal realization:
An earlier result: For a strictly proper and rational matrix G(s),
— Let d(s)=s"+a;s"!+a,s~2+....+a_s +a_be the least

common denominator of all entries
— Then G(s) can be expressed as (assume G is qxp)

G(s) = ﬁ [Ns™+Ns2+--+N, s+N,| N, eR®
S

— A realization of G(s) is given as:

—a,l a,l, —a, 1 —-al; I
I 0 0 0
A=| 0 I 0 0 [, B=|o
: 0
0 0 I 0 0
C= [Nl N, N, Nr]

— Use equivalence transformation z = Px such that

Kco 0 K13 0 Eco

A =PAP!' = Ay Ag é23 Ay , B=PB= §C5
0 0 A, 0 0
0 0 A A 0

S
@

c=cr'=[C, o C, 0]

(A,,,B,,) is controllable and (A_,C,, ) is observable.

co?

— If G(s) is not strictly proper, we can first decompose it as
G(s) = Gyy(s) + D where Ggy(s) is strictly proper.



Conditions for Jordan form equations

Equivalence transformations do not change controllability
and observability
These properties are easy to see from Jordan form.

Theorem: Assume that A has m distinct eigenvalues A ,A,,...,A
and has a Jordan form arranged by the eigenvalues with blocks

m

Let the row of B corresponding to the last row of J; be b;.
Let the columns of C corresponding to the first column of J;; be ¢;;
Then the system is controllable iff for each 1, the rows
{b;;, bp,...,} are LL.
The system is observable iff for each i, the columns

{911;912,- . -,} are LI.
13

Example:
A 1 0 0 0 0 O] RN
0O %4 0 0 0 0 0 b,
0 0 A 0 0 0 0 ];12
A=[0 0 0 A 0 0 0L p-|p
O 0 0 0 A 1 0 o
o 0 0 0 0 A 1 «
o 0o 0 0 o0 0 ] b,
C:[§1 R R < R TR *]
A #EN,.

(A,B) is controllable iff {b,;,b,,,b;5} is LI and b,,#0

(A,C) is observable iff {c,;,c;,,¢;3} 1s LI and c,,;#0

The columns of C and the rows of B marked by “*”

have no effect on controllability or observability. “



Example:

A 1 0 0 0 0 0 *
0 2% 0 0 0 0 0 1 2 3
0 0 A 0 -0 0 0 4 5 6
A=[0 0 0 A& 0 0 0L B=[7 8 9
0O 0 0 0 & 1 0 *
0O 0 0 0 0 A 1 *
0 0 0 0 0 0 2 111
1 2 0 1 ]
c=|2 * 1 0 o0 =* *
1 2 1 0 |
c, C; €4 Cs
Case 1: A #A,.
Case 2: A,=A,.
Example: A L0 0 b,
o % o0 o0 b,
A=lo 0 a, 1] BT|w,
0 0 0 &, b,
C:[Cl ¢, ¢ C4]

Case 1: A;#A,. (A,B)is controllable iff b,#0, and b,#0
(A,C) observable iff ¢,#0, and c;#0
Case 2: A,;=A,, then what?

Theorem: For a single input system,

It is controllable iff for each distinct eigenvalue, there is only
one Jordan block and each element of B corresponding to the
last row of a Jordan block is nonzero;

It is observable iff for each distinct eigenvalue, there is only
one Jordan block and each element of C corresponding to the
first column of a Jordan block is nonzero.

15
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Discrete-Time Systems

The system described by difference equations:

x[k+1] = Ax[k]+Bu[k]
y[k]= Cx[k]+Du[k]

Results on controllability and observability are quite similar
to those for continuous-time systems.

17

Definitions

Consider the difference equation
x[k +1]= Ax[k]+ Bu[k]
ylk]=Cx[k]+D[k]
where xeR", ueRP.

Definition 1: The system, or the pair (A,B), is said to be controllable
if for any initial state x(0)=x, and any final state x,, there exist an
integer k,> 0 and a sequence of input u[k], ke[0,k,] such that

k-1
x[k,]=A%x,+ Y A% ™u[m] =x, (1)
m=0
Definition 2 : The system, or the pair (A,C), is said to be observable
if for any unknown 1initial state x(0), there exists a finite k,> 0 such
that x(0) can be exactly evaluated over [0,k,] from the input u and

the output y. Otherwise the system is said to be unobservable.
18



Equivalent conditions for controllability:

The following are equivalent conditions for the pair (A,B)
to be controllable:

1) The matrix G°=[B AB A’B ... A™'B] has full row rank
ie., p(G°) =n.

2) The matrix M(A) = [A—AI B] has full row rank at every
eigenvalues of A.

3) The following nxn matrix is nonsingular

W

C

n-1
[n-1]=> A"BB'(A™)
m=0

Note: There may exist an integer n, < n such that W (n,-1) is
nonsingular.

19

Equivalent conditions for observability:

1) The observability matrix

C
Go=| A
CA™

has full column rank.

2) The matrix M°(A) = AEM}

has full column rank at every eigenvalue of A.

3) The following nxn matrix is nonsingular

W, [n-1]= ni(Am)‘C'CAm

m=0 20

10



Controllability after sampling

A continuous-time system

x = Ax+ Bu;

Let the sampling period be T. During the sampling period,
u(t) =u(kT) for all te [KT, (k+1)T), k=0,1,2,...

Define u[k]:=u[kT]; x[k]=x[kT]. The relation between u[k]
and x[k] is governed by the difference equation:

x[k +1]= A x[k]+ B,u[k]
where A, =e*", B,=A"[A,-1]B
Question: Is controllability retained after discretization?

21

Summary of results from 86.7

 Ifthe pair (A,B) is uncontrollable, then (A ,B,) is also
uncontrollable for any sampling time T.

» If all the eigenvalues of A is real, then (A,B) controllable
implies that (A 4,B,) is controllable.

» If A has complex eigenvalues, controllability maybe
lost for some special sampling period T.

We use Re[x] and Im[x] to denote the real part and the imaginary
part of a complex number x. Suppose (A,B) is controllable.

A sufficient condition for (A,,B,) to be controllable is that

[Im[A; — A]|# 2nm/T for m=1,2,..., whenever Re[A;-A;]=0.

The condition is to ensure that the number of Jordan blocks

will not increase for a particular eigenvalue. Note that if

A, is an eigenvalue of A, then eMT is an eigenvalue of A,. If

A; and A; have same real parts, e*T and e"T may be the same. 22

11



E le: _
XAmpIe . Ax+Bu, A:[“ ﬂ, B:[q

G.=[B AB]z[I “},

0 P
detG® =
The CT system is controllable if B # 0. Now suppose
B # 0. Let the sampling period be T.

=
=]

x[k+1]= A x[k]+ B,u[k],

A = AT = T cos BT —sin ST B — acosPBT —a+PsinBT
T sin BT cosPT |° ¢ |—PcospT+P+asinpT

What happens when T=mr/B?

23

So far, we have studied controllability
and observability
Main Problems of the Course

— Analysis: Solutions to LTI systems, stability etc.
— Controllability and observability;

— Feedback design and construction of observers
— Optimal control

Next, we will start to address design problems

24

12



Stabilization problems

Given a LTI system
X = Ax+ Bu.

+ A typical control problem is to bring the state x from any
initial condition to the origin and keep it there.

If A is stable, we only need to set u=0 and x(t) will converge
to the origin asymptotically.

* Another problem is to bring x to a desirable point x as fast
as possible and keep it there.

» Both of these problems are about stabilization at an equilibrium
point. The second problem can be transformed into the first one.

25

For example, given an LTI system:
z=Az+Bv; y=Cz+Dv
Suppose that A is nonsingular and v=u + u,. (u, a given constant).
We have
z=Az+Bu, +Bu;
Let z, = —A~'Bu,and define x =z — z_. Then
X =7z=Az+AA'Bu,+Bu=A(z-z,)+ Bu=Ax+Bu;
= x=Ax+Bu.

Suppose that z, is a desirable point where we would like to
keep z there. If A is stable, then by setting u =0, x(t) will
converge to 0 from any initial x, and will stay there.

= z(t) = x(t) + z, converges to z, and stay there.

Question: What if A is not stable?
What if A is stable but the convergence rate is too slowe?

13



For the equation

x = Ax +Bu.
Recall that if (A,B) is controllable, then the following control
u(t) =-B'e™ Wt )[e™x, —x,] *)

can bring x from any initial condition x,, to any final destination
X4- The time duration [0,t,] can be arbitrarily small. And the
control is of minimal energy.

However, this control strategy is not used in practice.

Reasons:
Very sensitive to parameter changes and implementation error;
Even if the state is at the origin, disturbances keep driving
it away from the origin.
Not easy to compute.
In summary: not reliable, complicated and frustrating.

27

A practical and effective solution: state feedback

For the system

X =Ax+Bu, y=Cx+Du
Ifwe letu=r—K x. Then

x =(A-BK)x +Br.

If A is unstable but (A,B) is controllable, we can make A — BK
stable by choosing K properly;

If A is stable but the convergence rate is too slow, we can improve
the convergence property by designing K properly.

» The feedback law u = r —Kx is simple for implementation but
very effective.

We shall find out how to design a state feedback law.

28
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An additional tool: State estimation
What if the state cannot be obtained through measurement?

Assume that all the information that can be measured is
y = Cx+Du.

If the system is observable, we shall use a state-estimator,
called an observer to estimate the state from the measurement
y and the input u.

The observer is also an LTI system with input as u and y,
and its output is the estimate of the state x:

u X(t) - an estimate of x(t)

y

We will learn how to design an observer.

_ JObserver

We Start with State Feedback Design

29

State feedback design: single input case
A single input single output system,
X =Ax+bu, y=cx (assume D=0 for simplicity)

where AeR™™, beR™! has only one column and ceR"™ has
one row. p=q=1.

Let keR!™2 be a row vector. Then kx €R. With state feedback
u=r — kx, we have
x=(A-bk)x+br, y=cx

Theorem: The pair (A-bk, b) is controllable iff (A,b) is
controllable. (see page 232 for proof.)

Comment: state-feedback does not change controllability property.
However, the observability of (A-bk,c) might be different from
that of (A,c). 30



What can be gained from using state feedback?

The original system: X = Ax+bu, y=cx

With state feedback we have: x =(A-bk)x+br, y=cx

A result to be shown later: if (A,b) is controllable, then the
eigenvalues of A-bk can be placed anywhere by choosing k
properly.

Example:

ool ool aroed T a3

— Eigenvalues of A: A, =4, A,=—2, = unstable.

— Characteristic polynomials for A-bk is

» The two coefficients a, and a, can take any values. 31

Controllable Canonical Form

For simplicity, we consider a 4th-order system. The results for
the general case can be easily extended from the pattern.

Theorem: Suppose that (A,b) is controllable and

det(sI-A)=s*+a,8’ +0,8* +as+a,

1 o a, a,
—pl = 2 .10 1 o, o,
Let Q:=P'=[b Ab A% Ablg o T
i . 0 0 0 1
With the state transformation z = Px, we have
-0, —a, —0; —0, 1
A-pApi=| 1 0 0 0| F-pp=|O Controllable
B o1 0 0 77|10 4m Canonical
0 0 1 0 0 form
c=cP” :[Bl B, B; B4]

Furthermore, (sl-A)'b= . Bs’ tﬁzsz +2[33s +B,
s*+a,s’ +o,8” +os+o,

32

16



Proof: We can break the transformation into two steps:
x—P,x — P,P x, where 1 o o, a

§ _ 01 o o
P'=Q=[b Ab A% AB] P'=Q,=|, . o
: . ) 0 0 0 1
With the first transformation, we obtain
000 —a 1
e _ -1 _ 1 0 0 —(13 = _ -1 _ O
AI_QIAQI_ 0 1 0 —0!2, BI_QIB_ 0
001 —a 0
With the second transformation, we obtain
-0 =0, —0; —04 1
A=0-A 5_0F _|0
A=QAQ= o | g o | BB
0 0 1 0 0
Here we can verify that Q,A=AQ,, Q,B=B, 23

Exact pole assignment

Theorem: Suppose that (A,b) is controllable. Then the eigenvalues
of A-bk can be arbitrarily assigned provided that complex conjugate
eigenvalues are assigned in pairs.

Proof: Let z = Px be the state transformation that transforms the
equations into controllable canonical form:

-0, -0, —0; —0, 1
_ P T R T N 0
A =PAP" = . b=Pb=| |,
0 1 0 0 0
Lo 0 1 0 0
with k=[k, k, k, k,] we have
oK, —oy—k, —ay—K, —a,K,
A Bk = 1 0 0 0
0 1 0 0
0 0 1 0
det(sI— A + bk) =s* +(a, +k,)s* +(a, +k,)s> +(a; +k;)s+a, +k, 34

17



det(sI — A + bk) = s* + (0, +k,)s* + (0, +k,)s? + (0, + k;)s +a, +k,
This means that the eigenvalues of A —bk can be arbitrarily
assigned. How about A -bk?
If welet k =kQ™' =kP,
then A-bk=QAQ"'-QbkQ ' =Q(A-bk)Q',
= The eigenvalues of A - bk are the same as those of A —bk

From the proof, a procedure to design the feedback gain
k can be derived.

35

Procedure for assigning the eigenvalues of A-bk.

Step 1. Choose the desired eigenvalue set {A,, i=1,2,...n} which
contains conjugate complex pairs, e.g., A, =-1+j2 and A, ,=—-1-2
and obtain the coefficients of

Ay(S)=(s—A)(s=A) - -(s—A")=s"+0o,s"" +---+0_s+0,
Step 2. Compute the characteristic polynomial of A
A(s)=detGI-A)=s"+a,s"" +---+a_s+o,
and the transformation matrix, e.g., forn =4

a, o, 0;

I
Q:=P'=[b Ab A’ A’b 8 é
0 0

36
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-0, —0, —0; —0, 1
x_ a_| 1 0 0 0 T on_|0
Then A =PAP~ = 0 1 0 o b b=Pb= 0l
0 0 1 0 0
—Q, El _az_Ez —(13—E3 —(14—E4

A-Dk = 1 0 0 0

b 0 1 0 0

0 0 1 0

Step 3: Choose k, =q, —q,

-a, —a, —0, —0,

A | 1 0 0 0
Then A -bk = 0 1 0 0
0 0 1 0

Step 4: Compute k =k P.

then A -bk =Q(A —bk)Q ™" has the desired eigenvalues
{A,1=12,..,n}

37

Example:

01 0 1
A=|1 -1 1|, B=|1| eigenvalues: 0, 1,-2, unstable
0

01 0 i
110

G* :[B AB AZB]: 1 0 2| nonsingular, (A,B) controllable.
010

Step 1: The desired eigenvalues -1, -2+j2, -2-j2
Ay(s)=(s+1)(s+2+]j2)(s+2—j2)=s"+55° +12s+8

a1 a2 a3

Step 2: Characteristic polynomial of A

det(sI—A)=s*+1s*-2s + 0
a, 0, 0O

11 =211 2 -1 -1 3 -1
Q=G0 1 1]=/11 0| P=Q'==|1 -1 1
00 1 01 1 2.1 1 1

38
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o -a, =4k, =0,-a,=14; k,=a,-a,=8;

Step 3: Elz
=k=[4 14 8]

Step4:  _ -1 3 -1
v k=kP=[4 14 8]l 1 -1 1 |=1 3 9]
21-1 1 1

Step 5: Verify:

0 1 0] [1 -1 -2 -9
A-bk=|1 -1 1|-|[1f1 3 9]=|0 -4 -8
0 1 0|10 0 1 0

s+1 2 9
det(sI-A)=| 0 s+4 8|=(s+1)(s*+4s+4+4)
0 -1 s

=(s+1)((s+2)* +2?)
Eigenvalues of A-bk: -1,-2+j2,-2-32 v 39

Transfer function of the feedback system:

The original system  x = Ax+bu, y=cx
-0, —0, —0,; —o,

1
0

A=l o 0 0 o} v=lol =B B B B
0

0 0 1 0

Transfer function fromuto y: ¢(s[-A)'b= Bis’ +Bos” +Bss+B,

4 3 2
s'+a,s’ +0,8 +as+0,

The system with state feedback, x = (A-bk)x +br, y=cx

—o =k, —o, -k, —o;-k; —o,-k,

|1 0 0 0
A-bk= 0 1 0 0
0 0 1 0

Transfer function from r to y:

3 2
c(slI-A+bk)'b= - Ps”+B,s +2[335+B4
s*+ (0, +k))8’ + (0, +k,)8* +(a; +k;)s+a, +k, 40

20



Compare:

3 2
S +p,S”T+PS+
C(SI_A)—lb: 4[31 3[32 2[33 B4
s"+a,8” +a,8" +0o,5+a,

3 2
o(sT— A+bk)'b=— Bis” +Bss +fss+ﬁ4
s*+ (0, +k))s’ +(a, +k,)s” +(a; +k;)s+a, +k,

Conclusion:
State feedback does not change the zeros of the system.
If (A,b) is controllable, the poles can be arbitrarily assigned.
The feedback gain k that assign the eigenvalues is unique.
(Not unique if the system has multiple inputs).

If a new pole is the same as one of the zeros, the order of the
closed-loop system can be reduced. = must be unobservable.
(since the controllability is the same).

41

Desirable eigenvalue region

At the first step of the procedure, we need to choose the desirable
eigenvalues. How to do this?

There are some general rules, depending on the performance specs.
Such as the overshoot, rise time, settling time (convergence rate).

Generally, Ims
Large real parts of eigenvalues \
= fast convergence, short settling time
Large imaginary parts of eigenvalues
= big oscillations and big overshoots.
If the ratio between the imag part and
the real part is appropriate, we may
have small overshoot and fast rise -
time A typical region for
desired eigenvalueg?

Res

21



State feedback design: multiple input case

Consider a system,
X = Ax +Bu; y=Cx+Du
where AeR™», BeR™P, CeR¥",

We can also transform the system into a controllable
canonical form.

— The idea is extended from the single-input case;
— The canonical form also reveals the structure to see how the
poles are moved;

— However, the procedure can be very complicated. (see §8.6.3)

= Here we will study a quite different approach. It also applies
to single input systems.

43

State feedback design: By solving matrix equation

In this approach, we don’t transform a system into a
controllable canonical form
How does it work? The main idea is as follows.

— The problem: Find K s.t. A - BK has a set of desired
eigenvalues, say the eigenvalues of F. This is the case

if A-BK and F are similar, i.e., there exists a nonsingular
matrix T s.t.,
A -BK =TFT"!
~ Similar matrices have same eigenvalues
— Key: Find both K and T

44
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The new problem:

Given A, B and F, find K and nonsingular T such that
A-BK=TFT!
Multiply both sides from right with T, we obtain
AT - BKT=TF
Since T is nonsingular, there is a one to one correspondence
between KT and K. If we let K= KT, then K=K,T!. Now,

AT-BK,=TF <& AT-TF= BK,

The procedure: choose K ,eRP*". Solve AT -T F = BK, for T.
If T is nonsingular, let K=K T'. Then A-BK and F are similar.
Then A-BK has the desired eigenvalues.

Main concerns:
* How to solve the matrix equation AT-TF=BK?
» Under what condition is the solution T nonsingular? 45

Main concerns:
* How to solve the matrix equation AT — T F = BK,)?
= Under what condition is the solution T nonsingular?

Summary of the main points:
The matrix equation can be transformed into a regular linear
algebraic equation with nxn unknowns.
It has a unique solution iff A and F have no common eigenvalues.
If (A,B) is controllable, then the solution is generally nonsingular
with K, arbitrarily chosen.
— If K, is generated by rand(p,n) or randn(p,n), then the
probability that T is nonsingular is 1.
When p = 1, the resulting K=K_ T is unique.
When p > 1, the resulting K=K_ T is not unique.
Based on these results, optimization algorithms can be developed
for improving other performances while the eigenvalues are

at the desired locations.
46
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Transformation into a regular algebraic equation:
Example: Solve AT - TF = BK,,

(23 [-1 0 -1 -2 T, t
N TR A R R S S N
2 3|t t t t
S:AT—TFZ[ }{11 12:|_|: 11 12}[
0 1 t21 t22 t21 t22

_[.?,tu+3,t21 4t12+3t22}_BK -1 —2}
- =BK, =
-3 -4

2t,, 3t,,
— Does it have a solution? sy | [3 0 3 0][t,
— Recognizing that we have 4 |s,| |0 4 0 3| |¢,
variables and 4 conditions, the|s, | |0 0 2 0 |t,,
above can be converted to: S,y 00 0 3|t

About the solution to AT — TF = BK,

Theorem 1: If A and F have no common eigenvalues,

then the equation has a unique solution. (§3.7)

Theorem 2: If A and F have no common eigenvalues,

the necessary conditions for T to be nonsingular

are that {A, B} is controllable and {F.K,} 1s observable.

For the single input case (p=1), T is nonsingular iff
{A, B} is controllable and {F,K,} is observable.

Theorem 3: Suppose that A and F have no common

eigenvalues and (A,B) is controllable.
Then for almost all K, T is nonsingular.
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Algorithm
— Select F having desired closed-loop eigenvalues which are
different from those of A

— Choose an arbitrary K, such that {F,K,} is observable
— Solve AT-TF=BK, to obtain the unique T.
The matlab command to solve the equation is

T=lyap(A,-F,-B*KO0)

— If T is non-singular, let K = K, T
Then A-BK has the desired eigenvalues.

— If T is singular, which is rarely the case,
choose a different K, and try again

— Finally, don’t forget to check if A-BK has the desired
eigenvalues. You might have typed the wrong numbers.

49

eig(A-B*K)=?

About the selection of F:

* First, select the desired eigenvalues with some rules

« If the desired eigenvalues are all real, simply let
F=diag{\,,A,,...,A.}

* If the desired eigenvalues has complex conjugate pairs,
say, Ap, oty o-iBy, atjP,, 0-jB,y, choose

A 0 0 0 0
0 o B, 0 O
F={0 —B, @, 0 0
0 0 0 a, P,
0 0 0 —B, a,

50

25



Example:

-1 0 -1 10 -2 0 0
A={0 O 1|, B=|0 1|, F={ 0 -3 0
1 -1 -1 00 0 0 -5

Use T= lyap(A,-F,-B*K0), and K=K0*inv(T)
KO: K

I 0 1 5.3621 -2.7414 4.1724

0 1 O 0.2931 2.6379 1.7586

0 1 O 1.4571 0.4857 -2.4286

I 1 1 -3.3714  6.5429 -4.7143

1 2 3 43.5000 -21.5000 -53.0000

4 5 6 72.9000 -35.5000 -85.4000

Observe that some K have small elements, but some may have
big elements. In implementation, we like to use small valued K

Observation: If there are more than one K that assign
the eigenvalues of A-BK to the same locations, then
there are infinitely many of them.

An interesting and meaningful problem:
Pick one from those K’s which assign the eigenvalues
such that the spectral norm of K, 1.e., ||K]|, 1s minimized.

We may also develop algorithms to choose K to
optimize or improve other performances, see, e.g.,

T. Hu, Z. Lin and J. Lam, *" A unified gradient approach to performance
optimization under pole assignment constraint", Journal of Optimization
Theory and Applications, July, 2004

T. Hu and J. Lam, " Improvement of parametric stability margin under

pole assignment," IEEE Transactions on Automatic Control, Vol.~44,
No.~10, pp.~1938-1942, 1999. 52
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How to realize state-feedback in Simulink?

- y X i
u__x=Ax+Bu X not available in

y=Cx this block
Same system can be equivalently realized with
. y=Cy,=Cx
u Xx=Ax+Bu x
—_— #’ The purpose of
Yy =X

doing this is to get x

Under state feedback u=v-Kx,

X = AX+ Bu| x

V-:I_/\u Yy,

o~
fc]

T |

Today:

* Controllability and observability continued

— Controllability/observability decomposition
— Minimal realization
— Conditions for Jordan form conditions
— Parallel results for discrete-time systems
— Controllability after sampling
« State feedback design
— Using controllable canonical form
— By solving matrix equations

Next Time:

Regulation and tracking

Robust tracking and disturbance rejection
Stabilization
State estimation
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Problem set #10

1. Is the following state equation controllable? Observable?

-1 1 0 000 0] [0 0 I]
0 -1. 0 00 0O 1 10
0 0 -1 0 00O 0 1 1

x={0 0 0 1 0 0 O|x+|1 2 1ju
0 0 0 0110 1 0 1
0 0 0 00 1O 0 1 1
(0 0 0 000 1] [1 1 0
1 01 01 01

y=(0 0 01 01 Ofx
1110110

55
2. For the following state equation

010 0

£=[0 0 1jx+|0fu, y=[1 1 1]x
000 1

1) Find a state feedback u =r - k x to place the poles at -2,-3,-4.
Use both methods (via controllable canonical form, via solving matrix
equation, show all steps) and compare the results.

2) Find a state feedback u =r - f x to place the poles at -3+j3, -3-j3, -8
Use both methods and compare the results.

3) Use simulink to simulate the closed-loop systems resulting from 1) and 2),
respectively, under initial condition x(0)=[1 -1 3] and r(t) =unit step.
Plot y(t) for the two cases in the same figure.
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3. For the following state equation

10 -1 [o 1
=0 1 0lx+|1 O, y=[1 1 1
111 11

1) Find two different state feedback u =r—K;x and u =r- K,x to place
the poles at -3+j3, -3-j3, -6. Try to find K, and K, such that one has
relatively larger elements and the other one has relatively small
elements.

2) Use simulink to simulate the closed-loop systems resulting from

Case 1: u=r-K;x, x(0)=[12 3] and r(t) =0.

Case 2: u=r-K,x, x(0)=[12 3] and r(t) =0.
Plot y(t) for the two cases in the same figure.

Plot u,(t) for the two cases in the same figure.
Plot u,(t) for the two cases in the same figure.

Note that 4 = [ul}
u
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