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16.513 Control systems (Lecture #11)

 Controllability and observability (Chapter 6)
 Two approaches to state feedback design (Chapter 8)

– Using controllable canonical form
– By solving matrix equations

Last time, 
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 Other state-feedback problems 
– Regulation and tracking
– Robust tracking and disturbance rejection
– Stabilization of uncontrollable systems

 Full dimensional estimator
– SISO case via observable canonical form
– MIMO case by solving matrix equation

Today, we continue to work on feedback design 
(Chapter 8)
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Project and Final Exam:  Due 12pm, Dec 16, 2018

Final exam problems will be sent to 
your email  box at uml,  at 9am, Dec 15 (Saturday).

• The written part of the project should be complete with all 
results clearly presented. 3 points out of 25 will be given on 
presentation.

• All the Matlab and Simulink files for the project and  the final 
exam should be contained in a zip file for possible verification. 

• The project and final exam should be done independently.

Please send 4 files to me via email between 12 - 12:30pm, 12/16/18
1) Project; 2) Final exam; 3) Homework #12 (pdf file, or MS word)
4)   Zip file for all Matlab/Simulink source files   
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Regulation and Tracking (§8.3)

• Tracking is a relationship between the output and 
reference signals. It describes the property of how
the output y(t) follows a desired reference r(t).

• Generally, regulation is about bringing the output or 
state to certain desired value asymptotically and 
keep it there. It can be transformed into a stabilization
problem

– The simplest tracking problem is to track a step
signal. 

– A more complicated case is to track a sinusoidal 
signal, a polynomial signal, or periodic signals.

– We need more advanced tools to address the  
second case. 
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Tracking a step signal

Recall that we use u = r – kx to stabilize a system and  the 
resulting closed-loop system is

cxy    br,bk)x(Ax 

By choosing k appropriately, the transfer function from  r to y is
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Suppose that  4  0.  Then the DC gain from r to y is 
g(0)=4 / (4 + k4).  If g(0) is 1 and r(t) is a step, then  y(t)-r(t) → 0. 

If g(0)1, we need to introduce a feedforward gain p, i.e., let 
u = pr-kx, with p=(4+k4)/4. Then 
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gf(0)=1  The output y(t) can track any step signal r(t).

6

p b ∫ c

A

k

r u x x

+ 
y

cxy   bu,Axx Diagram:

Feedforward gain

u = pr-kx
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gf(0)=p4/(4+k4)=1

• The feedforward strategy should work well when the parameters
are accurate and there is no external disturbance.

• However, if the parameters have errors, p(4+k4)/4, then the 
final DC gain may not be exactly one. Also, some disturbance 
may cause steady-state tracking errors. 

• Robust tracking problem is formulated to deal with these issues.

Comments:
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Robust Tracking and disturbance rejection

Consider an open-loop system

cxy   bw,buAxx 
where w is the disturbance. Assume that (A,b) is controllable.
Suppose that there are uncertainties in A, b and c:
A→A+A, b→b+b, c→c+c. 

b ∫ c

A

r u x x y

cxy   bw,buAxx 
w

How to derive u from r and x ?

Robust tracking requires y(t) to follow a step r(t) in the presence
of uncertainties and disturbances.
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Proposed configuration
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• If  c(sI-A)-1b  has no zero at s=0, then (AL, bL) is controllable
• Then the eigenvalues of ALbL[k  ka] can be arbitrarily assigned,

internal stability can be achieved. 
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Conclusions:
• The DC gain from r to y is always 1. Tracking step signal 

asymptotically even if parameters A,b,c change.
• The DC gain from w to y is always 0. Step disturbance 

can be rejected.

• Now we discuss tracking and disturbance rejection:

(s)w(s)ĝ(s)r(s)ĝ(s)y(s)yy(s)Let  wrwr 
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Example:
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Design a robust tracking control strategy such that y tracks 
a step signal r(t) asymptotically.  

State space realization of go(s): 
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The basic requirement is stability. The convergence rate depends
on the eigenvalues of  ALbLkL (kL=[k  ka])
We first choose kL that assign the eigenvalues.
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We use the second approach of pole assignment. Pick
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Pick k0=[1 1 1 1];
T=lyap(AL,-F,-bL*k0)
kL=k0*inv(T)

kL = [11.0000  -14.3333   22.3333  -85.3333]
k=[11.0000  -14.3333   22.3333], ka=85.3333
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The tracking performance is
improved. See y(t) plotted 
in blue.
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The simulink model

You can try to change the parameters A, or b and the tracking 
property is  maintained.

w
3 3,1
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Problem set #11

1. Design a robust tracking  strategy for the system 

yu

so that the output y follows a step signal asymptotically.  Choose design 
parameters so that the closed-loop poles  are at  -2+j2, -2-j2, -4 and -8. 
Simulate the system from t=0s to t=20s. (print the simulink model) 
1)  with the given go(s)

2) Keep all the design parameters but replace go(s) with

1)2(s
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Plot y(t) for each of the cases with 0 initial condition for the state.
You may plot all responses in the same figure and identify them with
the value of . 

What is the minimal  to make the closed-loop system unstable?
(Note:  use the same state-feedback for all cases.) 

for 
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Stabilization of uncontrollable systems

Recall:  If (A,B) is controllable, then the eigenvalues of (A+BK)
can be arbitrarily assigned.

• What if (A,B) is not controllable? Can the system be stabilized?

Suppose that the system is transformed (by z = Px ) into the
following:  
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 Other state-feedback problems 
– Regulation and tracking
– Robust tracking and disturbance rejection
– Stabilization of uncontrollable systems

 Full dimensional estimator
– SISO case via observable canonical form
– MIMO case by solving matrix equation

Today’s topics:
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• Previously, we assumed that x is available.  
However, generally x is not available

Q.  What to do?  
– Construct a system to estimate x ~ State estimator (or 

observer)

• Want xe(t) to be a "good" estimate of x(t), i.e.,

 x(t) – xe(t) should go to zero asymptotically 
with fast convergence rate.

State Estimators

x̂State 
Estimator

yLTI
System

u

xe
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• Main result: If the system is observable, then by 
properly designing the state estimator, the poles of 
the dynamics associated with x(t) – xe(t) can be 
arbitrarily assigned
 Error goes to zero as quickly as possible

• We will discuss several types of estimators
– Full-dimensional state estimator

• Single output case 

• Multivariable output case

– Reduced-dimensional state estimator

• Finally, connecting state estimator and state 
feedback
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Full-Dimensional State Estimators

• How to estimate x based on u and y?
Cxy;BuAxx 

– Duplicate the system dynamics

– Make correction on dxe/dt when y and ye are different
– Pick the correction as a linear function of  (y – ye)

~ Assuming that D = 0

x 
. y 

Integrator 
u 

A 

C B + 
x 

-

+
L

Integrator
u

A

CB +
xe ye

ex

• A proposed configuration:
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The original system

Cxy;BuAxx 

The duplicated system (estimator)

  eeee Cxy    ,yyLBuAxx e

• The correction term L(y-ye) plays the essential role.

Will the proposed configuration work?

• Can we choose L appropriately to make xe approach x?
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– Next , consider the dynamics of  e:=x  xe

 exxe      BuLCxxLCABuAx  e

• We now analyze the system
– First, consider the estimator dynamics

  eeee Cxy         ,yyLBuAxx e

 ee CxCxLBuAx 

  BuLCxxLCA  e

     exxLCA  eLCA 

 eLCAe 

 If the eigenvalues of (A - LC) have negative real parts, 

any error will converge to 0,  x  xe → 0.

 Can the eigenvalues of A-LC be arbitrarily assigned?
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Theorem. If the system (A,C) is observable, then all the 
eigenvalues of (A - LC) can be arbitrarily placed, 
provided that complex eigenvalues appear in pairs

Proof :  The result follows from duality
– The eigenvalues of (A-LC) and (A’-C’L’) are the same.

– By Theorem 6.5: (A, C) is observable iff (A’, C’) is 
controllable (page 155)

– Now, since (A, C) is observable, (A’, C’) is controllable

– Eigenvalues of A’ – C’L’ can be arbitrarily placed

• Note:  All the state feedback design procedure 
can be used to design state estimator, and some 
of them will be highlighted next
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Full Dimensional State Estimator, SISO Case

Theorem. If a SISO system is observable, then it 
can be transformed, by an equivalent 
transformation, to an observable canonical form

  dux1..000y;u
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• Observable Canonical Form:
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c'qn 
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– With P  Q’, then  (PAP-1, Pb, cP-1 ) is in the 
observable  canonical form.  

The transformation matrix Q is formed as follows: 

For example, with n=4
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Example  x100yu;
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– Is the system observable?
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• Now, how to select L?
– Consider the equivalent system in Observable Canonical 

Form:
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β
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– The characteristic polynomial:
     1n21n
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– Suppose that the desired estimator poles are  n 1ii
ˆ



and the desired characteristic function is
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Then it is clear that
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– L is uniquely determined by the desired 
eigenvalues of the estimator.

– Finally, Let L = P-1L , then 

)PCLA(PPCLPPAPLCA 111  

A-LC also has the desired eigenvalues.
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Procedure for designing the estimator gain

Step 1. Choose the desired eigenvalue set {i, i=1,2,…n}
of A-Lc and  obtain  the coefficients of 

n1n
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1
nn

21d αsαsαs)λ(s)λ)(sλ(s(s)  
 

Step 2. Compute the characteristic polynomial of A 
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1
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and the transformation matrix, e.g., for n = 4 
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Example (Continued)

– Find L s.t. the estimator poles are all at -3, -3, -10

– As discussed earlier, the system is observable, and
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– From the previous example,
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– Verification:
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 Other state-feedback problems 
– Regulation and tracking
– Robust tracking and disturbance rejection
– Stabilization of uncontrollable systems

 Full dimensional estimator
– SISO case via observable canonical form
– MIMO case by solving matrix equation

Today’s topics:
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General MIMO  State Estimator

• Dual to MIMO state feedback ~ Methods discussed 
earlier has a counterpart here

– We will discuss the method based on matrix 
equation, assuming that the system is observable

– A full-dimensional state estimator with D = 0:

  eeee Cxy    ,yyLBuAxx e

xe

yLTI 
System 

u

State estimator

Let e=x-xe, the error dynamics:

 eLCAe 

40

Similar to the state feedback design, the objective is to
pick an observer gain L such that A-LC is equivalent
to a certain F which has the desired eigenvalues, i.e., 

A  LC = T-1FT for a nonsingular T   

TLLLet         TLC,FTTA 0 
     C,LFTTA 0

The procedure: Given A,C and F. Pick L0, solve
TA  FT = L0C  for T. 
If T is nonsingular,  let L=T-1L0.  Then A  LC has 
the desired eigenvalues.  
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About the solution to TA  FT = L0C, we have:

 The matrix equation has a unique solution iff A and F
have no common eigenvalues;

 The solution T is nonsingular only if (A,C) is observable
and (F,L0) is controllable;

 In case that C has one row, T is nonsingular if and only 
if (A,C) is observable and (F,L0) is controllable.

The above result can be derived from the results for
state feedback design from duality: taking transpose
of the equation, we obtain

A’T’ T’F’ = C’L0’  as  compared with 

A T  T F  = B K0    for the state feedback design 

42

Example
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Find T s.t. the estimator poles are at -5, -5, -10
– Check observability:
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– Select F:
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L0  {F, L0} controllable– Select L0:

– Solve TA-FT=L0C  with matlab:  T=lyap(-F,A,-L0*C)
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Take A to be the original A, B=I, C=I, D=0
B=eye(3),C=eye(3),D=zeros(3);

L

C

CB

B
yexe

x yBu

Bu

x = Ax + Bu; y = Cx;   eeee Cxy    ,yyLBuAxx e
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Explanation:  

Cxy
BuAxx




Can be equivalently realized with 

xy
vAxx

1 


B C

u y

y1 yu v

v = Bu,  y=Cy1=Cx

The purpose of doing this is to get x and xe

ee1

eee

xy

vAxx




B C
ye1

yeu ve

ve = Bu+L(y-ye),  ye =Cye1=CxeL(y-ye)
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The original system
( 1) ( ) ( ); ( ) ( )x k Ax k Bu k y k Cx k   

The duplicated system (estimator)

 ( 1) ( ) ( ) ( ) ( ) ,     ( ) ( )e e e e ex k Ax k Bu k L y k y k y k Cx k     

Observer for discrete-time system

Define the observer error,  : 	
( 1)e k      ( ) ( ) ( ) ( ) ( )eAx k Bu k A LC x k LCx k Bu k      

  ( )A LC e k 

 ( 1) ( )e k A LC e k  

 If the eigenvalues of (A - LC) are inside the unit disk,  1, 

any error will converge to 0, 	 → 0.

Use same algorithms to assign the eigenvalues of  A-LC. 
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Problem set #11 
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2.  For the system

Design an observer to estimate the state x. The poles of 
the observer are -4+j4, -4-j4 and -8.  Simulate the system
from t=0 to t=10 with x(0)=[1 1 1]’,  xe(0)=[0 0 0]’ and 
u=0. Plot the  state x(t) in one figure and  e = x(t)-xe(t) 
in another figure. Also print the simulink model.
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 Other state-feedback problems 
– Regulation and tracking
– Robust tracking and disturbance rejection
– Stabilization of uncontrollable systems

 Full dimensional estimator
– SISO case via observable canonical form
– MIMO case by solving matrix equation

Today’s topics:

Next Time:  
• Reduced-order estimator
• Connection of state-feedback with state estimation
• LQR optimal control

Problem set #11:  see slides 16, 48


