16.513 Control systems (Lecture #11)

Last time,

= Controllability and observability (Chapter 6)

= Two approaches to state feedback design (Chapter 8)
— Using controllable canonical form
— By solving matrix equations

Today, we continue to work on feedback design
(Chapter 8)

= Other state-feedback problems
— Regulation and tracking
— Robust tracking and disturbance rejection
— Stabilization of uncontrollable systems

= Full dimensional estimator
— SISO case via observable canonical form
— MIMO case by solving matrix equation



Project and Final Exam: Due 12pm, Dec 16, 2018

Final exam problems will be sent to
your email box at uml, at 9am, Dec 15 (Saturday).

* The written part of the project should be complete with all
results clearly presented. 3 points out of 25 will be given on
presentation.

* All the Matlab and Simulink files for the project and the final
exam should be contained in a zip file for possible verification.

* The project and final exam should be done independently.

Please send 4 files to me via email between 12 - 12:30pm, 12/16/18
1) Project; 2) Final exam; 3) Homework #12 (pdf file, or MS word)

4) Zip file for all Matlab/Simulink source files
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Regulation and Tracking (§8.3)

* Generally, regulation is about bringing the output or
state to certain desired value asymptotically and
keep it there. It can be transformed into a stabilization
problem

» Tracking is a relationship between the output and
reference signals. It describes the property of how
the output y(t) follows a desired reference r(t).

— The simplest tracking problem is to track a step
signal.

— A more complicated case is to track a sinusoidal
signal, a polynomial signal, or periodic signals.

— We need more advanced tools to address the

4
second case.



Tracking a step signal

Recall that we use u =r — kx to stabilize a system and the
resulting closed-loop system is

Xx=(A-bk)x+br, y=cx
By choosing k appropriately, the transfer function from rtoy is
3 2
g(S)ZC(SI—A+bk)71b= ; ﬁls +[32$ +B3S+B4
st + (0, +k))s’ +(a, +k,)s” + (o, +k;)s+a, +k,
Suppose that B,# 0. Then the DC gain fromrtoy is
2(0)=B,/ (ay+ k,). If g(0) is 1 and r(t) 1s a step, then y(t)-r(t) — O.
If g(0)=1, we need to introduce a feedforward gain p, i.e., let
u = pr-kx, with p=(o,,+k,)/B,. Then
) B’ +B,5> +Bis +B,
i(s) = s*+(o,+k)s +(a, +k,)s* + (o, +k;)s+o, +k,

g{0)=1 = The output y(t) can track any step signal r(t). 5

gi(s)=

Diagram: X =Ax+bu, y=cx
u = pr-kx

T‘L

Feedforward gain

¥(s) _ 6153 +B252 +B;s+B,

i(s) P +(a, +k))s’ +(a, +k,)s* +(a; +k;)s+a, +k,
Comments:

gi0)=pPB,/ (o, +k,)=1

gi(s)=

» The feedforward strategy should work well when the parameters
are accurate and there is no external disturbance.

* However, if the parameters have errors, p#(o,1k,)/B,, then the
final DC gain may not be exactly one. Also, some disturbance
may cause steady-state tracking errors.

* Robust tracking problem is formulated to deal with these issues.



Robust Tracking and disturbance rejection

Consider an open-loop system
X =Ax+bu+bw, y=cx
where w is the disturbance. Assume that (A,b) is controllable.
Suppose that there are uncertainties in A, b and c:
A—A+0A, b—b+3db, c—c+dc.
Robust tracking requires y(t) to follow a step r(t) in the presence
of uncertainties and disturbances.

X =Ax+bu+bw, y=cx
T X
- MT ER

How to derive u fromr and x ?

Proposed configuration X =Ax+bu+bw, y=cx
W .
I Xg Xa vV u ot X X y
— O s ok %—@T*@
| e=r—y

X, =Ir—cX —— A
u=—kx+kyx,
= —kx + koJ (r —y)dt @:

X = Ax —bkx + bk, x, +bw = (A —bk)x + bkx, + bw

a

T i Jlilaf ool

A—-bk bk,
Let AL L_ .= :AL_bL[k _ka]
—c 0Of 0 —c 0

o If c(sI-A)'b has no zero at s=0, then (A;, b;) is controllable
* Then the eigenvalues of A;—b; [k —k,] can be arbitrarily assigned,
internal stability can be achieved.



* Now we discuss tracking and disturbance rejection:
sSI-A+bk —bk,

c s
Suppose c(sI- A +bk)'b=N(s)/D(s) Then A.(s)=sD(s)+k,N(s)
Let y(s)=y.(s)+y,(s) =& (8)r(s)+ &, (s)W(s)
)= YO KNG KNS gy g (0)=1

Let A;(s)=det(sI-A, +b, [k -k, ])= det[

g (s
r(s)  Aq(s) sD(s)+k,N(s)
n sN(s) . ) .
g.(s)= , £,(0)=0 TIfw(t)is a step signal, y,(t) > 0
A¢(s)
Conclusions:

* The DC gain from r to y is always 1. Tracking step signal
asymptotically even if parameters A,b,c change.
* The DC gain from w to y is always 0. Step disturbance

can be rejected. 0
Example: u s +2s+3 y
18,8 =
s"+s +s—1

Design a robust tracking control strategy such that y tracks
a step signal r(t) asymptotically.

State space realization of g (s):

1 -1 1] 1
A=[1 0 0|, B=|0|, C=[ 2 3]
0 1 0] 0

110
a0t o o0 o . _[b]_
AL_|:—C 0}‘ 0 1 0 0f bL‘M‘

The basic requirement is stability. The convergence rate depends
on the eigenvalues of A;-b k; (k;=[k —k,])
We first choose k; that assign the eigenvalues. 10




We use the second approach of pole assignment. Pick

_22 _% 8 8 Pick kO=[1 1 1 1];
F=l o & a0 u T=lyap(AL,-F,-bL*k0)

0 0 4 -4 k; =k0*inv(T)

k; =[11.0000 -14.3333 22.3333 -85.3333]
k=[11.0000 -14.3333 22.3333], ka=85.3333

y(t) is plotted in red curve.

If we pick
2 -2 0 0
12 2 0 0
F=l'o 0 -4 o
0 0 0 -8

The tracking performance is
improved. See y(t) plotted
in blue. (N

The simulink model

u

A b
/ [eye(3) zeros (3,1)]

To Workspace2

x' = Ax+Bu
y = Cx+Du

JUL

Pulse
Generator

y

Matrix
Gain1

State-Space To Workspace

Matrix
Gain

t

Clock To Workspace1

You can try to change the parameters A, or b and the tracking

property is maintained.
12



A response in the presence of step disturbance

25

0.5 B

Robust tracking in power converter
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Problem set #11

1. Design a robust tracking strategy for the system

y

u sP+s+1
g =
-85 +2s—1

so that the output y follows a step signal asymptotically. Choose design
parameters so that the closed-loop poles are at -2+j2, -2-j2, -4 and -8.
Simulate the system from t=0s to t=20s. (print the simulink model)
1) with the given g (s)
2) Keep all the design parameters but replace g (s) with
g (s)=—> *“*5)”1 for 8=0, 0.5, 1, 2
+(2-06)s-1
Plot y(t) for each of the cases with 0 initial condition for the state.
You may plot all responses in the same figure and identify them with

the value of 6.
What is the minimal & to make the closed-loop system unstable?

(Note: use the same state-feedback for all cases.) 16




Stabilization of uncontrollable systems

Recall: If (A,B) is controllable, then the eigenvalues of (A+BK)
can be arbitrarily assigned.
* What if (A,B) is not controllable? Can the system be stabilized?

The original system: X = Ax+ Bu

Suppose that the system is transformed (by z = Px ) into the
following:

z= Az+Bu, A=PAP', B=PB, z:[ﬂ
2

20| _|Ae An |z, | B, u, (A,,B,) controllable
Z, 0 A.|lz, 0

C

Note: eig(A) = eig(A) = eig(Kc) U eig(Ka)

Bﬂ = {%ﬁ %‘2}[2} + {%‘i } u, (A,,B,) controllable

C

Note: eig(A)=eig(A) = eig(A, ) Ueig(A,)
Consider a state feedback: u=r-Kx=r-Kz=r- [Kl K, , K=KP

zZ A, -BK, A,-BK,|| z B
o [ ) )
Then eig(A - BK) = eig(A - BK) = eig(Kc -B,K,)u eig(KE)
Conclusion:
— Since (A,,B,) is controllable, eig(A, —B,K,) can be
arbitrarily assigned
— eig(KE) cannot be changed by any state feedback. They are
called uncontrollable modes.
For the system to be stabilizable, the uncontrollable modes have

to be stable, i.e., Re(}, (KE)) <0 for each 1. 18



Today’s topics:

= Other state-feedback problems
— Regulation and tracking
— Robust tracking and disturbance rejection
— Stabilization of uncontrollable systems

* Full dimensional estimator
— SISO case via observable canonical form
— MIMO case by solving matrix equation

State Estimators

* Previously, we assumed that x is available.
However, generally x is not available

Q. What to do?

— Construct a system to estimate x ~ State estimator (or
observer)

u | LTI y
System

»
»

L State Xe
Estimator

* Want x_(t) to be a "good" estimate of x(t), 1.e.,

= X(t) — x.(t) should go to zero asymptotically
with fast convergence rate. 2

10



* Main result: If the system is observable, then by
properly designing the state estimator, the poles of
the dynamics associated with x(t) — x.(t) can be
arbitrarily assigned

» Error goes to zero as quickly as possible
* We will discuss several types of estimators
— Full-dimensional state estimator
* Single output case
» Multivariable output case
— Reduced-dimensional state estimator
* Finally, connecting state estimator and state
feedback

21

Full-Dimensional State Estimators

* How to estimate x based on u and y?
X =Ax+Bu; y=Cx ~AssumingthatD=0

» A proposed configuration:
u .

— B ﬂ?i Integrator e
At [+
L
L, — i
B @tegratol S C Ye
u

A
— Duplicate the system dynamics

[

— Make correction on dx./dt when y and y, are different

— Pick the correction as a linear function of (y —y.)

11



Will the proposed configuration work?

The original system
Xx=Ax+Bu;, y=Cx
The duplicated system (estimator)
X, = AXx, +Bu+L(y—ye), y. =Cx,

* The correction term L(y-y,) plays the essential role.

» Can we choose L appropriately to make x, approach x?

23

* We now analyze the system
— First, consider the estimator dynamics
X, =Ax,+Bu+L(y-vy,), y. =Cx,
= Ax, +Bu+L[Cx-Cx,]
= (A - LC)xe +LCx +Bu
— Next, consider the dynamics of e:=x —x,
¢=%—-X,=(Ax+Bu)-[(A-LC)x, + LCx +Bu]
=(A-LC)(x-x,)= (A-LC)e
¢=(A-LC)e
= If the eigenvalues of (A - LC) have negative real parts,

any error will converge to 0, x —x,— 0.
= Can the eigenvalues of A-LC be arbitrarily assigned? 4

12



Theorem. If the system (A,C) is observable, then all the
eigenvalues of (A - LC) can be arbitrarily placed,
provided that complex eigenvalues appear in pairs

Proof : The result follows from duality
— The eigenvalues of (A-LC) and (A’-C’L’) are the same.
— By Theorem 6.5: (A, C) is observable iff (A’, C’) is
controllable (page 155)
— Now, since (A, C) is observable, (A’, C’) is controllable

— Eigenvalues of A’ — C’L’ can be arbitrarily placed

» Note: All the state feedback design procedure
can be used to design state estimator, and some
of them will be highlighted next

25

Full Dimensional State Estimator, SISO Case

Theorem. Ifa SISO system is observable, then it
can be transformed, by an equivalent
transformation, to an observable canonical form

e Observable Canonical Form:

000 . -a, Bn
00 .. —opy Bn—l
X=[0 1 0 .. —o,5|X+|[Bypfu; y=[0 0 0 .. I]x+du
o0 .. 1 -oq | [ B |

s"THB,s" T+
c(sI-A)'b+d= i Fz P, +d
s"+os" +..+a, s+a,

26

13



The transformation matrix Q is formed as follows:

q, =¢
q,,=A'q, +a,c'=A'c+oc

q,, =A'q, ., toc'=A)"+o,A) 2 +-+a,c

q,=A'q, +o,_c'=(A)"+a,(A)" 7+ +a_c

For example, with n=4 1 0 0 0
o, 1 0 O

Q=laye @ye ac i g
a, o, o 1

— With P=Q’, then (PAP-!, Pb, cP!) is in the

observable canonical form.
27

12 0 2
Example x=[3 -1 1|x+[1|w y=[0 0 1]x
020 1

— Is the system observable?

C 0 0 1
G°=|CA |=|0 2 O
CA? 6 -2 2

G°=-12#0 ~ Observable

-1 -2 0
AG) = =3 Arl —1=2p2-1)-2(-1)-62
0 -2 2

=B +02-9%+2  ~0,=0,0,=-9,0,=2

28

14



* Now, how to select L?
— Consider the equivalent system in Observable Canonical
Form:

29

w y=[0 00 .. 1]x

S~ 1S~ S~

w

000 . 1]

30

15



000 —(ay +74)
0 0 .. —((Xn_1+iz)
A-Lc=|0

0 . —((Xn_z +i3)

0 0 . 1 —(oy+ly) |

— The characteristic polynomial:
A (s)=s" +(0L1 +l_n)sIH +..+(0LIH +l_2)s+(an + _1)

— Suppose that the desired estimator poles are {Ai}?zl
and the desired characteristic function is

Ay(8)=s"+0as"" +..+0a, S+0,

Then it is clear that

h=0y—0p; =01 =015 =0 -0l =61 —ay

31

0 —oy
— Finally, Let L=P-! L, then
A-LC=P'AP-P'LCP=P'(A-LC)P
A-LC also has the desired eigenvalues.

— L 1s uniquely determined by the desired
eigenvalues of the estimator.

32

16



Procedure for designing the estimator gain

Step 1. Choose the desired eigenvalue set {A;, i=1,2,...n}
of A-Lc and obtain the coefficients of

Ay(8)=(s—A)(s=A,) - -(s—A")=s"+0o,s" " +---+0_s+0,

Step 2. Compute the characteristic polynomial of A

4N n-1
A(s)=s"+o,8"" +---+a__s+0,

and the transformation matrix, e.g., forn =4

1 0 00

' ' ' ' PN ' (1 1 O O '

Q=[AYc (A Ac c]a; o 1 of P=Q
a, o, o 1

33

0 0 0 —a,
_ L1100 —ay| _ B
Then A =PAP'= ,c=CP'=[0 0 0 1],
010 —a
0 0 I -a
00 0 —a,—1/
A_@:l 00 -a,-L
01 0 —o,-1
00 1 —o -1
Step 3: |Choose [ =0,
00 0 —a,
—__ |1 0 0 —a
Then A-Lc = B
010 —a
00 1 —a

Step 4:|Compute L =P'L.

then A-Lc=P"'(A—Lc)Phas the desired eigenvalues
{Xi,i=1,2,...,n} 34

17



Example (Continued)

1 2 0 2
x=[3 -1 1|x+|[1|u y=[0 0 1]x
0 2 0 1

— Find L s.t. the estimator poles are all at -3, -3, -10
— As discussed earlier, the system is observable, and

ARV =22 +002-9n+2 ~a,;=0,0,=-9,0,=2
— The desired estimator characteristic function
Ay(s)=(s+3)(s+10)=5> +16s> +69s+90

B 3 B oy 88
=, =16,a, =69, a, =90, L=|a,-a, 78
16

o, —a,

— From the previous example,

6 -2 -7 vov
P=0"=l0 2 0} P'=l0 1 0
0 0 1 0 0 1
TR
L=P'L=| 0 }é 0|/78|=| 39
0o 0 11|16 16
— Verification:

12 0] [139 12 139

A-Lc=|3 -1 1|-| 39 [[0 0 1]=|3 -1
0 2 0 16 0 2

35

36

18



1 -2 139
A-1 -2 139
A-(A-Lc)=|-3 xr+1 38

0 -2 A+l16
=2 =1)n+16)+278+76(.~ 1)~ 6(n +16)
= (03 +1602 — 2.~ 16)+ 278+ (761~ 76) - (61 + 96)

=3 +16)2+690+90 ~ As desired

37

Today’s topics:

= Other state-feedback problems
— Regulation and tracking
— Robust tracking and disturbance rejection
— Stabilization of uncontrollable systems

= Full dimensional estimator
— SISO case via observable canonical form
— MIMO case by solving matrix equation

38

19



General MIMO State Estimator
* Dual to MIMO state feedback ~ Methods discussed
earlier has a counterpart here

— We will discuss the method based on matrix
equation, assuming that the system is observable

u | LTI Y,
System

X
€
g State estimator ’—’

— A full-dimensional state estimator with D = 0:

X, = AXx, +Bu+L(y—ye), y. =Cx,
Let e=x-X,, the error dynamics:

¢=(A-LC)e .

Similar to the state feedback design, the objective is to
pick an observer gain L such that A-LC is equivalent
to a certain F which has the desired eigenvalues, i.c.,

A —LC =TI'FT for a nonsingular T
@& TA-FT=TLC, LetL,=TL
& TA-FT=L,C,

The procedure: Given A,C and F. Pick L, solve
TA-FT=L,C forT.

If T is nonsingular, let L=T-'L,. Then A — LC has
the desired eigenvalues.

40

20



About the solution to TA — FT =L,C, we have:

= The matrix equation has a unique solution iff A and F
have no common eigenvalues;

= The solution T is nonsingular only if (A,C) is observable
and (F,L,) 1s controllable;

= In case that C has one row, T is nonsingular if and only
if (A,C) 1s observable and (F,L,) is controllable.

The above result can be derived from the results for
state feedback design from duality: taking transpose
of the equation, we obtain

AT -TF =CL, as compared with
AT-TF =BK, for the state feedback design,,

Example

1 2 0 2
0 01
x=[3 -1 1|{x+|1|ju y= X
0 1 1
0 2 0 1

Find T s.t. the estimator poles are at -5, -5, -10
— Check observability:

C
G°=| CA |=
CA?

AR LWO OO
HKH =R O
HKAR = O = =

~ Observable

42
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-5 0 0
— Select F: F=|0 -5 0

0o 0 -10

1 0
— Select L: Lo=[8 é] = {F, L,} controllable

— Solve TA-FT=L,C with matlab: T=lyap(-F,A,-L0*C)

0.1250 —-0.2500 0.2500 -35 24
T=|-0.1875 0.3750 0.1250|, L=T"'L,=|-3.75 15
-0.0602 0.2206 0.1779 3 2

— Verify: eig(A —LC) ={-5,-5,-10}

) - 10 117 24
If we pick: L,=|-1 1|=L=[-60.5 15
1 0 3 2

43

X = Ax + Bu; y=Cx; X3=AX6+BU+L(Y_}’¢)’ y. =Cx

e e
To Workspace2 To Workspace3

B
oS Bugk=Ax+By X y
ly = Cx+D
Pulse Matrix State'Space Matrix To Workspace
Generator Gaind Gain1
X' = Ax+Bu| ;l.r “u C
y = Cx+Dy X, | Ye
State-Space1 Matrix
Gain2
% 1 -
t K*u
Clock To Workspace1 Matrix L
P Gain3

Take A to be the original A, B=I, C=I, D=0
B=eye(3),C=eye(3),D=zeros(3);

44
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Explanation:

u=’j< = AX+Bui=>y
y=Cx
Can be equivalently realized with
U vV [X=AXx+V Yi 1 v
>B— "e——
yi =X

v =Bu, y=Cy,=Cx

The purpose of doing this is to get x and x,

L(Y'Ye)

X, =Ax, +V,

YCI = Xc

Yei [~1 Yoo

> C >

Ve = Bu+L(y'Ye)a Ye :Cyelzcxe

The estimation error: x-X,

1
x(0) = H x,(0)=0
1

45

The output

23



Observer for discrete-time system
The original system
x(k+1)= Ax(k)+ Bu(k); y(k)=Cx(k)
The duplicated system (estimator)
x,(k+1) = Ax, (k) + Bu(k) + L(y(k) ~ v, (k). v,(k) = Cx, (k)
Define the observer error, e(k):= x(k) — x.(k)
e(k +1)=(Ax(k)+ Bu(k))-[ (A - LC)x,(k)+ LCx(k) + Bu(k) |
= (A4-LC)e(k)
e(k+1)=(A4—LC)e(k)
= If the eigenvalues of (A - LC) are inside the unit disk, |1;(4)] < 1,
any error will converge to 0, x(k) — x,(k) — 0.

Use same algorithms to assign the eigenvalues of A-LC.
47

Problem set #11
2. For the system
1 2 0 2
. 1 0 -1
x=|-1 -1 -1|x+|0]|u; y:[ }(
01 0
0 2 -1 1

Design an observer to estimate the state x. The poles of
the observer are -4+j4, -4-j4 and -8. Simulate the system
from t=0 to t=10 with x(0)=[1 1 1]°, x.(0)=[0 0 0] and
u=0. Plot the state x(t) in one figure and e = x(t)-x,(t)

in another figure. Also print the simulink model.

48
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Today’s topics:

= Other state-feedback problems

— Regulation and tracking

— Robust tracking and disturbance rejection
— Stabilization of uncontrollable systems

= Full dimensional estimator

— SISO case via observable canonical form
— MIMO case by solving matrix equation

Next Time:
« Reduced-order estimator

* Connection of state-feedback with state estimation

* LQR optimal control

Problem set #11: see slides 16, 48

49
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