
1

1

EECE5130 Control systems - Last lecture

Last time, we constructed

 Full dimensional estimator
– SISO case via observable canonical form
– MIMO case by solving matrix equation  

 Reduced order observer  
 Connection of state-feedback with state estimation
 LQR optimal control
 Rejection of sinusoidal disturbances

Today: We conclude the design part  

2

Full-Dimensional State Estimators
• The basic idea: make a copy of the original system

Cxy;BuAxx 

• Make correction on dxe/dt based on  (y – ye)
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• The error dynamics for e = x – xe:  eLCAe 
• Main issue: designing L for good convergence of e(t)
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• Main issue: designing L for good convergence of e(t)

 eLCAe 
Under what condition can A-LC be stabilized?

• If (A,C) is observable, then the eigenvalue can be
arbitrarily assigned.

• If (A,C) is unobservable, the unobservable 
subsystem must be stable. Suppose
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 Reduced-order estimator
 Combining state estimator with state-feedback
 Summary of feedback design
 Feedback design for discrete-time systems
 LQR optimal control 
 Rejection of sinusoidal disturbances

Next we study:

For an observable pair (A,C), we studied two approaches
to assign the eigenvalues of A-LC

• through observable canonical form
• by solving matrix equation

3

4



3

5

Reduced Dimensional State Estimator

• So far, the dimension of the estimator = n
• Is this really needed especially when q is not small?

– Assume that y = Cx with C: qn, q > 1, C full row rank.  

• What is the minimum estimator dimension needed?
– The dimension needed is (n - q)

• There are two methods
– By transforming the state equation into a special form:  

the structure is clear but the procedure is complicated. 
An earlier method. Will not be covered.

– By solving matrix equations: simpler procedure.

For MIMO systems, this method offers infinite many 
solutions. Will be discussed next.
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Reduced Dimensional Estimator

• The full-dimensional  method via matrix equality can be 
extended for reduced-dimensional estimator

– Recall a full dimensional estimator:

;HuGyFzz 

  eeee Cxy    ,yyLBuAxx e
BuLyLC)x(Ax ee 

• A reduced-order equation modified from above:

FR(n-q)(n-q), GR(n-q)q, HR(n-q)p

 r,nonsingula is  
T

C
:P If   x(t).

T

C
  

Tx(t)

Cx(t)

z(t)

y(t)
then 

.RT somefor Tx    z(t)  If nq)-(n




































 

x(t)
z(t)

y(t)
P 1 








State recovered from y and z.
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The crucial points: 

Tx z(t)   2)

andr nonsingula is T
CP that Ensure    )1








We first discuss how to ensure 2).  Recall  

TBu TAxxT  Bu  Axx  

Define e : =Tx-z

;HuGyFzz 

Hu.-GCx-Fz-TBuTAxeThen  

If we choose T such that TA=FT+GC and H=TB,

Fe            

z)-F(TxHu-GCx-Fz-TBuGC)x(FTeThen  




As long as F is stable,  e(t) → 0  and z(t) → Tx(t).
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The algorithm:
– Select FR(n-q)(n-q) having desired estimator 

eigenvalues which are disjoint from those of A

– Choose GR(n-q)q such that {F, G} is controllable

– Solve TA - FT =  GC to obtain TR(n-q)n
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Otherwise, choose a different F or G and try again

– If the resulting is non-singular, H = TB and state 

estimator can be obtained as  
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Note: For randomly chosen G, the probability that P is 
nonsingular  is 1.
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Example (Continued) 
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Obtain a reduced-order estimator with pole at -10
– In this case, n = 3, q = 2, n-q = 1
– Select F ((n-q)(n-q)): F = -10
– Select G ((n-q)q): G = [1, 0] ~ {F, G} controllable

– Solve TA - FT = GC to obtain T ((n-q)n) 
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• Putting things together:
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Connection of State Estimation and Feedback 

• We will assume controllability and observability
– How can we use the estimated state? 

– Can we use xe(t) in state feedback?

– What are the complications?

y LTI 
System 

u 

State 
Estimator

K

+

+r

xe
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• How to analyze the combined system?
– Put all the equations together, and then analyze them

Cxy;BuAxx 

;HuGyFzz  ;GCFTTA    
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– There are two equations involving x and z:
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~ Assuming a reduced dimensional estimator
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– Introducing the following equivalent transformation:
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– What can be said about poles of the combined system?
– They are the union of eig(A-BK) and eig(F)

Transformed estimation error

  I,TQCQT
CQQ  Recall 2121 
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– Poles of the combined system: eig(A-BK) and  eig(F).

– Eigenvalues of state feedback are not affected by the 
eigenvalues of state estimator F, and vice versa

– Design of state feedback and state estimator can be 
carried out independently ~ the Separation Property and 
the Certainty Equivalence Property (not true in general)

– What is the transfer function from r to y?

– e is uncontrollable, as it cannot be controlled directly 
from r or indirectly from x  Will not show up in Ĝ(s)
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  BBkAsIC)s(Ĝ 1

– In deriving the transfer function, initial conditions 
are assumed to be 0, i.e., x(0) - xe(0) = 0, or x(0) = 
xe(0).  The dynamics of state estimator therefore 
will not show up

– If x(0)  xe(0), the estimation error will show up in 
y.  The error will vanish quickly if the eigenvalues 
of F are further to the left as compared to the 
eigenvalues of (A - BK)

Rule of thumb: The poles of state estimator should 
be 2 to 3 times faster than the poles of state 
feedback 
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Example.  A DC motor driving a load 

Design state feedback with poles at -1  j, and a reduced 
state estimator with pole at -2

The two designs can be done separately
State Feedback:
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Step 1:
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Step 3: d(s) = (s +1 - j) (s + 1 + j) = s2 + 2s + 2
~1 = 2,2 = 2

Step 4: k1 = 2-2 =  2-0 = 2

k2 = 1-1 = 2 - 1 = 1

k = [k1k2] = [2 1] 

k = Pk =k 

State Estimator :  
Step 1: F= -2 

Step 2:  Choose G = -2  {F, G} is controllable

Step 3:   Solve TA - FT =  GC to obtain T
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The estimator:

Step 4:

20

Combining state feedback and state estimator: 
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– Schematically (with ż = -2z - 2y + u):

  




z
y13r

 
s(s+1) 

y u 1 

 
(s+2) 

z 1 
+ 

-2

+

-1

-3

r

19

20



11

21

Example (same as in last lecture)
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So that the estimator poles are at -5, -5, -10

A full dimensional observer was built as
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Since A is unstable, the output diverges to infinity.

We need to design a state feedback law. Let the desired 
eigenvalues of A-bk be -1+j1, -1-j1, -2. The feedback gain 
is   

k=[0.3750    1.7500    1.5000]
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The estimation error: x-xe
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red: from estimated state xe

u = kxe
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Summary of  feedback design 

Cxy;BuAxx 

A linear time invariant system

LTI
u y

The system can be described by 
• a proper rational transfer function (matrix) G(s)
• state space equation 

If by a transfer function, we need to obtain a state-space
realization (controllable and observable)  

Suppose that (A,B) is controllable and (A,C) is 
observable. 

23

24



13

25

Observer gain:  find L such that A-LC has the desired
eigenvalues. Usually assign eig(A-LC) to be further 
away from the imaginary axis than eig(A-BK) 
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Controller

The inputs to the controller are  u and y, the output is Kxe

State feedback gain: find K such that A-BK has
the desired eigenvalues;

26

When performing simulation, we can break (A,B,C,0) into three
components in serial, B, (A,I,I,0), C so that we can examine 
the state x
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 Reduced-order estimator
 Combining state estimator with state-feedback
 Summary of feedback design
 Feedback design for discrete-time systems
 LQR optimal control 
 Rejection of sinusoidal disturbances

Today’s topics:

28

Feedback design for discrete-time systems

The system:

x[k+1]=Ax[k]+Bu[k],   y = Cx[k]

• The procedure for designing state feedback and 
observer is the same as that for continuous-time
systems except for the desired eigenvalues for 
A-BK and A-LC:  eig(A-BK) and eig(A-LC) are
required to be all inside the unit circle.

• The convergence rate for x[k+1]=(A-BK)x[k] is 
faster if the eigenvalues of (A-BK) have smaller
absolute values.   (A-BK)k goes to 0 faster. 

• What happens if the eigenvalues of A-BK are all 0?

27
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• What happens if the eigenvalues of A-BK are all 0?

 (A-BK)n = 0,  (A-BK)n+i=0, ….

How to see this?  In this case, there exist a similar 
transformation such that  
















m

1
1-

J00
00
00J

J   , JBK)PP(A 

Each Ji of  the form

,

0000
1000
0100
0010

,
000
100
010

,00
10Ji


































Ji
n = 0 Jn = 0 (A-BK)n = P-1Jn P= 0

x[k]=(A-BK)kx[0]=0  for all k  n.

u = -Kx  is called dead-beat control.

30

Same thing happens for the observer

If A-LC has all zero eigenvalues, we have

e[k]=(A-LC)ke[0]=0  for all k  n.

x[k]=xe[k]  for all k  n. 
u=Kxe=Kx,   same as direct state feedback.
x[n+k]= (A-BK)kx[n] = 0 for all k  n.
x[k]=0  for all k  2n.  

Dead-beat control still achieved.

29
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 Reduced-order estimator
 Combining state estimator with state-feedback
 Summary of feedback design
 Feedback design for discrete-time systems
 LQR optimal control 
 Rejection of sinusoidal disturbances

Today’s topics:

32

LQR optimal control: Motivation

qpn Ry  ,Ru  ,R   xCx,yBu;Axx 
An open-loop system:

With state feedback u = r  K u, we have

  Cx,yBr;BK)x-A(x 

The closed-loop performance is closely related to the eigenvalues 
of A-BK, but the relationship can  be complicated.  Generally, 
large real parts yield  fast convergence rate.  

Note that to assign the eigenvalues to the far left of  the imaginary 
axis, the elements of K have to be large.  u = Kx is large, 
requiring large control capacity, magnitude, or energy.  

Then why not simply assign eigenvalues with large real parts?

 There is a conflict between good response and limited control
capacity.

31
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Question: 
• how can we balance the conflict between good

transient response and small control effort? 

Problem formulation:
• Use energy of u, denoted as  J1(u), to measure control effort: 

– small energy implies small control effort.  
• Use the energy of  y,  denoted J2(y),  to measure the quality of   

the transient response
– small energy related to fast convergence and small oscillation.

• Construct a performance index as the total sum of energy of  
the input and the output. 

• Add flexibility by using weights, e.g., J=c1J1(u)+c2J2(y)
– large c1 implies that the control is expensive and we intend to

keep it small
– small c1 indicates that the control is cheap and we don’t care

if  we need to use large control magnitude or energy.

34

 Problem posed and solved by R. E. Kalman (1960)

Linear Quadratic Regulator Problem

An LTI system
qpn Ry  ,Ru  ,R   xCx,yBu;Axx 

Assume that (A,B) is controllable and (A,C) observable.

• Objective:  Given QRqq, R ∈ R 	,  Q 0, R>0.
For x(0)=x0,  find a control u(t), t>0, to  minimize 





0

t(t)Ru(t))du'(t)Qy(t)(y'J

J is called the cost function. It measures the total 
weighted energy of the output and the control.

33
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0

t(t)Ru(t))du'(t)Qy(t)(y'J

J  contains two parts: 





01 (t)Qy(t)dty'J 




02 (t)Ru(t)dtu'Jand

J1 is a measure of energy for the output;
J2 is a measure of energy for the input. 

Since Q  0, R > 0, we know J1  0, J2>0.

Usually, Q and R are chosen to be diagonal matrices.
Each diagonal element represents a penalty on the 
corresponding output or input, e.g., suppose p=3, q=2;
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0)(

t(t)Ru(t))du'(t)Qy(t)(y'min
tu

0x   x(0)Cx,yBu;Axx  s.t. 

Solution:

u(t) =  RB’Px(t),  where P > 0 satisfies
PA + A’P  PBRB’P + C’QC = 0             (***)

• (***) is called an Algebraic Riccati  Equation (ARE)
• Same formula for all initial condition x0;
• A simple linear state feedback 
• The closed-loop system is

0
-1 x   x(0)BP)x,BR-A(x 

It is stable. 

Comments:

Problem:

35
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Proof: From standard calculus we have

xPx'Px'xPx)(x'
dt

d
 

Also, (2)             )Px)(0(x')Px)((x'Px)(x'
dt

d
0




(1)                      Ru)dtu'Qy(y'J
0




Combining (1) and (2) to obtain





0

Px))dt(x'
dt

d
Ruu'Qy(y')Px)((x'Px)(0)(x'J





0

)dtxPx'Px'xRuu'Qy(y')Px)((x' 





0

Bu))dtP(Axx')PxB'u'A'(x'Ruu'QCxC'(x')Px)((x'





0

PBu)dtx'PxB'u'Ruu'PA)xPA'QC(C'(x')Px)((x'

Recall that P satisfies PA + A’P  PBRB’P+C’QC=0





0

1- PBu)dtx'PxB'u'Ruu'PxB'PBR(x')Px)(x'(Px)(0)(x'J





0

1-1- BPx)dtR)R(uPBRx'(u)Px)(x'(

38





0

1-1- BPx)dtR)R(uPBRx'(u)Px)(x'(Px)(0)(x'J

From last slide:

Now, suppose that J is finite, we should have x(t)→0  as t goes to 
infinity. Thus (x’Px)()=0.  





0

1-1- BPx)dtR)R(uPBRx'(uPx)(0)(x'J

Since R > 0, the integrand is nonnegative. To minimize J, we have
to choose u = R-1BPx. By doing this, we also have

Px(0)x(0)')0(Px)(x'Jmin  Q.E.D.

Comments:

• The optimal cost depends only on P and x(0)
• The  ARE:  PA+A’P-PBR-1B’P+C’QC=0  has many solutions.

But there is only one P > 0.
• The optimal control is a linear state feedback.
• The closed-loop matrix A  BRB’P is stable.
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Example (same as in last lecture)
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1])   0;0  [1(Q  1,R,10
01QPick     :1 Case 





k=lqr(A,b,C'*Q*C,R), k =  [1.3260    2.1651    2.3134]
eig(A-b*k)={-0.3588 ,  -3.3858 + 0.1672i, -3.3858 - 0.1672i}

Case 2:  Q=[10  0;0  10];  R=1,
k=[1.0197    4.0322    5.2158],
eig(A-b*k)={-0.4702,   -3.2555,   -7.5618}

Case 3:  Q=[1000   0 ;0   1000]; R=1,
k=[-1.8875   31.6460   46.6354]
eig(A-b*K)={-0.4961   -3.2487   -70.7616}

- 0.4963  as Q goes to infinity

40
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Control u:  larger Q results in larger magnitude of u.
Larger Q, heavier weight on y, control is relatively
cheaper.

Red: Q=I, R=1;
Blue: Q=10I, R=1;
Green: Q=1000I, R=1.
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Control u:  larger Q results in larger magnitude of u

Simulation with feedback from estimated state 
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Output y1:  Larger Q results in faster convergence rate of y
and smaller overshoot
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Red: Q=I, R=1;
Blue: Q=10I, R=1;
Green: Q=1000I, R=1.

Output y2:  Larger Q results in faster convergence rate of y
and small overshoot.
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 Reduced-order estimator
 Combining state estimator with state-feedback
 Summary of feedback design
 Feedback design for discrete-time systems
 LQR optimal control 
 Rejection of sinusoidal disturbances

Today’s topics:

48

Rejection of sinusoidal disturbances
The system

x Ax Bu BG ,  xd y C   

The disturbance d is a sinusoidal signal with frequency 
d(t)= dmsin(t + If we know exactly the magnitude

and the phase of d(t), then we can let u=-Kx-Gd, then

BK)x-(ABGdBGd-BKx-Axx 

If (A-BK) is stable, then x(t) → 0.

Question: What can we do if the magnitude and phase
of d(t) is unknown?

Solution: build an observer.

47
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The key point:  we can represent d(t) = dmsin(t + ) as
the output of a linear system:

 v01vcd    v,0ω-
ω0Svv v 





Recall that 





tcosωtsinω-
tsinωtcosω

eSt

)ρsin(ωt       

t)sinωcos tcosω ρ(sin d(t)

  ), [0,2π some  ||,v||ρfor   , )ρcos  , sin (ρ)v,(v  Since

,
v
v

tcosωtsinω-
tsinωtcosω

0]   [1)0(ecd(t)

02010

20

10St
v




















 v

Hence dm=||v0|| and  are uniquely determined by 
the initial condition of  v and there is a one to one corresp.

On the other hand, given dm and ,  v(0)=[dm sin()   dmcos()]’

The magnitude and the phase are the polar coordinate of v(0)
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Now we have

Svv
Cxy  , vBGcBuAxx v







0]z  [Cy     u,0
Bz

S0
BGcA

z v 













 v
xzLet  

zCy     u,BzAz zzz 
If  (Az,Cz) is observable, then an observer (with state ze )
can be  constructed to estimate the state z.  Partition ze as







e

e
e v

x
z   v,   v  x,x ee 

θ)tsin(ωdd(t)v(t)c(t)vc mvev 

The disturbance d(t) is reconstructed as de(t)=cvve(t).

vc vd 
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Now we have  x and v estimated with xe and ve, let  

u(t) = - Kxe(t) - Gcvve(t)

The closed loop system is: 

 )vc-vBG(c)x-BK(xBK)x-(A   

BGdvBGcBKxAxx

evve

eve




Since x-xe→0,  cvv -cvve → 0 and A-BK is stable, we have
x → 0.

Again, the key point is to consider the disturbance as part
of  the original system and is estimated with an observer.

The procedure of design is illustrated in the following 
example.
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Example:

)v(tcd(t)    Sv,vThen   v have    we,v
xzLet  





zCy     u,BzAz zzz 

Construct the observer,

     ),zC-L(yuBzAz ezee  zz

Need to design L
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The desired eigenvalue for the observer: -4+j4, -4-j4, -6, -10.  
The resulting L is

L=[25  245  968  1701]’;

The desired eigenvalue for A-BK: -1+j1, -1-j1 
The resulting K is,  K=[3 3]

The control law: 
u= - Kxe- cvve= - [K cv]ze= - [3 3 1 0]ze

     ),zC-L(yuBzAz ezee  zz

The observer:

Next design the state feed back gain K.
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• The disturbance rejection problem mentioned above 
is an output regulation problem. 

• The method can be extended to deal with the case
where d(t) has several frequency components, such as

d(t)=d1sin(1t+1) + d2sin(2t+2) + ….
or a periodic signal with a few harmonics 

• The method can also be extended for the purpose of 
tracking a sinusoidal or periodic signals.  

• One of my papers studies output regulation 
with input constraints

T. Hu and Z. Lin,``Output regulation of linear systems with bounded 
continuous feedback,'' IEEE Trans. on Automat. Contr., Vol.49, No.11, 
pp.1941-1953, 2004. 
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Project and Final Exam:  Due 12pm, Dec 15, 2019

Final exam problems will be sent to 
your email  box at uml,  at 9am, Dec 14 (Saturday).

• The written part of the project should be complete with all 
results clearly presented. 3 points out of 25 will be given on 
presentation.

• All the Matlab and Simulink files for the project and  the final 
exam should be contained in a zip file for possible verification. 

• The project and final exam should be done independently.

Please send 4 files to me via email between 12 - 12:30pm, 12/15/19
1) Project; 2) Final exam; 3) Homework #12 (pdf file, or MS word)
4)   Zip file for all Matlab/Simulink source files   
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Problem Set #12

Problem 1: The open-loop system
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1) Assume that x is available for state feedback. Design an LQR 
control law by letting R=1 and choosing Q so that all the 
elements of the feedback gain K have absolute value less than 
50.  Requirement: |y1(t)|,|y2(t)|0.05 for all t > 5. Plot 
y1(t) and y2(t) in the same figure for t[0,15].  

2) Assume that only the output y is available. Design an 
observer so that the poles of the observer are -5+j5, -5-j5, -10.
Choose the observer gain so that all the elements have 
absolute value less than 80. Form a closed-loop system 
along with the LQR controller in part 1).  Plot y1(t) and y2(t) 
in the same figure for t[0,15].  
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Problem 2: The open-loop system

 

).θt2sin(dd(t)  is edisturbanc The
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Construct a feedback law from u and  y such that  the disturbance 
is rejected. Given the initial condition of x and d(t)=sin(2t). 
Adjust controller parameters (K and L) such that |u(t)|  20 
and |y(t)| ≤ ymax for all t and ymax is as small as possible.
Plot u(t) in one figure,  y(t)  in another figure.

Follow the steps of the example on slide 52. Be careful with the
dimension of the matrices.  

Due together with your project and final exam. 

57

58


